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Some improvements in the theory of faster-than-light particles
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The relationship between di6'erentially conserved quantities (electric current density J~, stress tensor density T~",
etc.) and the conserved integral quantities Icharge Q, energy-momentum P, etc.) is carefully studied for the case of
faster-than-light particles. It is found that there is no problem of "negative-energy states" and no need for the
"reinterpretation principle" used by previous authors. The central lesson learned is that the concept of "charge" or
"momentum" or "energy" even for a free particle should not be taken as separable from the concept of the particle
moving "in" or "out" relative to some interaction. Mathematically it is just a matter of certain minus signs in
otherwise familiar formulas, but it is essential to include these factors in order to get a relativistically consistent
theory for tachyons. Basic application is made to the classical theory of point particles with electromagnetic
interactions, the classical theory of a free field, and the quantum theory oF a free field. The earlier tachyon quantum

theory of Feinberg is drastically revised.

The literature on the speculative theory of fast-
er-than-light particles (tachyons) contains the
general assumption that momentum (the four-vec-
tor p") is the fundamental quantity to be carried
over from the established theory of slower-than-
light particles. " Since p" is taken to be a space-
like vector, its time component can have different
signs in different Lorentz frames and thus there
appears a problem of negative-energy states.
Additional rules, such as the "reinterpretation
principle", have been used to alleviate some as-
pects of this problem; but I suggest that there is
a deeper error in that approach.

In the present study the fundamental quantity
will be taken to be the second-rank tensor T'"(x)—
called the stress-energy-momentum tensor, or
stress tensor for short. This is a differentially
conserved quantity,

8 T""(x}= S„T'"(x)=0

and what we call momentum (P ") is derived by
integrating certain components of T'" over cer-
tain three-dimensional surfaces in four-dimen-
sional space-time. ' lt is the choice of these com-
ponents and surfaces which makes a crucial dif-
ference between the treatments of slow and fast
particles ("slow" and "fast" relative to light).

In Sec. I below the general form of the inter-
grated conservation law is derived. In Sec. II the
dynamical system of fast and slow point particles
interacting with the electromagnetic field is stud-
ied and the correct conservation law for energy
and momentum is derived. In Sec. III a noninter-
acting (classical) tachyon field is studied and a
new expression for the field momentum is derived;

and in Sec. IV these lessons are used to correct a
fundamental error in the quantum field theory for
tachyons. In the notation used here there is no
need for imaginary numbers in any of the classi-
cal (nonquantum) theory. The relativity notation is

Pry vp ~ ~ o Op 1y 2y 3

zyg, =1, 2, 3,
the velocity of light =1,
x'=(x'=t, x'),

g =+1, g"=-1.
The symbol x stands for the four-vector x~ and
the symbol x stands for the three-vector x', and
we have the scalar products

X'g X g~g X g~ Xg

X X X p

~ ~

X y=X'y'.

v represents a volume in four-space and s rep-
resents its (three-dimensional) boundary surface;
P represents a volume in three-space (x) and S
represents its (two-dimensional) boundary surface.
The step functions are

+1, u)0eu =
0, u&0,

e(u) =8(u) —8(-u) =u/[ui,
and the Dirac 5 function is 5(u) in one dimension
or 5~(x) in four dimensions.

I. THE GENERAL CONSERVATION THEOREM

Consider some differentially conserved four-
vector J~(x),
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B„J"=0. (2)

This might represent the electric charge, the en-
ergy-momentum, or any other conserved physical
quantity; for the sake of concreteness and famil-
iarity think of J" as electric charge density and
current density.

Suppose we have a physical system consisting
of various particles and fields (the latter perhaps
partially localizable as wave packets) which inter-
act with one another in some finite region of
space-time. Figure 1 shows this region of inter-
action, outside of which are various trajectories
of the (free) particles and wave packets which en-
ter into or emerge from this interaction region.
It is assumed that in this outer region the conserv-
ed current can be decomposed as

val t, & t & t, along with the two-dimensional sur-
face S(t) which bounds V, at t, and bounds V, at t, .

The contribution to (5) of each slow particle
crossing a, is thus, with g„=(-1,0, 0, 0),

d'g J'„x, t, =- „t,

and each slow particle crossing s, is, with g„
=(+1,090, 0),

+ d'xJ'„jx, t, =+ „t, .
V2

The plus and minus signs are determined by g„,
and we have given conventional definitions of the
total charges Q„. For the fast particles crossing
a, the contributions to (5) are, with q„=(0,n),

(3) t2
+ dt d'xA J„(x,t) =Q„(S) .

ti s(t)
(8)

8 =S +8 +8 (4)

sufficiently far away from the interaction region
so that the slow particles (including those moving
at the speed of light) enter through s, and leave
through , while the fast particles (tachyons)
pierce the surface , .

