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We investigate the large-order behavior of weak- and strong-coupling perturbation

series for a gP theory in zero space-time dimensions. Both the unrenormalized and re-

normalized weak-coupling expansions are divergent but Borel summable. The unrenor-

malized strong-coupling expansion is convergent, but its renormalized form is divergent

and not even Sorel summable.

I. INTRODUCTION

Recently there has been much interest in strong-
coupling expansions and their renormalization.
There is a profound difference between the renor-
malization of weak- and strong-coupling expan-
sions. %eak-coupling expansions can be renormal-
ized order by order; the structure of the resulting
renormalized series is the same as that of the un-

renormalized series. By contrast, strong-coupling
expansions cannot be renormalized order by order
and the form of the renormalized series differs sig-
nificantly from that of the unrenormalized series.

In this paper we illustrate these differences using
a physically trivial but mathematically interesting
model; namely, a gP field theory in zero space-
time dimensions. We examine four different ex-

pansions for the four-point Green's function: (i)
the weak-coupling expansion in terms of the un-

renormalized mass, (ii) the strong-coupling expan-
sion in terms of the unrenormalized mass, (iii} the
weak-coupling expansion in terms of the renormal-

ized mass, and (iv) the strong-coupling expansion

in terms of the renormalized mass.

We find the explicit large-order behavior of the
coefficients in the series (i) and (iii). These are
both divergent Borel-summable series with very
similar large-order behaviors. On the other hand,
we show that series (ii} has a nonzero radius of
convergence. Nevertheless, by finding the precise
large-order behavior we determine that the series in
(iv) is a divergent series which is not even Borel
summable.

The differences between the effects of renormal-

izing weak- and strong-coupling perturbation series
arise from the behavior of the unrenormalized
mass for fixtxl renormalized mass. In the weak-

coupling theory, as the coupling constant g ap-
proaches zero the unrenormalized mass approaches
the renormalized mass. For this reason, renormali-
zation can be performed order by order in the per-
turbation series. In the strong-coupling case the
square of the unrenormalized mass tends to —0c

as g —++ (x) for fixed renormalized mass. It is this
singular behavior which causes expansions in the
unrenormalized mass to change their character
completely when reexpressed in terms of the renor-
malized mass.

II. THE MODEL

The Green's functions for a gP quantum field theory are expressed as functional derivatives of the gen-

erating functional Z[J], which can be represented as a functional integral in d-dimensional Euclidean space-
time:

Z[J]= J &/exp —I d x(ti&pt)„p/2+m P /2+gP /4 JP)— (2 l)

m and g denote the unrenormalized mass and coupling constant. The connected 2n-point Green's functions
W2„are defined by
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5
~2n(X1 X2 . . X2n)= 5J x1

lnZ[ J]5

2n J=0
(2.2)

In zero space-time dimensions the functional integral in (2.1) reduces to an ordinary integral and the
Green's functions are moments:

Z[J] f dX e —m x /2 —gx /4+Jx

8 = f x dxe —m x /2 —g /4/Z[0]

I x4dx e —m x /2 —gx /4/Z[0] 3IIr 2

(2.3)

(2.4)

(2.5)

and so on.
Ordinarily, the renormalized mass is defined as the pole of the two-point function. However, when the

space-time dimension d =0 we use the simple definition

1

M
(2.6)

where we have absorbed the wave-function renormalization constant Z into M .
The renormalized coupling constant 6 is defined as the negative of the amputated connected four-point

Green's function:

6—= —8'2 he .4

In this paper we study perturbation expansions of the dimensionless coupling constant 6 defined by

G =6M

The analysis of this paper consists of expanding the integral representation for 6,

I x4dx exp( —m x /2 —gx /4) I dx exp( —m x /2 —gx /4)6=3—
f x dx exp( —m x /2 —gx /4)

(2.7)

(2.8)

(2.9)

in four different perturbation series. The unrenor-
malized weak-couphng perturbation series has the
form

6- g c„(g/M )"
n=l

(2.13)

6- g a„(g/m )"
n=i

(2.10)

and the renormalized strong-coupling perturbation
series has the form

and the unrenormalized strong-coupling perturba-
tion series has the form

6—g d„(M /g)" .
n=0

We find that in large order

(2.14)

