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We present a simple argument which shows that all the ultraviolet divergences of quantum field theory may be
subtracted by the use of purely local Hermitian counterterms. Using minimal subtraction and differentiation with

respect to external momenta we are able to circumvent the problem of overlapping divergences, and many results of
renormalization theory are easily derived. The subtraction procedure also allows arbitrary infrared we11-defined

rearrangements of the regularized integrand to be carried out.

I. INTRODUCTION

The fundamental result of renormalization theory
states that to all orders in perturbation theory the
ultraviolet (UV) divergences of a quantum field
theory may be formally absorbed into the param-
eters defining the theory while locality, unitarity,
and Lorentz invariance are maintained. If we want
theories to have considerable predictive powers,
they must be specified by only a finite number of
parameters, and the insistence that this is con-
sistent with the modification of parameters by re-
normalization leads us to consider the restrictive
class of theories known as renormalizable theo-
ries. The concepts of renormalization and renor-
malizability are quite distinct, and there is no
reason why the divergences of even nonrenormal-
izable theories cannot be absorbed into an albeit
infinite family of local counterterms.

If one performs simple one-loop Feynman-dia-
gram calculations, it soon becomes clear that all
the divergences manifest themselves as polynomi-
als in the external momenta, which means they are
(quasi)local in configuration space. However, this
does not continue to hold for unsubtracted Feynman
diagrams with more complicated internal struc-
ture. It is the purpose of renormalization theory
to show that all the divergences to all orders in
the coupling-constant expansion may be removed
by local subtractions, and further that the combi-
natorics is such that these subtractions may be
implemented formally as counterterms in the La-
grangian.

There have been four main approaches to show-
ing that quantum field theories may be renormal-
ized: The first was initiated by Dyson' and is
based on the use of skeleton expansions and inte-
gral equations for the Green's functions of the the-
ory. This approach was developed further by
Salam' and completed with the proof of Weinberg's
theorem. ' Unfortunately, the proof contains many
pitfalls, and it was found that a particular simpli-
fication failed for a fourteenth-order diagram in

quantum electrodyn'amies (QED)~ (although the
method could be modified so as to circumvent this
difficulty). The second approach involves a recur-
sive subtraction scheme motivated by the concept
of counterterms. It was developed by Bogoliubov
and Parasiuk, ' based on the earlier work of Stuck-
elberg and Green. ' Their proof was also very
complex, and included an intermediate theorem
which was in fact not true. The first correct proof
in this framework was given by Hepp, ' and hence
this renormalization scheme is known as BPH.
The generality of this scheme has made it particu-
larly appropriate for use in non-Abelian gauge the-
ories. Furthermore, the BPH formalism is the
most convenient for performing subtractions on
individual diagrams, which is especially useful
from a calculational viewpoint. The third ap-
proach, due to Epstein and Glaser, ' is rigorously
based on the postulates of constructive field theory
and makes use of unitarity as expressed by cutting
equations. The fourth method, suggested by Cal-
lan and proven by Blaer and Young, ' is an inductive
proof using the renormalization-group equations
and skeletal expansions of nondivergent Green's
functions. A good historical review has been given
by Wightman. "

A necessary precursor of renormalization is the
regularization of Feynman integrals. A cutoff pa-
rameter is introduced into the diagrams by modi-
fying it in such a way as to make the divergences
appear only as the cutoff parameter tends to some
limiting value. By this artifice, it becomes possi-
ble to make mathematically respectable what would
otherwise be purely formal manipulations of diver-
gent quantities. A good regularization method
maintains as many of the desirable features of the
theory as it can. The simplest momentum-space
cutoff regularization violates Poincare invariance,
and it becomes a nontrivial task to verify that re-
normalization preserves even this vital symmetry.
The early proofs in renormalization theory there-
fore used Pauli-Villars regulators" which main-
tain manifest Poincare symmetry. The role of
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regularization in the BPH scheme is not immedi-
ately obvious, as this scheme is based on the idea
of subtracting suitable parts of the integrand of a
Feynman diagram so as to make the resulting in-
tegrals well defined (and in fact absolutely conver-
gent in Euclidean space); nevertheless this does
involve an implicit regularization insofar as the
original theory really only defines the whole Feyn-
man integral and not just the integrand on its own,
even though this may be read from the Feynman
rules for the theory. For this reason careful
treatments of renormalization always do use some
sort of regularization procedure (e.g. , analytic
regularization'2 in Hepp's proof).

The greater complexity of the symmetry of non-
Abelian gauge theories made the introduction of a
new and better regularization scheme vital for con-
structing a proof of their renormalizability, and
the invention of dimensional regularization" indeed
played a central role in this proof. The dimension-
al method involves calculating with an arbitrary
space-time dimension n, "analytically continuing"
the expressions so obtained into the complexn
plane, and then isolating the divergences as poles
in the Feynman integrals atn =4. The vital prop-
erty of dimensional regularization is that it pre-
serves gauge invariance, in the sense that the de-
rivation of the Ward identities which express local
gauge invariance in terms of relations between
Feynman diagrams is valid for any n (except for
the anomalies associated with y,).

For our purposes dimensional regularization has
a further advantage, which was first realized by
't Hooft' who introduced the idea of minimal sub-
traction. In order to explain the significance of
minimal subtraction, let us consider how we nor-
mally remove the divergent parts of a Green's
function. We choose a renormalization point in the
space of the external momenta and we expand the
Green's function in a Taylor series about this point
(this requires that the Green's function is regular
at the renormalization point, so that the usual
choice of on-shell renormalization is only possible
for infrared well-behaved theories). lf all the sub-
divergences of the Green's function have been re-
moved, the remaining divergences can only appear
in the leading coefficients of the Taylor expansion,
and the conventional renormalization prescription
replaces just these coefficients with their experi-
mentally measured values. In a renormalizable
theory this requires a finite set of experimental
values which take the place of the parameters in
the classical Lagrangian. Minimal subtraction,
on the other hand, removes the pole terms in the
Laurent expansion in the space-time dimension
about four, rather than removing terms in the
momentum-space Taylor expansion. The impor-

tant difference is that the expansions are made in
different spaces and is not related to the absence
of finite renormalizations: The infinities are re-
moved by subtractions in a = 2 -n/2, and the
Green's functions are normalized at particular
points in momentum space by a subsequent finite
renormalization. This implies one of the key
points of our approach, that the operation of mini-
mal subtraction commutes with that of differentia-
tion with respect to the external momenta.

The essence of our proof is that we differentiate
a diagram enough times with respect to external
momenta for it to have no

' overall overlapping di-
vergences. " Combining Weinberg's theorem (that
a naively convergent integral with no subdiver-
gences is absolutely convergent) with Bogoliubov's
recursive R operation is enough to demonstrate
that the differentiated diagram has only local pole
terms. The commutativity of the subtraction pro-
cedure with the differentiations suffices to show
that the original diagram also only has pole parts
which are polynomial in the external momenta.
Not all the overlapping divergences of a diagram
present a problem: The ones that are contained
within a subgraph are dealt with automatically by
the recursive nature of the subtraction procedure.