From the divergence theorem and Eq. (2} we
get

d x 8 „d (x) = fd'x g d (x) = ()

where g„ is a unit vector directed outward at each
point of the surface. We now break up the current
J" according to (3) and the surface s according to
(4). Simplifying further we take &, to the three-
dimensional volume V, at the time t„~, to be the
volume V~ at time t„and ~, is then the time inter-

where the label n identifies the individual parti-
cles, and in this outer region each current J~(x)
would be individually conserved.

What is indicated as the "region of interaction"
in this figure may also contain trajectories of
spectator particles which do not actually interact
with others but are admitted by the aperture of
the experimental device. The boundaries of the
familiar timelike surfaces should not extend to
infinity since any actual experiment requires the
isolation of a particular region from the rest of
the universe.

The theorem —conservation of total charge—
will be derived by integrating Eq. (2) over some
volume v bounded by a surface s. For convenience
(both theoretical and experimental) the surface s

is chosen, as shown in Fig. 1, to consist of three
portions,

Here n is a unit three-vector pointing outward at
the closed surface S.

The integrated conservation theorem is, putting
all the parts together,

n, slow particles incomiftg
" ~ n, slow particles outgoing

Q„(t,)= . . q(t, )

+ Z q„(S) . (8}
n, fast particles

In words this reads as follows: (the sum of all the
charges of the slow particles present inside V be-
fore the interaction) equals (the sum of all the
charges of the slow particles inside V after the
interaction} plus (the sum of all the charges car
ried out through the surface S, enclosing V, by
the fast particles).

The essential and new feature of this calculation
is that the "charge" of a fast particle is not de-
fined by the usual three-space integral over J
that is used for slow particles —as in (6) and (7)—
but is instead the "time integrated outf lux" as
given by (8). Note that the distinctions "before"
or "after" the interaction (equivalently, "incom-
ing" or "outgoing") are not applied to fast parti-
cles; we understand that this is not a Lorentz-
invariant characterization for fast particles.

There are two further results, familiar from
the usual theory of slow particles, which also ap-
ply here Each Q„ is ac.tually independent of the
argument shown (t or S as the case may be} in the
preceding formulas, and the defining integrals
(6) and (8) can be taken over more complicated
three-dimensional surfaces than the simple ones
chosen above. Each Q„ is a Lorentz scalar.



358 CHARLES SCHWARTZ 25

Proofs will be left to the reader with only the fol-
lowing added comments: the time f, (t,), or more
generally the surface l~ ($2), must remain in the
backward (forward) light cone, and the surface $
must enclose the interaction region with the unit
vector n pointing outward. (More generally, the
normal q„ to the surface 3, should be a spacelike
vector pointing outward from the interaction re-
gion. ) These basic geometrical relationships
shown in Fig. 1 are invariant under (proper) Lor-
entz transf ormations.

As an example, consider a point particle which
moves along a trajectory (world line) with coord-
inates ("(r) where 7 is some monotonic scalar
parameter. The current is written as

d("J'(x) = e d«'(x —$(&)}d7
~l

(10)

and one readily proves that B„J"=0 provided that
the end points of the trajectory are away from the
region of space of interest. Suppose this is a slow
particle (d$" is a timelike vector); we calculate
the charge:

d$=e d7'n ~ —5(n x —n ~ $)
d&

This assumes that the trajectory locates the part-
icle inside the volume V at the time t, or else the
5 function gives zero. It is common to assume
that the parameter 7 is the "proper time" which
increases with time along the trajectory, thus
giving the plus sign in the last part of (11); but

this is a quite unnecessary, and perhaps restrict-
ive, assumption.

Now return to (10) for the case of a fast parti-
cle (dtv spacelike).

t) = f dt Jd'xtt J(x, t)

ly Lorentz invariant. The general calculation is
(see the Appendix)

d'xg„J'x = d'x6 x ~e' d &'x-d("

=e d~ ~ —=eE—df df
dT

(13)

where the resulting quantities are evaluated at the
point where the trajectory intersects the surface.