6= g b„(m /Vg )" .
n=0

(2.11)

The renormalized perturbation series for 6 are
found by using

an
1 n+1

4" + (n + 1) ! (n ~ oo ), (2.15)
17 2

1 n+1
4" + (n+1)!e / (n~ao), (2.16)

1r 2

I x dx exp( —m x /2 —gx /4)

M I dx exp( —m x /2 —gx /4)

(2.12)

—(n —1)! 1——4" 11
n &2e 16n

+0 1

743

512n

(n —+oo) .(2.17)

to replace m by M. The renormalized weak-
coupling perturbation series now has the form The coefficients b„~0 fast enough so that the
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series (2.11) converges for small enough m /Vg.
These results are established in the following sec-
tions.

we have

ck -apbk+b, ak (k~ ao ) .

Also, if

(3.4)

III. UNRENORMALIZED WEAK-COUPLING
PERTURBATION SERIES

The scaling transformation y =mx transforms
the expression for G in (2.9) into

ya &k

0

we have

ck&
k

0

G =3—Ip(e)I4(e)I2(e') (3.1)
—2

Ck ~0 Qk (3.5)

where

Iz„y——"dy exp( y /—2 ey —/4)
0

and e=g /m . For each integral I„we obtain the
weak-coupling series in powers of e by expanding

exp( —ey /4) as a series in powers of e and in-

tegrating term by term:

(3.2)

I2„-2" ' g ( —e) 1(2k+n+ —)/k! .
k=o

(3.3)

g ake g bke = g ck&
0 0 0

Note that for large k the terms in the series (3.3)
grow roughly like k& For such series it is easy to
determine the large-order behavior of products and
ratios. For example, if ak and bk grow roughly
like k!, then if

G= g a„e",
n=1

a, — 4" (n+1)! (n~co) .( —I)"+'

1T 2

(3.6)

(3.7)

In Table I we list the first 15 coefficients a„ in
the expansion (3.6). The growth of these coeffi-
cients agrees well with the predicted asymptotic
behavior in (3.7).

IV. UNRENORMALIZED STRONG-COUPLING
PERTURBATION SERIES

The scaling transformation y=g'~ x transforms
G in (2.9) into a function of the strong-coupling

Using (3.3) in combination with the rules in (3.4)
and (3.5) gives the large-order behavior for the
weak-coupling expansion for G:

TABLE I. The first 15 coefficients a„ in the renormalized weak-coupling perturbation ex-
pansion for 6 in (2.10) compared with the leading asymptotic approximation to a„ in (2.15).

Order n Exact a„ Asymptotic approximation to a„ in (2.15)

1

2
3
4
5
6
7

9
10
11
12
13
14
15

6
—90
1800

—43 470
1 215 000

—38 402 100
1 352473 200

—52 526 697 750
2 231 765 314200

—103065 713455 500
5 144 893 088 706 600

—276 267 644 959 567 500
15 888 974 353 860 150000

—974940 184679 407 137000
63 597 030 590 709 945 900000

28.8
—346

553X 10
—111X 10

267 X 10
—743 X 10'

238 X10'
—856X10'

343X10"
—151X 10'

724X10"
—376X 10'

211X10"
—126X 10'

809X 10
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expansion variable m /v g. Thus, the strong-
coupling expansion has the form

n

mG= gb„
n=0

(4.1)

4"+'nt
a„=(—1)" ' ' (n~ oo ),

m'& 2

CX ) =1, CX2 = —6 .

To solve for c„ in (5.3) we conjecture that

(5.5)

This series has a finite radius of convergence be-

cause each integral in (2.9) is an entire function of
m /v g. The radius of convergence of (4.1) is
determined by the location of the zero of

I x dx exp( —zx /2 —x /4)

nearest the origin in the complex z plane. The ra-

dius of convergence is about 5.2.

c„-It( —4)"(n+ 1)!

and write

a„e"

= g c„e"(I+aze+a&e + )" .

(5.6)

(5.7)

V. MASS-RENORMALIZED WEAK-COUPLING
PERTURBATION SERIES

To derive the mass-renormalized weak-coupling
perturbation series in (2.13), we recall that we have
already found that

n —pan= &n —p +2
p=0

(5.8)

Taking the large-n limit, and using (5.6) we find
that

Expanding the nth power in (5.7), and recalling
that a„and c„both dominate a„by a factor of n

for large n one easily derives

and

anE (3.6)
a„=Ee '

( —4)"(n+1)!.