Our aim is to present a simple proof that the re-
normalization procedure may be carried out to all
orders in perturbation theory, on a level of rigor
comparable with that of functional methods: A
simple proof is important not only for the student,
but also to clarify exactly what needs to be
proved. " We know of no obstacles to constructing
a mathematically rigorous proof along the lines of
this paper.

To prove that a quantum field theory is renor-
malizable, we must show that we can remove the
infinities of the theory while preserving unitarity,
locality, and Lorentz invariance. The interest of
Lagrangian field theory is precisely that a theory
defined by a local, Lorentz-invariant, Hermitian
Lagrangian has those properties in perturbation
theory. " Unfortunately, in perturbation theory
Green's functions and S-matrix elements have di-
vergences, and these show up as poles in the
space-time dimension at the physical dimension
when the theory is dimensionally regularized. If
we are able to show that the infinities may be con-
sistently removed by a redefinition of the param-
eters of the Lagrangian (or equivalently by adding
counterterms to the Lagrangian), we will have
shown the theory to be an acceptable one (i.e., that
it has the symmetries and properties necessary to
be an acceptable theory: For it to be renormaliz-
able as well, the number of counterterms neces-
sary must be finite). We do this in iwo steps. We
first show that the subtractions that must be made
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for any diagram are local, which means polynomi-
al in momentum space, and so are of the correct
form to be added to the Lagrangian. It is at this
stage that the overlapping divergences usually
cause their worst complications. We then show
that the local subtractions of the individual graphs
of perturbation theory may be combined together
to form counterterms (i.e., that the subtractions
may be viewed as simply a redefinition of the
Lagrangian) .

The outline of the paper is as follows: We intro-
duce the R operation in Sec. IIA, and in IIB we
show that it indeed removes all of the divergences
in perturbation theory. Section IIC explains the
relation between formal counterterms and the R
operation. Section III shows how our methods may
be used to prove some useful properties of this re-
normalization scheme. The final subsection (IIID)
presents an example to illustrate the practical
simplicity of these methods, the vacuum polariza-
tion of massless Euclidean QED in two-loop order.

II. BOGOLIUBOV'S 8 OPERATION AND THE
STRUCTURE OF FEYNMAN DIAGRAMS

A. Structure of Feynman diagrams

In this subsection we describe how to subtract
the divergent parts of an arbitrary Feynman dia-
gram ~. We discuss the graphical structure of the
subtraction procedure, but we leave the proof that
it successfully removes all the divergences using
only local subtractions to the next subsection.

We first introduce some terminology to describe
the structure of a Feynman diagram. A Feynman
diagram is a collection of lines and vertices which

may be associated with a term in the perturbation
expansion; we shall use the words graph and dia-
gram interchangeably throughout. A 1PI subgraph
of a Feynman diagram ~ is a connected collection
of lines and vertices which is one-particle irre-
ducible. That is, it cannot be disconnected by re-
moving any one of the lines. " We write y(- ~ to
indicate that y is a 1PI subgraph of ~, and we rep-
resent such subgraphs diagrammatically by en-
closing them in a box (Fig. 1). A Projer 1PI sub-
gxaph y(- ~ is any 1PI subgraph except for itself
(Fig. 2). A (proper) spinney" S(S) of G is a dis
joint family of (proper) 1PI subgraphs, and we
draw a spinney by drawing boxes around each
member subgraph (Fig. 3). Formally we may de-
fine it as

,y„.. &~Iy, , y, «a.nd y,. ~ y,.=g.
A (proper) mood" W(G) (W(G)) is the set of all
(proper) spinneys of G (Fig. 4). A subtracted
graph ye G/(yj is a graph G whose 1PI subgraph y

has been replaced by the expression y(which is'

I & / IU LJ
L

1
I

I

I

I

(f)
L

FIG. 1. In part (a) the dashed box encloses a 1PI
subgraph. In the remaining diagrams the dashed boxes
do not enclose 1PI subdiagrams. The enclosed sub-
graphs of parts (b) and (c) are not connected, and those
of (d), {e), and (f) are not one-particle irreducible.

usually some modification of the expression corre-
sponding to y itself). Note that this means the part
of the Feynman integral corresponding to y is re-
placed by y within momentum integrals if appro-
priate. More generally we may subtract several
disjoint subgraphs at once,

y *G S,

where each y in. S is replaced by its corresponding
y. Note that this means 1+G/(y) =G/f y) corre-
sponds to the subgraph y being shrunk to a point,
that yqG/fy)=G, and that if y& y' and y' c G, then

We now define our minimal-subtraction opera-
tion: Let & be the operation of isolating the singu-
lar (pole) part in the dimensional regularization
Laurent expansion of a function; for example, if

OO «]I=,. c', then'&=
S S

We are assuming that the only singularities of di-
mensionally regularized Feynman integrals occur-
ring at four dimensions are isolated poles. For

FIG. 2. The box encloses a 1PI subgraph which is not
pro

per�.
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FIG. 3. If the graph G of (a) has the spinney S shown
in (b), then we will draw S as in (c). The boxes of (d),
(e), (f), and (g) do not represent spinneys. In (d) they
are nested, and in the others they are overlapping.

two different approaches to proving this, see
@eer" and 't Hooft and Veltman. " Our use of
minimal subtraction means that we use K in place
of the truncated Taylor series operation T of Bogo-
liubov and Parasiuk. We can now introduce an
operation 8 which acts on the dimensionally regu-
larized integral corresponding to the graph ~; as
no confusion is liable to arise we shall also call
this integral t". We shall show in the next section
that RG is rendered finite by local subtractions
when analytically continued to four dimensions.
The definition is

RG=—(i-K) RG,

where 8 is

RG=- g, ZR) ~,G/S.
SKIT'(g) F6S ]

As a matter of interest, although we shall not need
it in the following, we may also write 8 as

RG-=g -XRP*G/S.
sew &c & i c's'

B. Analytic behavior of the R operation

FIG. 4. An example of a wood. For a proper wood the
final diagram is omitted. Notice that the wood contains
the empty spinney as one of its elements.

mal-subtraction approach this is the same as say-
ing that LAC is a polynomial in all the external
momenta). As may be surmized from the recur-
sive nature of the definition of R&, the proof of
the first part will be by induction on the number of
loops in G.

