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Coherent states for the time-dependent harmonic oscillator
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Exact coherent states for the time-dependent harmonic oscillator are constructed.

These new coherent states have most, but not all, of the properties of the coherent states

for the time-independent oscillator. For example, these coherent states give the exact

classical Inotion, but they are not minimum-uncertainty states.

I. INTRODUCTION

Coherent states, for the harmonic oscillator,
have been widely used for describing the radiation
field of lasers since Glauber's investigations. '

There has been recent work by Nieto and Sim-
mons, constructing coherent states for general po-
tentials. These papers by Nieto and Simmons
contain many references to the literature on
coherent states. The generalization of coherent
states to arbitrary potentials was suggested in a pa-
per by Schrodinger' where he first constructed the
harmonic-oscillator coherent states. Schrodinger
was investigating quantum states, for the harmonic
oscillator, such that the expectation value of the
position and momentum operators were the same
as the classical solutions. The states he found are
the coherent states for the harmonic oscillator.
These coherent states have several other novel pro-
perties including the following: (1) They are des-
truction operator eigenstates. (2) They are created
from the ground state by a unitary operator. (3)
They minimize the uncertainty relations and do
not spread. (4) They are (over)complete, normal-
ized but not orthogonal. These properties have
been fully treated in the literature. '

In this paper we construct coherent states for the
time-dependent harmonic oscillator

H = —,p + , co (t)q— (1.1)

II. COHERENT STATES FOR THE TIME-

DEPENDENT OSCILLATOR

For the time-independent harmonic oscillator

(2.1)

where we have set the mass equal to one for sim-

plicity, the coherent states at t =0 are defined by

n =o(nl)'"
(2.2)

where
~

n } are normalized number operator eigen-
states and a =u+iu is an arbitrary complex con-
stant. Define the annihilation a and creation a~

operators
1/2

(cooq+ip ),
0

(2.3)

First we shall briefly review the definition and
some of the properties of ordinary coherent states,
and then the Lewis-Riesenfeld theory for the time-
dependent harmonic oscillator. Next we construct
the new coherent states and discuss their proper-
ties. In the conclusion we consider some further
generalizations and applications of coherent states
for the time-dependent harmonic oscillator.

where to (t) is an arbitrary function of time. The
quantum theory of the time-dependent harmonic
oscillator was first given by Lewis and Riesen-
feld. " We use the Lewis-Riesenfeld theory to con-
struct coherent states for (1.1). These new
coherent states have most, but not all, of the prop-
erties of ordinary coherent states.

The coherent states found in this paper could be
used to describe the radiation field outside a laser
as the laser is being tuned.

' 1/2
1 —(cooq ip) . —

2')0

These operators have the properties

H =trtcop(a ta+ —,),
[a,a ]=1,
a

~

n }=n'"
~

n —1},
attn}=(n+1)'~ ~n+1}.

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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Now we give some properties of the coherent
states (2.2).

Coherent states are eigenstates of the destruction
operator a with eigenvalue a:

oscillator with energy ficoo
~

a
(

= (a, t
~

H
( a, t )

, fico—o. The classical solution (2.18) was

Schrodinger's original result.

a ~a)=a~a) . (2.9} III. QUANTUM THEORY OF THE
TIME-DEPENDENT OSCILLATOR

This can be proven easily by using (2.2) and (2.7).
Coherent states are generated by the unitary

operator

eaa —a a (2.10)

operating on the vacuum,

i
a) =D(a)

i
0) . (2.11)

The time dependence of the coherent states can
be obtained using the evolution operator associated
with the Schrodinger equation

H!,y, t&=+5~!&t&
at

(2.12}

which is

—'Hixti (2.13)

~ g, t) = U(t)
~
$, 0), (2.14)

since H does not depend explicitly upon time. The
time dependence of an arbitrary state is then

Consider an explicitly time-dependent Hamil-
tonian H(t) along with a Hermitian invariant I (t):

dI 1 BI[I,H]+ =0 .
dt iA

'
Bt

(3.1)

We assume, following Lewis and Riesenfeld, that
the invariant I does not involve time differentia-
tion. From (3.1) it follows that the eigenvalues of
I(t}are constants:

aA'
I(t)

i
A,„,t ) =A,„[A,„,t ), =0 .

The eigenstates
~
A„,t ) do, not satisfy the

Schrodinger equation

. 514,t&s
H(t)

~
1( t)s=tA

at

(3.2)

(3.3)

in general, however, if we modify the phases of the

states
~

A,„,t ) via

which for the coherent states (2.2) gives
„,t)s=e,

"
~A,„,t), (3.4)

(hq) =(q —q )=
2cop

(2.16)

-'"""+'""a t'=e ~ &&2e ~)le .
„(n!)