Comparing (5.9) with (3.6) we find, using (5.5),
that

(5.9)

( —1)"+ 4"+ (n+ 1)ta„— ' (n~oo),
m'& 2 (3.7)

Thus

—3/2v2. (5.10)

1 1 I2(e)

M m Io(e)
(5.1)

where e=g/m .
The renormalized mass is defined by (2.12) as ( 4)"+ (—n+1)!ec„—— ' (n~ oo )

m'& 2
(5.11)

where Ii„(e) is defined in (3.2). Squaring both
sides of (5.1) and multiplying by g gives

g I2(e)
Io(e)

(5.2)

G= yc„ (5 3)

and the desired renormalized perturbation expan-
sion

'n

and our conjecture in (5.6) is consistent.
In Table II, we list the first 15 coefficients c„ in

the expansion (2.13). Their growth with n agrees
well with the predicted asymptotic behavior (5.11).

This analysis confirms a formal argument of
Bender, Mandula, and McCoy' that renormaliza-
tion does not affect the divergence of weak-

coupling perturbation theory. Here, its effect is to
reduce the asymptotic behavior of the coefficients
by a factor of e ~ .

comes from reverting the series in (5.2) and insert-
ing into (3.5). From the techniques used in Sec.
III, it is easy to establish from (5.2) that

VI. MASS-RENORMALIZED
STRONG-COUPLING PERTURBATION SERIES

geao,
M

where

(5.4)
To derive the mass-renormalized strong-coupling

series in (2.14) we begin by recognizing that the in-

tegrals in (2.9) and (2.12) define parabolic cylinder
functions
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TABLE II. The first 15 coefficients c„ in the renormalized weak-coupling perturbation
expansion for 6 in (5.13) compared with the leading asymptotic approximation to e„ in
(2.16).

Order n Exact c„ Asymptotic approximation to c„ in (2.16)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

6
—54
810

—16362
406 782

—11 872494
395 434 386

—14752 605 330
608 433 692 022

—27 468 612 893 862
1 347 067 421 442 234

—71 308 295 362 534 266
4053 152 328 184608 750

—246 247 460 613952 843 230
15 927 423 964 753 440452 130

6.43
—77.1

123X10
—247 y10'

592)& 10
—166' 10'

531 )& 10
—191X 10

764' 10'
—336' 10"

161)&10'
—839X 10'

470)(10'
—282 X10"

181'10»

3 M D —s/2(m /v 2g }G=3——
2 g D ~/2(m /~2g )

D,/, (m'/v 2g )

M ~2g D t/2(m /~2g )—

(6.1)

(6.2)

From (6.1) we know that
'n

G= gy„—,
a=0

where

(6.8)

so that

2M4 D t/2(m /v 2g )=4
g D 3/2(m /~2g }

Let us define

z=m'/v 2g .

(6.3)

(6.4)

The limit M /g~O corresponds to the limit
z~ —ao. The asymptotic behavior of the parabol-
ic cylinder function on the negative real axis is

—2"(n —1)!
'Vn (6.9)

G= ge„ (6.10)

and assume

As in the previous section, the problem is to revert
(6.6} and substitute into (6.8). The argument is ex-

actly as in the previous section. We write

2M

(z)
( ir) ei~z —v —lez /4

1/2

r( —}

n=0

(1+v/2)„( —, +v/2)„

n!(z /2)"

where (A)„means I (A+n)/Pn).
We show easily that for z~ —oo,

(6.5}

e„-X2"(n—1)! (ncaa) . (6.11)

(6.12)

so that

Again e„and y„dominate P„by a power of n

Consequently we find that

with

2M 1 1+ + ~ 0 ~ + + ~ ~ 0

g z' z4 (z2)ll
(6 6)

MG= gd„

with

(6.13)

2"(n —2)!
p — (n~a)) .

m'& 2
(6.7)

d„——4"(n —1)!/(nv2e ) . .

Here is another way to derive the result in

(6.14)
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(6.14) using a dispersion relation representation for
G. We call the dimensionless strong-coupling ex-

pansion parameter

p=M /g . (6.15)

and
G(p) =3—p+z( p) v'2/3

(2/p)' = —z —2D' 3~2(z)/D 3~2(z) .