Some further discussion may help in the under-
standing of what has been learned here. The
standard integral (6) used for slow particles would
be inappropriate for fast particles: the volume V

used for the three-space integral should be finite
but a tachyon may move arbitrarily fast, thus
taking itself outside of this volume in any short
time interval. Similarly, the integral (8) would
be inappropriate for slow particles since they
could be standing still and never cross through
the surface S.

The definition of charge given by (8) may seem
wrong by the following argument: go to another
Lorentz frame where the tachyon moves in the
opposite direction, then the charge has changed
sign. The difficulty here is that ideas familiar
from the study of slow particles are being im-
properly used for fast. particles. For slow parti-
cles we define separately the two concepts of "the
charge of a particle" and "the direction in time
of its motion. " Note that the conservation theorem
(9) involves only the product of these two concepts,
and for fast particles it appears that only the com-
bined concept, call it "charge flow", is meaning-
ful. This discussion will be continued in the next
section when we discuss energy and momentum.

II. DYNAMICS OF POINT CHARGES

Consider a system of point particles, moving
along trajectories

@=)„'(r„), n=1, 2, . . .

d$= eg' 8'
dr

d$ =he ~

d7
(12)

which interact with Maxwell's field

F"'(x) = F"v(x)-
This assumes that the trajectory passes through
the surface S, and the calculation is easiest if
one uses a local coordinate system with one axis
along n at the point where the trajectory pierces
the surface. The plus or minus sign here is the
result of not only the choice of sign for d7 but also
the relative orientation of the vectors n and d$.

The above results, (11) and (12), depended on

particular choices of surfaces and are not obvious-

according to the familiar dynamical equations

d'&~
~n

& ~nv F)tv(~ )ndr 2 n n
n n

s,F'"(x)=4''(x),
Q/L+vX + gv+X+ + 8X+g v 0

and

(18)

(17)
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J (x)= pe„fdv @"„C'(x—$„)."dT„ (1s)

T"(x)= T'"(x) + Q T„'"(x),

where the field portion T~" is familiar,

The current J"(x}is conserved (actually each
term is separately conserved) and we have the
discussion of conserved charge exactly as in the
preceding section. An additional conserved quan-
tity is the stress tensor:

variant under proper Lorentz transformations
but may be changed under discrete symmetries.
From the equations of motion, (15), (16), (17),
and (18), follow the reflection symmetries ':
space inversion, or parity (P)—

change the signs of x„', g, P, E",
time reversal (T)—

(27a)

change the signs of x„', t'o, 4', E'~, 7„, (27b)

charge conjugation (C)—

change the signs of J~, &&", 7.„. (27c)
T""(x)= E""E—+ g""E E

4 )i. ]6 A,lc 0 (20)

and the particle portion is

T~ "(x)=M„dT„" "6 [x —$„].d$„" d$„"
(21)

It is left as an exercise to prove that

s„T~"( ) =O. (22)

Before proceeding to derive the energy-momen-
tum conservation theorem from this, it is worth
remarking on the various parameters appearing
in the above equations. The masses M„and the
charges e„are real numbers that will presumably
be determined by experiments. 'The variables r„
are arbitrary except for the requirements that
each one be a continuous, monotonic real variable
along the trajectory of the particle in question
and they should be invariant under proper Lorentz
transformations. Equations (15) and (14) do give
further constraints, however, when we contract
(15) with dt'„"/dv. to get

-1
d$„" d$„'

" dT„dT„dT„ (as)

and for those crossing 3, only the overall sign
is changed and the evaluation is at time t2. For
fast particles crossing &, the result is

The customary fixing of d7„as proportional to the
time d$„' leaves only two reflection symmetries,
P and T. Thus it appears that the study of fast
particles has lead to something new for slow part-
icles as well: the possibility of antiparticles sug-
gested by classical theory.

Now let us return to the differential conservation
law (22) for the stress tensor and subject this to
the analysis of the preceding section. There will
be four integrated conservation laws (one for each
value of v) and four conserved charge flows for
each particle or wave packet connected to the
interaction region (see Fig. 1). Comparing (21)
to (10) one can read off the results from (11) and
(12). For slow particles crossing s, (incoming)
the contributions are

"dv'„d7„d7 „)
which implies, for some constants C„,

d$„"d$„„=C„(dr„)'.

(23}

(a4)

@n s de s 'de pup)
~7n d~n ~7 a

The integrated conservation theorem reads

(29)

By a scale transformation on the parameters v'„

(and the M„as weIl) the constants C„can be re-
duced to +1:

n, slow particles {including light) incoming

dg„"d&„„=~ (d~„)'. (26) fr, slow particles {including light) outgoing
P„"(f,)

d „=+ id(„"d(„„i'" (26)

'Whatever choice is made in this sign must be in-

Thus we have the two distinct possibilities of slow
and fast particles.