Before starting the proof proper it is very help-
ful to make precise the ideas of an overall diver-
gence and of a subdivergence. The overall degree
of diver+ence deg(G) is the usual index obtained by
counting the powers of loop momenta in a graph .
A graph has a subdivergence if it is naively divergent
even when one of the loop momentais held fixed, or
to put it another way, if it has an overall divergent
subgraph. It should be stressed that these are pro-
perties of graphs which are obtained by simple pow-
er counting, and are not defined in terms of the analy-
tic properties of the associated integrals. The Wein-
berg-Dyson convergence theorem is: If an integral
has no subdivergences and is overall convergent,
deg(G) & 0, then it is absolutely convergent in
Euclidean space." This important statement is
not obvious despite the suggestive terminology,
nevertheless it is true. As the proof is somewhat
technical, '"we shall not reproduce it here, but
we do want to indicate its general features. " Con-
sider the simple Feynman diagram of Fig. 5,
which gives rise to the Euclidean-space Feynman
integral

We have now set up enough graphical apparatus
to turn to the proof of the main result of renormal-
ization theory, the BPH theorem, which states
that the R operation does in fact remove all the di-
vergences of using only local subtractions. We
see at once that this requires showing two things,
first that the R operation locally subtracts all sub-
divergences, and second that the remaining over-
all divergence of RG is purely local (in our mini-

FIG. 5. P3 theory graph used as an example of the
convergence theorem.
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d 4k d'p
fk'+m']f(k+P q)'+m'][(k -q)'+nz'][(P -q)'+~'][P'+~']

of overall degree of divergence -2. The UV be-
havior of this integral is dominated by the expres-
sion

d4k d'p

, k'(k+p)'p"

obtained by neglecting masses and external mo-
menta, with & being a region excluding the infra-
red (IR) divergences near k, p =0, say k', p2~ l.
We now view the integral as being over an eight-
dimensional space spanned by k and P, and we see
that the integrand is sufficiently damped as we
move to infinity in. this space except in certain di-
rections where the naive power-counting argument
fails. In these exceptional directions certain com-
binations of momenta —in our case k, P, or k+P—
are fixed as we go to infinity in the radial direc-
tion, and the radial integral seems to degenerate
to a divergent one. The aim of the proof is to
show that these would-be divergences must corre-
spond to subdivergences which by assumption are
not present. One way of showing this in the pres-
ent case is to divide D into three regions in each
of which one of the quadratic denominator factors
is smaller than both the others. For our example,
we shall only consider the region D, for which k'
~ min[p', (p+k)']:

r" = d'k
k4(k +p)2p 4 s

where U—:gk lk2- Ij, y=(p
I
p'-k', (p+k)2-k2].

A simple rescaling of the integration variables in
the inner integral, namely k = O'

I
k I,p —=p'

I
k I,

then gives

d'k d'p'

~ ikl' ~, k"(k'+p')'p"

with

v' =$p' lp" o- I, (p'+k')'- I).
For any given value of k', the inner integral is

absolutely convergent to some finite value J~, for
otherwise it would be a subdivergence, but k' lies
within the unit four-sphere which is a compact
subspace of R, and therefore ~~, must be bounded

by some value &. This means that

I" &A. , lki'

which is convergent, showing that I is also abso-
lutely convergent. We refrain from giving further
details of the general proof which is simply a sys-
tematic extension of the above method to treat all

possible momentum regions. "
When we renormalize a theory using minimal

subtraction, the proof of the necessary conver-
gence theorem is more subtle. The subtractions
are made by removing pole terms rather than by
subtracting momentum-space integrals. There-
fore, unlike in our simple example, the subdiver-
gences are not absent but are instead explicitly
canceled by the subtraction of a pole term, and the
proof of the convergence theorem must be general-
ized to include this case. The unsubtracted inte-
gral and the subtraction terms are both well-de-
fined by dimensional regularization, and we expect
that the theorem is true for this case also. We
shall assume this in the following.

A more general statement on subdive rgenc e -free
integrals may be made, but to do so we must con-
sider a few properties of the operation of differ-
entiating a graph with respect to its external mo-
menta (Fig. 6). As we shall consider each such
momentum separately, it is adequate to write ~~
for ~G/SP„where P is a typical external momen-
tum; then &2G= &2G/&P, &P„and so on. This opera-
tion has three extremely useful properties: (i) A
function f vanishes after a finite number of differ-
entiations if and only if it is a polynomial in P, (ii)
the subtraction operator K and the derivative oper-
ator ~ commute as they act on different spaces,
and (iii) & lowers the overall degree of divergence
of a graph G, specifically deg(&'G) ~ deg(G) —s.
The first two properties are obvious, and the third
follows from simple considerations of the form of
the integrand of the Feynman diagram. ' We re-
quire that the differentiation be with respect to an
external momentum vector with a unique (unpaired)
Lorentz index in the definition of property (ii), for
otherwise there arise terms of the form &„,=n
and the operator K will no longer commute with ~.

+ ~
~' —(D—= —"G3—~ z —(D—~ —CD

—"

(c) 8

FIG. 6. (a) and (b) are examples of differentiating a
graph with respect to an external momentum. A cross
represents a differentiation. In this fI| graph the ex-
ternal momentum is routed through the top of the dia-
gram. All the results in the text are independent of the
routing of the momenta. (c) is a tadpole graph in p4

theory, and provides an example of how differentiation
with respect to an external momentum can result in
zero.
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This subtle effect is also the source of the trace
anomalies of quantum field theory, and has been
fully analyzed by Speer." For a local field theory the
Feynman rules give an integrand whose numerator
is a polynomial in P and whose denominator is a
product of factors each of the form [(P+q+k)'
+m'], where k is a combination of loop momenta,
q a combination of external momenta, and m some
mass; for a 1PI diagram 0 is never identically
zero. From these observations it is clear that ~

gives a sum of terms each of which has either a
numerator of lower degree or a denominator of
higher one [of course, it might give zero, which
for convenience we shall assign an overall degree
of divergence of -~, hence the inequality in rela-
tion (iii) above].

We can now give the promised generalization of
the Weinberg-Dyson convergence theorem in the
case of minimal subtraction: The pole part of any
diagram which has no subdivergences is a poly-
nomial in each external momentum. Suppose
deg(G) —= &, then by property (iii) above we have
that deg(&""G) &0. Furthermore, we will soon
show that if ~ is subdivergence free, then ~"'~
is also; 8""&therefore satisfies the criteria of
the convergence theorem and is absolutely conver-
gent in four dimensions. Equivalently this means
that 8""t"has no pole at four dimensions in its di-
mensionally regularized form, so E~""~=0. It
follows from property (ii) that S"'KG=0, and thus
by property (i) &G is a polynomial inP. As this is
true for every P our result is established.

We now have to prove that R~ is indeed made
subdivergence free by local subtractions, for if
this is so then RG is made divergence free by local
subtractions as well. For this a little more nota-
tion is called for. A xenormaligation pa~t is a
proper 1PI subgraph y such that deg(y) 0 (Fig.
7). A diagram has an overlapping divergence if
two renormalization parts overlap. Formally this
may be stated as

'r,. A'r)& fI, 'r, C'r, , and x~ZT,

(a)

I

I

Irw'
I

(b)

I

I Ir-I-
I l
I I

I I

L

(c)

1I

I
C

(e)
I

L IJ

A diagram has an overall overlapping divergence
if it is covered by a set of (non-nested) renormal-
ization parts (Fig. 8).