(6.16)

(6.17)

Note that as z —&+ oo, the right side of (6.18) is
asymptotic to 1/z. Thus

VP-zV 2 (z + ~)

In terms of the variables z and p, (6.1) and (6.2) be-

come

and z~+ oo corresponds with P~+ oo. Hence,
as p~+ oo, G(p)-2; thus a once-subtracted
dispersion integral representation for G(e) is re-

quired.
To obtain the discontinuity in G(e) we will make

use of the property that as @~0+,Rez~ —oo but
that z has a small imaginary part. In particular,
we show that if we let z = —R+ig then g can be
calculated as a series in powers of 1/R and that to

2/
leading order g=8, where R~+ oo as
P~O+.

We will calculate the first two corrections to the

leading behavior of d„. To do so we will need the
first two corrections to the leading asymptotic
behaViOr Of D»2(Z) aS Z~ —oo:

D 3y2(z) z e 1 — + +—~ gp —z'/4 3 105
8z~ 128z4

3 105+iv2e""z ' ' 1+,+
8z' 128z'

+ ~ ~ ~ (z —+ —oo ) (6.18)

8 ' 3 39+ ~ 2z ——— +'''
i V'2 2z

(6.19)

Now we substitute z= —R+iq, where q is as-
sumed to be exponentially small, into (6.19) and
take the real and imaginary parts of the resulting
equation. The real part is an equation for R:

=2R ———v2 1 3 6

P R 2R'

The imaginary part gives g in terms of R:

(6.20)

Note that we include the subdominant contribution
to the asymptotic behavior here. Even though it is
exponentially small, it is distinguished from the
dominant term because it is real and not ima-
ginary.

Next we compute D' 3&2(z), and use the result to
determine the ratio D' 3&2(z)/D 3&2(z). Substitut-
ing the result into (6.16) gives

(2/P) ' = —2z+ —+ +—+1 3 6
2z' z'

R = (1+P+2P'+14P'+ .
) .1

v'2p

(6.22)

Note that as we have asserted, R ~ oo as p~O+.
Next we solve for q by substituting the result in

(6.22) into (6.21):

(1 , P , P +—' —' ' )—.—e /(4p) s s&

2 eP

(6.23)

Finally, we compute ImG from (6.16) by substi-

tuting z= —R+ig:

ImG= e-'"'t"(1——"p——"' p'+. . .
) .4 32

(6.24)

Now we use a once-subtracted dispersion relation
representation for G(e) with the cut on the positiue
real axis instead of the negative real axis as in Ref.
4. (We do not prove here that the cut is the only
singularity. ) From this dispersion relation we have

R —3/4R —39/32R7l=
1+ 1/2R'+9/4R'+ . v 2

1

y
I G(/3)

dp
p pn+3 (6.25)

The solution to (6.6) is

(6.21) Substituting (6.24) into (6.25) and integrating
gives the large-order behavior of d„with two
higher-order corrections:
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TABLE III. The first 11 coefficients d„ in the renormalized strong-coupling perturbation
expansion for G in (2.14) compared with the asympotic approximation to d„ in (2.17).

Order n Exact d„ Asymptotic approximation to d„ in (2.17)

0
1

2
3
4
5

6
7
8
9

10
11

2
—2
—2

—14
—166

—2714
—55 866

—1 377 942
—39 493 518

—1 288 115570
—47 086 272 754

—1 906 554 619 166

0.6218
—0.6410

—10.65
—154.6

—2699
—5671 X 10
—1405X 10
—4019X10'
-1307&& 10'
—4762 && 10'
—1923)& 10

d„— (n —I )! 1——4" 11

2e 16n

743

512n 2
0 ~ ~

—1.9065&&10' . Thus, our best prediction is off by
a relative error of 1%.

(6.26)

The first 11 coefficients d„ in the expansion
(2.14) are listed in Table III.' The prediction in
(6.20) compares well with the exact values of the
coefficients. When n =11, the leading asymptotic
behavior of d„ is —2.079)& 10' . Including the
—11/(16n) term gives —1.948 X 10' . The third
term lowers this number to —1.923X10' . The
exact value of d~~ from Table III is
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