This also shows that the variables T„are depen-
dent upon the coordinates $„" of the particle tra-
jectory, except that there remains an ambiguity
of sign in taking the square root:

n, fast particles

P„"(3)

The contributions of the electromagnetic field
have been taken in the standard way

Pgt)= I d'x T;"(x, t)

and added into (30}as "light".
Now the interesting study is to see how the

(30)

(31)
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sign(P '„)= sign(M„)

and for each fast particle,

(32)

quantities defined in (28) and (29) compare to the
usual definitions of momentum; clearly these are
the usual definitions except, perhaps, for the
signs. First, note that the formulas (28) and (29)
do not depend on the choice of + sign given to the

Next, look at the v = 0 components (the "ener-
gy"). For each slow particle,

M„n d$„sign(P'„)= sign
0

= sign(M„n v„),
where v= d$/d$, is the velocity of the particle.

Now we make the assertion that all the mass
parameters M„should be positive, and read the
v= 0 component of the conservation law (30) as
follows:

(The sum of the energies of all the incoming slow particles)
equals (the sum of the energies of all the outgoing slow particles

plus (the sum of the energies of all the fast particles moving outward minus the sum of the energies of
all the fast particles moving inward). (34)

The word energy in every case means a positive
(at least non-negative) quantity. This means that
the system is stable, and there is no such thing
as particles carrying "negative energy" in or out
of a reaction. This result conforms to all our ex-
pectations of what a sensible theory ought to
yield. What is significant here is that we had no
need for the "reinterpretation principle" used in
previous studies of fast particles.

The crux of the matter lies in the discussion
given at the end of Sec. I. Customarily it is
assumed that momentum (P") of a, free particle
is one attribute of that particle and its relation
to an interaction (going in or coming out) is
another separate attribute; but for tachyons we
now see that only the product of these two ideas-
the "momentum flow" —is meaningful. The rein-
terpretation principle was needed only when one
tried to take these two concepts apart and I sug-
gest its invention has caused more harm than
good in the development of tachyon theory. The
following sections will give an example of this.

Again, the results above, derived for the special
surfaces, can be generalized to read, like (13) for
the charge flow,

and this has a manifestly covariant form.
For an additional exercise, look at (29) for the

component of P„(S) in the direction of n —it is
always a positive quantity. Does this mean that a
tachyon's momentum is always positive, in the
direction normal to the surface 8, regardless of
whether it is traveling in or outV

III. CLASSICAL FIELD THEORY

Consider a real scalar field Q(x), without in-
teractions, which satisfies the wave equation

(s"8 + M )(t) = 0 (38)

in which the choice of sign+ M' (the usual Klein-
Gordon equation) refers to a slow particle and the
choice -I' refers to tachyon waves. The con-
served stress tensor is

((x)= f d'k5(k'vM')a(k)e ' '*. (38)

A proper homogeneous Lorentz transformation L
is expressed by the mapping

a(k) -a(Lk)

which brings about the transformation

4(x) —A(1~)

(39a)

(39b)

It is important to understand the meaning of the
Fourier transform in relation to the picture,
Fig. 1, of the general reaction process. The
wave equation, without interaction, describes
what is happening only outside the interaction
region. Thus the domain of space-time being
described by the Fourier integral representation
is not all of space-time, but rather only some
restricted region in some neighborhood of one
of the surfaces „~„or s,. Thus, the derivation
of the conserved four-vector of momentum flow

I'" = d'xg„T"" x (40)

will need to specify a particular surface s and
normal vector q„, and in order to maintain
translation invariance this will be chosen to be a
plane surface with a constant normal vector. The

(37)

and it is customary to introduce a Fourier trans-
form of the wave,
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way; the component n P is always positive (analo-
gous to P & 0 in the case of slower-than-light
waves).

Angular momentum and boost components derive
from the conserved tensor

S)
Mu (x} Tv (x)x —T" (x}x",

e M""'=0
P

(45a)

(45b)

s,

FIG. 1. Schematic diagram of a general interaction.
&he dashed lines represent the envelopes of the future
and past light cones from all points within the region of
interaction. The diagram shows two slow particles en-
tering through the (three-dimensional) surface s&, one
slow particle and one wave packet of light leaving
through the surface 32 and one tachyon leaving through
the surface s3.

and the calculation of the angular momentum flow
tensor

J — d'x gpM" x
S

(48)

yields the result
I 2w'& „sa k&"'= J' d'k 5(k2+M')

2i k sk~

~a(-k)~(g k)~ sa(k} 't

ek,
(47)

IV. QUANTUM FIELD THEORY

result of the calculation (see the Appendix) is

P"= d'k5 k'+M ga k a —k kE' g k 2r 41

and with

we have the constraint

a*(k)= a( —k) .