We now proceed to prove our desired result by
induction on the number of loops in ~. We need
only establish that the inductive step is true, for
it is quite clear that for zero loops tree graphs
are perfectly finite. Let us assume ~ to have l
loops, and that Rr for any 1PI graph & with less
than l loops has no subdivergences and involves
only local subtractions.

If we inspect the definition of RG we observe that
as the summation runs over the proper wood &(G),
all the subgraphs y' appearing have less than l
loops, hence our inductive hypothesis combined
with the convergence theorem tells us that only
spinneys made solely of renormalization parts
contribute to RG, for otherwise there is a factor
of KRy =0 appearing for at least one overall con-
vergent y. This observation is useful because it
enables us to reduce the problem to two cases:
(a) G has a disjoint set of proper 1PI subgraphs(I'„.. . , I',) such that each renormalization part
is contained in one of them2' (Fig. 9), or (b) G has
an overall overlapping divergence. We may show
that these are the only possible cases by the fol-
lowing argument: If ~ does not have an overall
overlapping divergence, then there is no set of

Ir
I I

I I

(a)

I'n
(g)

I 1InI

FIG. 7. Some examples of renormalization parts in
four-dimensional p4 theory.

FIG. 8. (a) through (e) are examples of overall over-
lapping divergences in p4 theory in four dimensions, and
in ft~3 theory in six dimensions. (f) has an overlapping
divergence which is not an overall overlapping diver-
gence. (g) has two overlapping "overall" subgraphs,
one of which is not a renormalization part.
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renormalization parts which covers it, and thus
there is at least one line which is not in any re-
normalization part. Consider a subgraph 6 which
contains all of G except for one such line. ~ is
either 1PI or consists of two pieces connected by
one or no lines. In the former case (&}forms a
set satisfying the criteria of case (a), while in the
latter case we reapply the above argument to the
subgraphs corresponding to each of the two pieces
of 6) until we obtain a set of 1PI subgraphs compat-
ible with (a).

We consider case (a) first, and to simplify the
presentation we shall first assume that t=1, in
other words all the renormalization parts lie with-
in one proper 1PI subgraph 1. In this case

w(G) - w(r) = w(r) u (r},
where - means equal except for some spinneys not
made entirely of renormalization parts, so we
may obtain our desired result by simple manipula-
tions:

gG—= ,„EgggG S
se rv(g) E res

=( zRr)~G/(r}

+ Zgy +rS *G r
sary(r) k yes

= ( far)~G/(r}+Rr*&/fr}
= (I z)Rr*G/(r}

=Rr*&/fr}.
This is manifestly free of subdivergences, and as
I' has less than / loops the subtraction KRl is a
polynomial in all the external momenta. It is im-
portant not to let the cumbersome notation obscure
the underlying triviality of the proof. The same is
true for the general situation with I+1, for which
the proof is given in Appendix A.

We are leftwithcase (b), where there is an over-
all overlapping divergence. In other approaches
this is the hardest part of the problem, but we
shall be able to circumvent it by reducing such
cases by differentiation to those already treated.
The method hinges on the following property of the
S operation: (iv) If a graph G is covered by a
family (r„.. . , I;}of renormalization parts with

deg(I;. ) —= &,, then ~ G has not got an overall over-
lapping divergence, where &= I++,',~, To see
this we argue as follows. From the definition of
an overall overlapping divergence, every line and

every vertex must be included in at least one re-
normalization part I, By property (iii) of S given
before and the way that 8 distributes itself over the
graph G (Fig. 6), in every term of SG at least one
1"~ has its overall degree of divergence lowered

L aLa

(c)
I

I I

FIG. 9. Some examples of diagrams which do not have
overall overlapping divergences. The diagrams are in

theory in six dimensions, and crosses represent
differentiations with respect to the external momentum
(which is routed through the top of the diagrams). The
boxes represent a set of 1PI subgraphs which contain
all the renormalization parts. Note that (a) and (b)
clearly show that such a set of subgraphs is not unique.

(although which I;. this is depends on the term und-
er consideration). It therefore follows that differ-
entiating G ~ times is enough to ensure that in
every term at least one I;. has been made overall
convergent, which in turn means that the differen-
tiated graph has no overall overlapping divergence.
We may apply the analysis of case (a) to show that
A removes all the subdivergences of 8"G by local
subtractions. " Provided that A commutes with
this completes our proof, as then BG is made sub-
divergence free by local subtractions.

Finally, we must show that (v) [R, &] =0. The
idea of the proof is quite simple: differentiation
of a graph produces many terms (because each line
and vertex must be differentiated), but each term
has the same graphical structure as the original
graph and so the 8 operation will act on each one
in the same way. Combining the topological defini-
tion of A with the term-by-term nature of differ-
entiation makes the actual proof rather tedious,
and thus we relegate it to Appendix B.

We close this long and arduous subsection by ob-
serving that the Hermiticity of the local subtrac-
tions follows at once from the fact that dimensional
regularization formally preserves the Hermiticity
of the Lagrangian for arbitrary real dimension,
and thus for each term in the Laurent expansion
about four dimensions. The subtraction operation
K simply picks out a necessarily Hermitian pole
part.

C. Counterterminology

One of the basic ideas behind renormalization is
that all the subtractions necessary to render a per-
turbative quantum field theory finite may be form-



25 SIMPLE APPROACH TO RENORMALIZATION 899

ally absorbed into a set of extra vertices called
counterterms. Once this has been shown to be
true, the properties of locality and unitarity inher-
ent in the Lagrangian approach are guaranteed to
all orders in perturbation theory. To implement
the counterterm approach we add to the renormal-
ized Lagrangian —namely the zero-loop "classical"
Lagrangian involving only finite parameters —a set
of counterterm monomials (which are pure pole
terms in the minimal-subtraction scheme). The
resulting bare I agrangian is then viewed as the
"true" Lagrangian of the theory despite having di-
vergent parameters in four dimensions, as in a
formal sense (as the boundary value of the regular-
ized theory) it nevertheless generates only finite
results. In other treatments the meanings of the
words "bare" and "renormalized" are sometimes
the reverse of ours.

Despite the fact that dimensional regularization
specifies uniquely the pole part of any counter-
term, the finite part is still ambiguous and has to
be fixed by some renormalization condition on the
Green's functions in which it appears. If the theo-
ry is renormalizable then all the counterterms
have the same structure as terms already present
in the renormalized I agrangian, and may be ab-
sorbed into a formal redefinition of the renormal-
ized parameters into bare parameters. As the re-
normalized parameters need to be determined ex-
perimentally anyhow the ambiguities in the finite
parts of the counterterms become unimportant.
The observant reader mill have noticed that the
definition of renormalizability given above and that
given in the Introduction differ slightly —in the
Introduction me just insisted that only a finite num-
ber of counterterms w'ere required to remove all
the divergences. This difference is usually unim-
portant provided the theories considered conform
to the rule that all possible terms consistent mith
the symmetries of the theory and of the appropri-
ate dimension are included in the renormalized
Lagrangian, as they will appear as counterterms
anyhow.