(2.15)

If we now calculate the uncertainty in q and p in
the state

~
a, t) we obtain

then the new states
~

A,„,t )s evolve in time by the
Schrodinger equation if the phase functions a„(t)
satisfy

da„(t)
3) = t t)t) —H(t) )„,t)—. )33)

The general solution to the Schrodinger equation
can then be written in terms of the eigenstates of
the invariants I(t) by

and ~g, t)s=gc„e' "
~A,„,t), (3.6)

(~p)'= &p' —p'& =-,~0. (2.17)

sin(coot+5), (2.18)

where 5 is the phase of a, tan5=u/U. Equation
(2.18) is the classical solution for the motion of an

From (2.16) and (2.17) we see that the coherent
states are states of minimum uncertainty b,q bp
=Pi/2; and the states do 'not "spread" in time, i.e.,
d(hq)/dt =0.

Using (2.15) we calculate the average position
for a coherent state

~
a, t ) and find

2A/a/~
COp

H(t)= ,p + , to (t)q—— (3.7)

Lewis and Riesenfeld constructed the invariant

I(t) = , [(xp xq )'+—(q/x—)'], (3.8)

where x (t) is a c-number quantity satisfying the
auxiliary equation

where the c„are constants and the S subscript in-
dicates the states evolve in time accoj ding to the
Schrodinger equation.

For the particular case of the harmonic oscilla-
tor
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x+c0 (t)x =1/x (3.9)

(3.10)

where

and

a(t)= [q/x+i(xp —xq)],1

(2r)'"
1

a (t}t— [q /x i (—xp —xq)],(2e'"

(3.11)

(3.12}

The invariant (3.8) can be factored into raising-
and lowering-type operators a (t), a (t):

I=Pi[a (t)ta(t)+ , ], —

1
X = )~2, N(t) =COP,

COD

(3.22)

will, in general, have different properties, but, of
course, one must obtain the same physical results
regardless of which invariant is employed. Lewis
and Riesenfeld show in detail how, for example, a
physical transition probability is independent of the
choice of invariant, that is, the particular solution
to (3.9) chosen.

All of our results for H(t) reduce to the usual
time-dependent oscillator in the limit co(t)~co0
=const if we take the particular solution

[a (t),a (t)']=1 . (3.13) to the auxiliary equation (3.9). For example, a (t)
given by (3.11) becomes

(3.14)

a(t) fn, t&=n fn —l, t&,

a(t)t
f
n, t&=(n+1)'/

f
n+l, t& . (3.16)

The phase functions a„(t) are calculated from (3.5)
which yields

a„(t}= (n+ —, )J—
0 x (t')

The general solution to the Schrodinger equation is
then

(3.17)

fP, t&s=gc„e " fn, t& . (3.18)

The time dependence of solutions to the Schro-
dinger equation can also be written in terms of an
evolution operator U(t) which satisfies

Using (3.10) and (3.13) the eigenvalue problem for
I can be solved exactly, just as for the Hamiltonian

in the time-independent case. Thus, we have, writ-

ing fA,„,t&= fn, t&,

I
f
n, t & =Pi(n+ —, )

f
n, t &,

a=,~2 (m0q+ip),{2~0&)'"
which is exactly the same as (2.3)

(3.23)

IV. COHERENT STATES FOR THE
TIME-DEPENDENT OSCILLATOR

(4 1)
f
u, o&s=gc„

f
n, O&,

n

where a=u+iv is an arbitrary complex constant.
Require

f
a, o&s to be an eigenstate of a (0), (3.11),

with eigenvalue a:
a(0) fa, O&s=afa, O&, . (4.2)

Next using (4.1), (4.2), the equality of
f
n, o&s with

n, o&, (3.15), and the orthogonality of the state
n, o& we find

We now use the Lewis-Riesenfeld theory of the
previous section to construct coherent states for the
time-dependent harmonic oscillator. We assume a
coherent state at t =0 of the form

iA =H{t)U,. aU
Bt

f g, t &,= U(t)
f $,0&s .

(3.19)

(3.20)

n

fa, O&s=c0+, , fn, o& .„(n!)'
Normalization of the states

f
a, o&s gives

(4.3)

fn, t&=e " U(t) fn, o&, (3.21)

where at t =0, U(0}=1,a„(0)=0, and the states

f
n, o&s and

f
n, o& are equal.