(42a)

(42b)

This result looks quite familar —except for the
factor e(q .k). In the case of slower-than-light
fields both the vectors g and k are timelike and
so their dot product cannot change sign as the
k integral moves over either portion of the mass-
shell. This means that the & factor is irrelevant.
In the case of tachyon waves, however, this is
certainly not the case and the & factor is all im-
portant. For example, with the choice

q„= (O, rg}

we can write the momentum flow as

(43)

and this is interpreted just as was done for point
particle motion in the preceding section. The
energy flow (v=0} is positive for those Fourier
components of the wave flowing with k vector
(and group velocity) going one way through the
surface, and negative for those flowing the other

P"= t d4k 5(k'+M') e(k') [a*(k)a(k)(2w '
J 2

+ a(k)a*(k)]k"e(n k)

(44)

Quantization of the classical field theory of the
preceding section follows from identification of
the quantities Q(x) and a(k) as noncommuting
operators (the algebra of the preceding section
was arranged with this in mind) and the replace-
ment of the complex conjugation symbol * by the
Hermitian adjoint symbol +

The original work by Feinberg' on quantum
field theory of tachyons was built upon the mis-
take of borrowing the formula for P" from the
slow-particle theory, lacking the & factor. In
order to make the formula for P" transform as a
Lorentz four-vector he had to postulate anti-
commutator relations (Fermi statistics} for
the a(k)'s and deal with a number of ensuing
problems: a vacuum state which changed particle
occupation number in different Lorentz frames;
an intricate set of rules to recover physically
sensible results for transition probabilities; and

a continuing argument with various critics over
whether the resulting theory really was Lorentz
invariant. '

Using what has been learned about tachyons
from the earlier parts of this paper one can pro-
ceed with quantization of the field theory along
quite different lines. The basic algebra of the
operators a(k) is postulated to be the commuta-
tion relation

5(k'TM')5(k" FM')[a(k) a(k')]

5(k'vM') e(q k)
(2w)'

(48)

which indicates that a(k) is a destruction (creation}
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operator for g .k positive (negative) and there will
be a vs, cuum state I0) such that

a(k) 8(q.k) I0) =0. (49)

[P ",a(k)] = —k "a(k).

A. number operator, which is non-negative and
annihilates the vacuum state, is

N(k)= (2s)'[8(q k)a(-k) a(k)

(51)

+ 8(- q k) a(k) a(-k)]=N(-k) (52)

and its commutator is

5(k'+ M'}[N(k), a(k')]

= —e(g k') a(k')[5'(k+ k')+ 54(k —k')]. (53)

The total particle number operator N is defined

The order of factors in (41) is rearranged in de-
fining the operator I' " so that there will be no
"zero-point ener gies, "

P "= (2w)' j( d'k 5(k'+M')8(q k)k"a(- k)a(k),

(50)
and the commutator turns out to have the familiar
form

[Z", N(k)] = —L"'(k)N(k),

[J"",N]=0,

[g )L
gpss]

— (~ XJl pX p}

(60)

(61)

and the one-particle state (unnormalized) will be
constructed as

I k) „=[a(k)8'~'(-k ~ ti)+a(-k}8'~'(k ~ ti}] I 0)

=I -k&„.(68)

'The subscript g is placed on this state vector to
remind us of the surface s with respect to which
measurements are to be made; this is the gener-
alization of the familiar "in" and "out" labels
used for states of a free slow particle.

The various operators act on this one-particle
state as follows:

we can wrxte

[Z"",a(k)] 8(~g k)

=- 8(+q k)I.'"(k) a(k)

--.'a(k) L"(k)8(+q k)

=-8'~'(+q. k) L"'(k) a(k)8'~'(~q k) . (»}
From this result follow

N=-; )I d k6(k" M)N(k) (54) (64)

and its commutator

[N, a(k)]= —e(q k) a(k) (55)

S "Ik&„=k"e(q k)Ik&„,

z""Ik
&

= -L"'(k)
I k &

(65)

(66)
leads to the conclusion that the spectrum of N is
0, 1, 2, . . . .