The counterterms subtract out divergences of
the Green's functions, but unlike the R operation
they do not work on a graph-by-graph basis. "
There are two reasons mhy the equivalence be-
tween counterterms and subtractions is not obvi-
ous. First one has to be certain that the symmetry
factors which occur when there are identical par-
ticles are handled correctly, and second a given
countergraph may correspond to subtractions for
several different diagrams, arising from the dif-
ferent orientations in which the subgraph corre-
sponding to the counterterm may be inserted. A
proof that the R operation can be implemented with
counterterms is therefore necessary.

Another source of confusion is the distinction be-
tween "multiplicative" renormalization, involving
rescaling of fields and the like, and "additive" re-
normalization using counterterms. The distinction
between the two is really rather artificial, and is
totally unrelated to the subtraction method. In the
renormalized Lagrangian it is conventional to
make use of the arbitrary normalization of the
fields to set the coefficient of their kinetic terms
to some fixed value, say one. This coefficient will
be renormalized by the addition of some counter-
term 5Z, giving a total value of Z = 1+&Z, and it
is conventional (though there is no particularly
good practical reason for it) to rescale the fields
to "bare" fields to restore this coefficient back to
its canonical value for the bare Lagrangian written
in terms of the bare fields. Of course, this means
all the counterterms for the coupling constants,
masses, and Green's functions of the theory will
also have to be separated into pieces correspond-
ing to the field rescaling and to "intrinsic" param-
eter renormalizations, but the mhole procedure
amounts to no more than a way of making the bare
Lagrangian look the same as the renormalized one
except for a change in the values of its paramet-
ers.

What we must show in order to justify this count-
erterm viewpoint is that the combinatorics of the
BPH subtraction scheme is such that the subtrac-
tions needed are exactly those which are generated
by some suitable set of counterterms. Although
proofs of this exist for normal-ordered Lagran-
gians, '" we do not know of any for the case mhere
tadpole graphs are kept. It is straightforward to
generalize the proof to this case too, however, as
me shall shorn here.

We first define a generali @ed vertex U of a graph
G as a subgraph containing some (nonempty) set of
vertices together with all of the lines connecting
them. [The boxes in Figs. 7(b) and 7(c) contain
generalized vertices, while Fig. 7(a) is an example
of a 1PI subgraph which is not a generalized ver-
tex.] We allow generalized vertices to contain just
one vertex, unlike Anikin and Zav'yalov, "as we
are including tadpole graphs in our formalism.
Next we introduce an operator ~ which acts on a
generalized vertex U according to the following
rules: if U is not connected and 1PI then ~U is
zero. Otherwise

AU=g(U)+ Q -XRy,

where ~(U) equals U if U is a single vertex, and is
zero otherwise. The summation runs over all 1PI
subgraphs y mhich include all of the vertices in U

and none other. Naturally none of these & can be
disjoint since they all share the same vertices.
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This means that if we take the graph ~ and cover
it with a set of disjoint generalized vertices {U,.),
then

RG= AU, ,

where the summation is over all such coverings of
& by U, The terms ](:(U,)wh. ere U,. is a single
vertex will generate the usual subtracted type of
graph &/S. Also, & need not even be a connected
or 1PI diagram as the subtractions will be made
appropriately in any case.

This change in notation enables us to transform
Rt" into a form in which the equivalence with
counterterms is obvious. Our problem is a purely
combinatorial one, and it is natural to use func-
tional integral methods to organize the combina-
torics." To do this we consider the generating
functional W[J], which is defined as the vacuum-
to- vacuum amplitude

where S is the renormalized action. To obtain a
perturbation expansion we use the usual trick of
splitting S into a quadratic part S, and an interac-
tion part S„asthen we obtain

w [z] = Q ( s[e/e J])"/x!!)w —[J]
N=O

with

w[J] = exs ——fsee'sJ(x)ex(x, s) J(s)) w, [0],1

where &(x,y) is the propagator for the (j) field.
Each term in the expansion above may be viewed
as a set of vertices with functional derivatives
attached in such a way that when they act on W,[J]
all Feynman diagrams are generated (as the com-
binatorial weight for each diagram is defined by
the number of times it appears in this expansion
these factors will be correctly handled automatic-
ally). The action of R on W[&] is therefore

sw[. [= g s( s,[s/s. ]) /x) w, [.],
N=0

where both sides may be interpreted in terms of
the graphical expansion. We now express R~l in
terms of A as the sum over all coverings of (each
term of) S/" by disjoint sets of vertices, whichwill
become generalized vertices when the functional
derivatives act on g, . A given cover consists of
jse tso f j ver ti ces, where%, +2+, + ~ ~ ~ +&Ã~

corresponding to the term

(AS )"&(AS 2)~2 (AS «)"«.

Each such cover can occur in

N'.

N~!N2! ~ ~
N« l (1!)~] (2!)"2 .

. (0!)"«

distinct ways, so

/ r m [A(-S,)/1! ]"~ [A(-S,)'u! ]"«

N=o N + ~ ~ ~ +hNI, =N Nit

If we rewrite the summations as independent sum-
mations over &„.. . ,&„.. . , we obtain an expon-
ential form for the right-hand side, namely

Defining the interaction part of the bare action
S» to be minus the expression inside the exponent
above, A(1 —exp(-S, )), we see that we have ob-
tained an explicit expression for the bare Lagran-
gian, as jtW[J] is the generating functional for physi-
cal (i.e. , subtracted) graphs. The countertermpart
of the action is just S» —S~ which is in general an

infinite sum of local monomials, but which has a
finite number of nonvanishing terms for the class
of renormalizable theories.

III. SIMPLICITY AND CONVENIENCE

The renormalization method used in the previous
section has many convenient properties that make
calculations much simpler than those using other

renormalization methods. The structure of the
counterterms found using minimal subtraction is
quite simple. We shall show that they are a poly-
nomial not only in the momenta, but also in other
parameters of the theory. Further, the integrand
may be reordered in many useful ways to simplify
the evaluation of an integral before the integral is
performed. Finally, this is the best scheme in
which to perform renormalization-group calcula-
tions, as has been shown recently by the massive
massless calculations of Tarasov et al."

A. Polynomial pole terms and massless theories

The pole terms are simply polynomials in the
momenta and the parameters of the Lagrangian. "
The order of the polynomial is determined by the
naive physical dimension of the graph in four di-
mensions. We have shown in the previous section
that the pole terms are polynomials in the momen-
ta. A similar proof, with differentiation by a mo-
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mentum replaced by differentiation by a mass,
allows us to conclude that the pole terms are also
polynomial in the masses (or any other parameter
which enters the Feynman rules and Lagrangian
polynomially). It suffices to simply reinterpret
SG as &G/Sm, where m is an arbitrary mass pa-
rameter, and to note that this operation also im-
proves the convergence of the integral when a pro-
pagator is differentiated in the same way as differ-
entiation by a momentum. The pole terms are
therefore polynomials in all the momenta and the
masses. These are the only dimensionful param-
eters available, and so they must form a homo-
geneous polynomial of degree equal to the naive
physical dimension of the integral in four dimen-
sions. For a complicated diagram with many
operator insertions, the listing of the possible
contributions to this polynomial tells us what local
subtractions must in fact be made in the Lagran-
gian.