All of our discussion corresponding to the in-
variant I{t) would hold for any other invariant
corresponding to K(t) Two different i.nvariants

Of course, for BH(t)/Bt =0 we can solve (3.19) for
U(t)=e ' '~", however, here H(t) depends upon
time. The time evolution of the eigenstates of I,

f
n, t &, can be determined from (3.4) as

f~,O&s=e-~~! ~'g fn, o&.
p)1/2

(4.4)

Next we let the state
f
a, o&s evolve in time with

U(t) in Eq. (3.20) to obtain

at&s=e ' ! ~g, fnt&s„(n!)'~ (4.5)

or using (3.4) we obtain the form of our coherent
states in terms of the eigenstates

f
n, t & of the in-

variant I:
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&n

(n i) i/2

The states
~
a, t )s are coherent states for the time-

dependent harmonic oscillator.
In the limit co(t)~coo we can easily show using

(3.22) that
1a„= (n—+ —,)coot,

~
n, t) =

~
n, O),

(4.7)

(4.8)

the latter result following from (3.21). Hence, us-

ing (4.7) and (4.8) in (4.6) we find that in the limit

co(t)~coo our coherent states (4;6) go over exactly
into the coherent states (2.15)

Next we examine some of the properties of the
coherent states (4.6). Of course, by construction
the states

~
a, t )s are eigenstates of the destruction

2iao(t)
operators ct(t), the eigenvalue being ae ' where

ao —— ,
' f—'—dt'/x'(t').

Also these states can be created from the ground
state by the unitary operator D (a), (2.10). We
first create the state

~
a, O)s from the ground state

using D(a) and then let
~
a, O)s evolve in time.

Calculation of the uncertainties (bq), (bp) for
the coherent states

~

a, t )s yields

(bq) =—x
2

(4.9)

(bp) =—(x +1/x )
2

with uncertainty relation

(4.10)

bq bp =—(x x2+1)'~
2

Thus, our coherent states are not states of min-

imum. uncertainty and the wave packet
corresponding to

~
a, t )s "spreads" in general ac-

cording to (4.9). These results (4.9) and (4.10)
reduce to (2.16) and (2.17) in the limit co(t}~coo
using (3.22) for x.

Finally we calculate the motion of the wave
packet corresponding to

~

a t &s' s (a, t
I q ~

a t &s

Define a "generalized frequency" variable Q(t) by

Q(t)= —2ao(t)= f dt'/x (t') . '

(4.11)

(4.12)

The calculation of the position of the wave packet
yields

s(a, t ~q ~
a, t)s ——(2irt~ a ~'x')' '

)&sin[Q(t}+&j, (4.13)

where tan5=u/v. This result goes over into (2.15)
as co(t)~coo. It can be proven' ' that the solution

to the equation of motion for the classical time-
dependent harmonic oscillator q,~,

q„+co (t)q„=O,

can be written

q, i ——(2Ix )'~ sin(Q+5),

where x satisfies the auxiliary equation (3.9) and I
is defined in the same way as (3.8) but using the
classical variables p —+q,i, q~qd. Thus, (4.13) is
exactly the solution for a classical oscillator with
invariant A'

~

a
~

=s (a, t
~

I
~
a, t 4 ——,A'. We

see that Schrodinger's property of coherent states,
that they give the classical motion, is satisfied for
the coherent states (4.6).

V. CONCLUSIONS

We have constructed exact coherent states for
the tine-dependence harmonic oscillator. These
coherent states were constructed using the Lewis-
Riesenfeld theory of the time-dependent oscillator.
The new coherent states give the exact classical
motion for the oscillator, are eigenstates of the des-
truction operator, and can be generated from the
ground state by a unitary operator. These three
properties are all the same as for the time-
independept case. The new coherent states in gen-
eral spread and are not minimum-uncertainty
states. This latter result is important since it
shows that it is possible for a state to give the ex-
act classical motion yet not be a minimum-
uncertainty or nonspreading state.

There are many time-dependent systems that
have Lewis-type invariants I(t).' As an example
we mention that for the Hamiltonian

H= —,p + , co (t)q +c—/q, c=constant,

(5.1)

we have the invariant

I= —,(xp —xq) + —,(q/x) +—(x/q), (5.2)

where x satisfies the same auxiliary equation (3.9).
Nieto and Simmons have discussed coherent states
for the time-independent system associated with
(5.1). Thus, it seems it would not be any problem
to construct coherent states for the time-dependent
Hamiltonian (5.1}using the same technique as
presented in this paper.
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There are several possible physical applications
of the coherent states (4.6). Since there are
coherent states for arbitrary co(t) they can be em-

ployed to describe the radiation field of a laser as
it is tuned according to co(t). The existence of the
states (4.6) imply the radiation remains coherent as
the laser is tuned. It is possible the states (4.6)
could be useful in studying coherence properties of
the radiation from lasers as the lasers are tuned.

Finally, we mention that Puri and Lawande have

discussed coherent states for time-dependent sys-

tems. '

Note added. Coherent states for explicitly time-

dependent systems have also been considered by
Crosignani, Di Porto, and Solimeno, ' ' and by

Dodonov, Malkin, and Man'ko. ' Reference 18

contains references to other papers dealing with
this subject. These references do not overlap signi-
ficantly with this paper since our goal is to express
the coherent states in tems eigenstates of the Lewis
invariant equation (4.6), and to relate the coherent
states to the classical motion through the L'ewis in-
variant equation (4.13). Neither of these results is
discussed in any of the references we are familiar
with.
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