The operator J" may be taken exactly as given
by (47) and the careful calculation of the commuta-
tor with a(k) gives the result

[J",a(k)]= —e (g k) L" (k)a(k).

+ i@(g k) 6(ti )(kk"g —k g") a(k),

U(u}=e' ' (67)

which is identified as the translation operator,
having eigenvalues

fk Ne(q a) (68)

Exponentiation of the operator &" gives the uni-
tary operator

where

(5V)

on the one-particle states. Exponentiation of J""
gives the unitary operator U( L} which acts on the
one-particle states as

U(L)l k), =I Lk)„

8(a u) e(u) = + 8(+u), (58a}

The second term on the right-hand side of (56) is
clearly of a delicate nature, indicating that this
analysis needs to be done over using wave packets
and appropriately smooth distributions in place of
the plane waves and discontinuous functions
used here, Nevertheless, I proceed to work as
follows. Using the relations

which is interpreted as a boost —changing the
particle state (via a "Lorentz transformation" of
the k vector} but leaving the reference surface
(represented by g) unchanged. To describe a true
Lorentz transformation —which relates the des-
criptions of two observers in different inertial
reference frames —we must supplement the above
operator transformation U(L) by an explicit trans-
formation on the coordinates of the vector g.

8(+ u) 6(a) = —,
' 5(l) =a ~ ~ 8(+ u), (58b)

I k)q- U(L)I k) =
I Lk)„- I Lk)~„. (VO)
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Continuing from (62) one can calculate the com-
plete commutator algebra of the ten operators
&" and J""; it turns out to have the familiar
structure of the Lie algebra of the Poincare
group, without any reference to g appearing.
Yet, when one adds explicit transformations of
g then new structure appears. Obviously there is
more to be learned here.

This leads into consideration of tachyons with
spin other than zero, which are usually excluded
because of the lack of unitary (and finite dimen-
sional) representations of the little group SO(2, 1)
appropriate to a spacelike momentum vector.
Perhaps the & factors can play a role in the dis-
covery of new representations. Or perhaps the
requirement of unitarity —derived as it is from
the standard measurement theory which appears
to have some bias as regards the time evolution of
systems-needs to be revised for tachyons. These
questions will be left for future study.

Viany questions about the possibilities of faster-
than-light particles remain to be explored and I
hope that the clarifications achieved in the present
work will be useful.
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APPENDIX: SURFACES AND NORMAL VECTORS

A surface s is defined by the e(luation f (x) = 0
in a given reference frame K, and the normal
to this surface is

(A1)

evaluated at the point on the surface in question.
The normal vector g is normalized in the Euclid-'
ean sense (for use in the divergence theorem),

(A2)

which, although not a Lorentz scalar, has im-
portant characteristics. If g is positive, this
is a Lorentz-invariant statement which charac-
terizes the surface (like s, and s, in Fig. 1) as
having a timelike normal, or more commonly
said to be a "spacelike surface". If q' is negative,
this is again a Lorentz-invariant statement which
characterizes the surface (like s, in Fig. 1) as
having a spacelike normal, although the naming
Of such a surface as being "timelike" would not
be sensible. (Surfaces with q'= 0 exist but are
not used in this study. } Furthermore, an expres-
sion as

q~q ft/q' (A5)

does transform as a (contravariant} Lorentz four-
vector.

The following manipulation which differs from
the usual textbook presentation of the divergence
theorem makes some calculations simpler. Con-
sider the volume v enclosed by the surface s such
that f(x) is negative inside v, zero on s, and
positive outside ~,

r d ga d" (x)=f d xd( f)a„(x)d-u

d'xZu xe„e-

the identity transformation and it is clear that
the sign of the normalizing constant Q cannot
change. Therefore, for any contravariant four-
vector R u the sign of .~u R" = q R is invariant under
proper Lorentz transformations, although the
magnitude of this quantity is not invariant.

In addition, one can raise and lower indices
on g„ in the usual way and consider the Minkowski
square of this normal vector

and the sign of C is chosen in accord with the
specification that q„point "outward" from some
designated region. Looked at from another frame
X', with coordinates differing by a Lorentz trans-
formation J, the same point on the same surface
will have the normal vector

For example, consider a plane surface 3, with

f =q„x"+c

(A2)

thus we conclude that the normal vector gu trans-
forms as Q'/C times a covariant four-vector. If
we consider only the set of proper Lorentz trans-
formations, these are continuously connected to

d~x e~~ ~ ~ e~ay

du 2~ 'a'k+ug e' (AV)
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