Our methods treat equally well massless theo-
ries (as long as the graphs are not infrared diver-
gent). The subtle point is that, for a given graph,
our differentiation procedure increases the IR di-
vergence of the affected loops (equally as it de-
creases the UV divergence). If the diagram is differ-
entiated enough times to create an IR divergence,
thatdivergence will show up as apole term in q. The
K operation does not know the difference between
these IR and UV pole terms, and the simplest proce-
dure for avoiding this problem is to get rid of all of
the induced IR divergences. We may easily do this by
putting an arbitrary mass into each of the propaga-
tors in the graph. The integral will necessarily be
IR well behaved. Our results show that the counter-
terms of the undifferentiated graph are homoge-
neous polynomials in the masses and the momenta.
At this point, we may take the masses to be equal
to zero. By hypothesis the limit is smooth, and
we have therefore successfully proven the BPH
theorem for massless theories also. The ease of
proof is a result of minimal subtraction being a
soft renormalization, i.e., it does not oversub-
tract a graph and therefore does not suffer from
the worse IH behavior of such oversubtracted the-
ories. Technically, this is much simpler than the
soft-mass insertions of Lowenstein and Zimmer-
mann. " Note that the addition of a small mass is
only a technical trick in demonstrating the poly-
nomial character of the pole terms of a particular
graph. It does not affect gauge invariance (which
is in fact a relation among several graphs).

An example of an integral which differentiation
makes IB divergent in four dimensions is

PP
(k+p)'p'

Differentiating twice, (s/sk )(s/sks), to remove the
linear UV divergence produces the logarithmically
IB-divergent integral

d"PP, [4(k+P).(k+p), &.,(k+p)']
0 =

[(k+p)2]3p2

This integral has a pole coming from the small
(k+P)' region of the integrand. Clearly naive UV

power counting to determine whether a pole exists
does not work on an IR-divergent integral. Adding
a mass before differentiation regulates this diver-
gence,

d"p p
[(k+p)'+m'] p' '

which when differentiated gives the obviously finite
result

d"p p.(4(k+p). (k+p), —&.,[(k+p)'+m]]
m [(k+p)2+m2]&p2

We may Feynman parametrize the denominator of
and explicitly perform the resulting momentum-

space integration. We obtain the result
(n-=4-2e)

1 x''
=-m'k I' a= — *k, l'(~) j dx

i

Expanding the denominator in a power series in z,
we find that the pole term is independent of m (and
of 9, as it must be for a logarithmically divergent
integral) and that each term in the expansion is
finite as m- 0. I" is divergent as m - 0 when
evaluated in four dimensions (this is where the
IR divergence shows up), but that is of no concern
to us.

B. Calculational convenience

The integral for a graph ~ is well defined in n
dimensions, and therefore any rearrangement of
the integrand that does not change the graphical
structure [and hence the wood W(G)] will not
change the value of BG. The most useful opera-
tions include shifting of subintegrations, breaking
the graph into a sum of several separately treated
terms, and completing the square of terms in the
numerator. This last operation leads to cancella-
tions of denominators [the wood W(G) may be kept
unchanged by giving lines a propagator of 1 where
necessary], and the integrals which must be calcu-
lated are often technically simpler. This trick
generally leads to the evaluation of integrals of a
higher overall degree of divergence than that of
the initial graph. Unlike the Taylor series sub-
traction T, the & operation is not changed by the
greater overall degree of divergence of the graph.
We may also add denominators which already ex-
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ist [perhaps with different masses, which will not
affect W(G)]. This procedure can be useful if we
are interested in the divergent parts on, ly, as the
resultant terms can sometimes be separated into
a hard finite integral and an easy divergent one."
We can even add in a denominator (as long as the
resulting integral has a graphical interpretation)
for the wood will be unchanged.

As a simple example of the utility of the rear-
rangements discussed above, consider the graph

G=
d"u(p k)'

(p+k)'(k')' '

Then, using p k = [(p+k)'-p' —k']/2 and symme-
tric integration, we find

G=
P2 deaf k P2

(p+k)'u' 2 (p+k)'(k')'

The 8 operation can be applied either to the initial
form of the integral G, or separately to the two
terms in the transformed version. The second
term can be further simplified by the change of
variable k- -p -k and by a rewriting of the re-
sultant terms with the use of the identity

(p+k} p 1 8 1

[(p+k)']' 2 "&p„(p+k)'
We must then calculate

p2 d "k P2 8 d "k

4 (p+k)'k' 4 "&p, (p+k)'k'

By dimensional analysis, the last integral must
be a constant times (p')~" '~~', so p~8 jap" re-
covers the naive dimension n —4 (Euler's theorem)
i.e., it simply multiplies the integral by (n —4).
The result is

p' dk
4 (p+k)'k' '

an easier integral to evaluate, and the explicit
factor of p can be useful in canceling an adjacent
propagator when G occurs as a propagator correc-
tion in a larger graph. The power of these tech-
niques only really manifests itself for higher-
order calculations, where it is not possible to
evaluate the initial integral trivially (as we can
in this case).

C. Renormalization-group parameters

The most striking applications of the methods
of this paper come in the calculation of the re-
normalization-group equation parameters, as has
been amply demonstrated in the calculations of
Tarasov et al. The renormalization-group pa-
rameters are related to the single-pole terms of
the perturbation theory graphs in a simple fash-
ion." The basic trick is to differentiate a graph

G until it is logarithmically divergent. Then the
pole terms -EA9'G, which are selected by the
differentiation, are a homogeneous polynomial of
degree zero, i.e., they are simply constants. But
we may now change the masses and the external
momenta in a totally arbitrary fashion, as long
as no IH divergence is introduced. Typically all
but one or two of the masses and external momenta
are set to zero, greatly simplifying the necessary
integrals. For example, the pole part of the lo-
garithmically divergent P' theory integral

d "k

[u'+ ~'] [(p+ u)'+m']

is unchanged if we look at

d"k
KRI KI K

[k2 2][k2 2]

d"k
k'(p+k)'

The freedom to treat different graphs independ-
ently is also useful in tailoring the calculational
approach to the graph involved. Chetyrkin and

Tkachov" have developed very useful formulas for
the necessary massless propagator integrals
through two-loop order, allowing the calculation
of arbitrary three-loop renormalization- group
parameters.

D. Example: Two-loop vacuum polarization
in massless QED

We wish to present an example that shows the
simplicity and utility of the renormalization method
studied here. We choose to study the standard
example of an overlapping divergence in a gauge
theory, the two-loop vacuum polarization in QED.
We will be most interested in. the behavior of the
vacuum polarization as the momentum gets large,
and we will therefore study only massless, Eucli-
dean QED (we choose to Wick rotate the time com-
ponent so that we have a negative metric Euclidean
space, and hence anti-Hermitian y matrices, etc.).
Our approach is similar to that of Itzykson and
Zuber": The main difference from their work is
that we will look directly at II(k') rather than at
the vacuum polarization tensor II„„(k)=(k„k„

k') Il(k'). This will allow us to rearrange the
integrand into a quite simple form, and we will
be able to obtain easily even the finite part of the
vacuum polar ization.

For the explicit evaluation of integrals, we use
the results of Chetyrkin et al. Although the lead-
ing pole part which is removed by minimal sub-
traction is uniquely. specified, the remaining finite
part depends upon the exact way in which we define
dimensional regularization. The usual measure
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d"p/(2»)" leads to messy factors of In(4») and y
(Euler's constant), so we shall choose to include
an extra. factor of [F(I+@)B(1—e, 1 —e)(47&)'] ' in
the measure in order to remove them. Notice that
we are free to do this only insofar as we are only
interested in regularizing the four-dimensional
theory, but not if we want the canonical results
for arbitrary integer values of the space-time
dimension g. At the one-loop level this redefini-
tion just corresponds to a finite renormalization of
the theory. The simplest one-loop massless inte-
gral becomes, with this normalization,

r G(~, p)
(27&) )) p2)1( p k)» 167/(k2) 0)+&)-«2 '

where

F(&2+p- 2+&} B(2 —n —e, 2- p- «)
F(&2}F(p)F(I+e) B(1—E, 1- e)

and the space-time dimension n —= 4 —2&. This
fixes the volume of the unit sphere (when it is
continued from four space-time dimensions} in a
way which is particularly convenient in practice,
for example G(1, 1) = I/e. It is often convenient to
insert a mass scale p. by multiplying the integra-
tion volume d"p by p,"; the integrals then have
their correct naive dimension for all z. This is
necessary only if we wish to discuss the behavior
of the theory under the renormalization group (a
change of the mass scale p). We will not explicitly
include p, , but it may be inserted by letting
II(k2) -II(k2/p2) at the end of the calculation.

We set the stage for the two-loop calculation by
taking a slightly indirect approach: We calculate
II„(k)first, whereas the usual approach would be
to look at the coefficient of Q„k„.Taking the trace
of

&'„",&).) =2e'&2 —~))"f &2 ). ,
&

y),

(k2)1 8

7i'

We find the renormalized vacuum polarization
by first noting that the one-loop vacuum polariza-
tion has no subdiagrams and therefore R has no
effect on it. The renormalized vacuum polariza-
tion is then found to be

RII"'(k) =(1—K)RII"'(k)

=(I —+11&„'„&(k)

=(k k„—5 „k')(1—K)II"'(k')

= (k„k„-6„„k')—[-ln(k') ——', + O(e) ] .

Note that we must calculate RII„„beforep, and v

are contracted. Calculating RII„„wouldgive a
different result because of the dependence on q of

(a} k

p-k

P
p-k

In the second line we simply used the one-loop
integration formula quoted above and set o& =—e2/4&&.

II"'(k') is then calculated to be

1 nfl 2 111"'(k') =- -I-- ln(k') --+0(~)
I

~

3 m&& 3 j

11„„(k)=(k,k„-5,„k')11(k'),

we find
p-k

11(k') =-n„„(k)/(n-1)k'.

It is easy to calculate il„(k}.We first calculate
the one-loop vacuum polarization, shown in Fig.
10(a}. Using the usual Euclidean QED Feynman
rules, we find

11&1) k 2 d p tr [pYP(p k) YP]
(2v)" p'(p —k)'

(e)

L J

I
I I

L J

I

I I

L J

42( 2)
"P P (P

(2»)"p'(p- k)'

When we complete the square in the numerator
and set massless tadpoles to zero, we obtain the
result

FIG. 10. The Feynman graphs contributing to the
vacuum polarization in @ED through two loops. (a) is
the one-loop contribution and (b) is the one-loop elec-
tron propagator radiative correction, which occurs as a
part of (d). (c) and (d) are the two-loop diagrams, and
(e) and (f), respectively, are the subtractions of (c) and

(d) that are made by B.
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the factor n —1 relating D„„to II: This differ-
ence is an example of a trace anomaly. " The pho-
ton renormalization factor Z, is identified by the
requirement that Z, [I+II(k')] be finite as c -0,
or equivalently that the pole part of II„„mustbe
canceled by the counterterm involving 5Z3 Z3 1.
This allows us to find

1o1
Z, =1————+O(u') .

3 tT 6

The P function is then determined by

P(u) =-- 2u —Z»8

9&

2=- —+ O(u'),
3 7r

where Z,"' is the coefficient of the single-pole
term in the Laurent expansion of Z, about & = 0."

The one-loop fermion self-energy [Fig. 10(b)] is
necessary for the two-loop vacuum polarization,
and it is convenient to calculate it separately. In
the Feynman gauge we obtain

g(1) k — e2 d P y))Pyw
(2&)"P'(P —k)'

g(k) must be proportional to k, and so it is most
easily found by writing Z(k) =A(k')k and forming
the projection tr fg(k)gj =-4A(k')k' with tr[1]=4.
This allows us to calculate A(k') using only scalar
integrals, and it becomes (once more we drop
massless integrals which are regulated to zero)

o&(k2} -e~( — ) d"p
(27))"p'( p —k)' '

The unrenormalized electron propagator in one-
loop order is then

, (2 —n) d"p 1
2 (27))"p'(p- k)"

where the integral is the same scalar one that we
had to do previously. The renormalized propaga-
tor to this order is obtained simply by subtracting
the pole term.

We calculate the two-loop vacuum polarization
in a similar fashion, adding together the three
diagrams of Figs. 10(c) and 10(d). In forming
p Qy

' we are instructed to make, e.g. , the subtrac-
tions shown in Figs. 10(e)and 10(f). For massless
QED these terms exactly cancel as a result of the
Ward identity Z, =Z, ." We make these cancella-
tions immediately, reducing the algebra to the
evaluation of the graphs of Figs. 10(c) and 10(d)."

The algebra is carried out in the same way as
in the one-loop case. To reduce the number of
different integrals that must be studied, we use
the symmetries of the diagrams in momentum
space. For example, the value of the diagram of
Fig. 10(c) is unchanged if we invert it (which is
equivalent to the change of variables p-4 —p and

q k —q) or if we exchange the two ends (p —q).
Again completing squares in the numerator and

dropping zero terms such as the generalized tad-
pol.e

$8P /llew

P'(P - q)'q'

we obtain for the unrenormalized two-loop vertex
correction to the vacuum polarization [Fig. 10(c)]

d"pd"q tr[(p —k)y„(g-k)y,gy„py,]
(2~)2" p'(p —k)'(p —q)'q'(q —k)'

d"p d "q ( 4(n —2}(k')' 4(n —2)(n —4) 2k'(n —7)(n —2)

p(p k}(p q}q(q k) P(p q)(q k) -p(p k-) q(q k)

16(n-2)k
p'(p —k)'(p —q)'(q —k)'i '

Similarly, the propagator corrections of Fig. 10(d) are

d"p tr[(p k')y. k&(p—)Py.] 2 . 2. d"Pd"q P' —k'
(2.)" P'(P - k)' (»)'" '(P —k)'(P —q)'q'~

The above integrals [for the graphs of Figs. 10(c} and 10(d}]are of the same form, and we add them to-
gether before we perform the integrations. We calculate the vacuum polarization II(k')[= —II„„(k)l(n—1)k']
to be

4 (n —2) d "P d"q 4k' 2(n —6) 2(7 —n)
(n —1) (2s) " p (p —k) (p —q) q (q —k) p (p —q) (q —k)~k3 p2(p —k}2q~(q —k)~

2(n —10)
p'(p k)'() -t))'(q-))')-
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Were we interested in only the pole part of this graph, we would need to calculate only one-loop inte-
grals. The first term, the only one that cannot be reduced to analytically known one-loop integrals, is
finite. In fact, all the two-loop massless propagator integrals are also known" and the analytic results
are

e' (n —2)
(I,,) „~24~(3)+O( ) (4 4 )

[I+-,'e +O(e')] 2[3+2&]
(1 4 )

[1+&+3&'+O(e')]
~

Q , ——41n&k'& —165&3)+—", +O&e)) .

The behavior found above for II&2&(k') is even cor-
rect for massive QED in the limit of large 0'.
Once again the renormalized vacuum polarization
is found by simply canceling off the pole term (in
fact, the double-pole term canceled on its own, a
result specific to QED and due to the cancellation
of all the subtraction graphs). The photon re-
normalization factor may be obtained from the
above,

1 o. 1 n2'tl
Z, = 1 — ——+——,i-+ O( n'),

3 && 8»'je
the P function is then determined to be

2 Q 1
P(o&)

— +,+O(n') .

The P function is in fact renormalization-scheme
independent through two-loop order, and this re-
sult agrees with the P function calculated by the

usual on- shell renormalization method. The re-
normalization techniques discussed here are also
applicable to massive theories, although the re-
sults for the finite parts of diagrams are in gen-
eral much more complicated than those treated
above.

We leave further (finite) renormalizations to the
discretion of the reader. The infinities have now

all been dealt with: A finite renormalization simp-
ly adds a finite part onto the pole counterterms,
but the pole parts of the counterterms are not
changed under such a renormalization.
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APPENDIX A

In this appendix we prove that the R operation locally removes all. subdivergences of a diagram G for
the general non-overall overlapping case. Here we have a set of $ disjoint 1PI subgraphs {I"„.. . , I',jwhose
elements contain all the renormalization parts of Q. These may be reduced one at a time as follows.
First note that

t
w&G)- && s, ~s, w(1",.)j .

f=l

Thus

—KRy +G S
se ( U s& t s&e &&«r& &) &, &as

c=&

Z ( lcRY ) p ( [ ectly,) G/&s' u s, )
s'e( U s&ls&e» &r, &) l &"cs' s&e»&r, & l~;es,

As before we use the decomposition ~(1',) = /1(1', ) U{1',j to obtain

—KRy, i*I',jS, +G/({I',jU S'),1)

where we have made use of the disjointness of the I', . We may rewrite the last equation as
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RG= -KRy' 1 —K.RF, *G F, 0 S',
t , I;es

S'C( U S-I S -E W(It)')
4~2

=(1 —K)RI', , Z j —«By') 6/((y, )IJS'),
s'c(() s(ls(sw(r()} y'CS'

)=2

and repeating the procedure for F„.. . , Ft we finally obtain

(n ='.—
KG=I„..(l-I~)ftr, l*G//r„. . . , r,}= fir,. j*G/gr„.. . , r,y,

j=l j=l

which states that RG has the effect of replacing each F,. by its subtracted form.

APPENDIX B

We must show that [8, Bj =0. The idea of the
following proof is quite simple. The R operation
is topological in nature and so it should commute
with differentiation. The actual proof requires
that we distribute the differentiation operation
down until it acts on the component lines and ver-
tices of the graph, then collect together terms
that act on the same component of the graph,
summed over all components of the graph. It is
only here that we can identify the R operation on
the derivative of a particular component of G. The
reason for the complication of the proof is that
differentiation is naturally defined in terms of the
lines and vertices of the graph, while the R oper-
ation is defined in terms of spinneys.

To deal with components of a graph G, we intro-
duce the symbol $ to stand for a vertex or line of
the graph G. Then the operator 8& will simply dif-
ferentiate that line or vertex inside the graph. If
the named kine or vertex is not in G, then 9&G will.
be defined to be G (i.e. , not zero). Then clearly

When we differentiate the product of -KRy, we
find a sum of terms of the type OKRA. However,
we know that 8 commutes with K, and by our in-
duction hypothesis it commutes with R when ap-
plied to the proper subgraph y, so in each term
we use BKRy=KR8y and obtain

8RG = KRy KR8y' ~G S
sew~@) y'e s

rely'

+l «Ãy *a(G/s)I.-I

& 'yHs

We must now distribute the differentiation over
each propagator and vertex of the subgraphs
using eG =QIes sIG:

8RG= -KRy -KR8 y' +G S
SClV(G) y'Gs ggy' - yfS )

y)'y'

+ p ««l* (sa/s)Ia.
Isa/ S 'ycs

We now put s
&

on all the other terms (on which it
has no effect), and obtain

and 8& is distributive over +, e.g. ,

&,[r*G/r] = &,w*&,(GA)

This allows us to prove that [B,Aj =0 reasonably
simply. We will as usual do a proof by induction
on the number of loops in the graph, noting that
for tree graphs there are no subtractions and so
R is trivial on such graphs, before or after dif-
ferentiation. From the definition of R we find

( „,. —&&r lnG/S
SEtV (G) ~rC S

which, when we differentiate the terms in the pro-
duct, becomes

(
aran= Z l, a, ««y).s/s-

Se W(G) rGS

+~ ..., -I~ArIs(G/S) .
Eggs )

8RG= -KR8(y g8( G S
SCW(S) I ins ( yeS

+ g ' '
«'raa, al, a,(s/s)I.

peg j'S yES )
Any particular vertex or propagator is either in
some y e S or in G/S:

JOTe, ~
I
*-sI(G/S) .

S E'W(G) ggg I) yES ]
The $ sum is now over all parts of G, and so may
be exchanged with the operation of summing over
spinneys,

8RG= KR8(y g8( G S .
Ieg sew(s) yes

' )
To each wood lT/(G) there corresponds a unique
wood W(& IG) with the same topology, but with the
appropriate vertex or propagator differentiated.
We may rewrite our sum to be over this new wood,
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4EQ RCW(8~G) ( YES

Finally, the inner sum is simply the definition of
R9,G, and when we use the linearity of R we obtain

9RG= R9 G=R 9(G =R9G.
&ec

As a corollary of this result we have shown that if
G is subdivergence free, then 9""G is also, as
promised previously. In this case G =RG and thus

9~+ERG 9~+~G
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