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We investigate the "Coulomb" interaction in finite QED at small distances. By finite

QED it is meant that we sum all photon self-energy subgraphs in renormalized QED and

fix a, the renormalized fine-structure constant, as the (infinite order) zero of' the Callan-

Symanzik function: P(a) =0". We show that for mc
~

x —x '
~

/A' && 1, the Couloinb in-

teraction between two heavy point test bodies, with renormalized charges cl and e& at x

and x ', respectively, is given by V(
~

x —x '
~
)= (e,e, / 4m.

~

x —x '
~

) [q~(a) —q&(a)

X mc
~

x —x '
~
/fi+O (m c

(
x —x '

~

/A' )], where 1 & q i(a) & ao, 0 & q2(a) & ao.

I. INTRODUCTION

The purpose of this paper is to formally investi-

gate the classic problem of the modification of the
"Coulomb" interaction at small distances in finite
quantum electrodynamics (QED). To this end the
knowledge of the rate of "decrease" of the photon
spectral function at high energies is essential. The
rate of decrease of the photon spectral function at
high energies in finite QED was investigated by
the author some time ago. ' By finite QED it is
meant here that we sum all photon self-energy sub-

graphs in renormalized QED and fix a, the renor-
malized fine-structure constant, as the (infinite-
order) zero of the Callan-Symanzik function:
P(a) =0" in the sense of Ref. 2.

II. DERIVATION

The potential energy between two heavy point
test bodies with renormalized charges e& and e2, si-
tuated at x and x', respectively, is given by the
well-known expression

V(/ x —x'f)= e&e2

4sr/ x —x'i

where to(p ) is the photon spectral function defined
through

Then the Callan Symanzik equation for
[ad, (Q )] ' is given by

D(Q')=
Q —le

o it2 (+2+Q2 te)
(2)

m +ap(a) ad, (Q ]

where

=[1+&(a)]l~s(Q'), (5)

D„„(Q)= g„„"D(g')—
+gauge-fixing terms

d, '(Q )=1+a[sr(Q ) —sr(0)],

is the renormalized photon propagator.
Let (Q &0)

&(Q') =d, (Q')/Q'. Z3 m Z3 ——p(a),
Qpl
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and P(a), 5(a), and I'~s(Q ), in particular, are all

cutoff independent. Here mo denotes the unrenor-
malized mass and m and denotes the renormalized
one.

In turn the Callan-Symanzik equation for I ~&
is given by'

82
I'~ss(Q') =mo', ~(Q'),

Bm02
(10)

and 1 ~ss is also cutoff independent. ' In perturba-
tion theory I'~ss vanishes like (m /Q ) up to
powers of logarithms. (Note that I ~s, I ~ss are
all infrared cutoff independent as well, since they
do not contain any proper subdiagrams in them
with all their lines being photon lines. )At the

eigenvalue P(a) =0, we then obtain from (5)—(10)
(Ref. 1)

2
'1+5(a)

ad, (Q ) — q(a)+aqo(a)
Q2-++ aO

m +aP(a) —[1+5(a)] I'~s(Q )
Bm Ba

=[1+5(a)]l~ss(Q ), (9)

where

and

~ dpq)(a)=1+I p(p /m2), (13)

Bm Bm

(1+x) m

At the eigenvalue, we then obtain, in particular
from (11) and (14), by an elementary dimensional

reasoning that'

1+5(a)

p 2
—Co(a)p m

m p2~ oo p

where q(a)=aq&(a). The finiteness of q&(a) (or
equivalently of 1/Z3) implies that p(0) =0 and

p( oo ) =0. In (12) we note that taking the limit

Q —+ ao is equivalent to taking the limit m —+0.
We cannot a priori take the limit m ~0 inside the
integral in (12) without a knowledge of the asymp-
totic behavior of p(p ). Instead consider the fol-
lowing expression:

Q 1 Qqy" dp, p(p /m )

m 2 P +2 (+2+Q2)
(12)

where, at least to lowest order in a, 5(a) & 0. [The
finiteness of the self-mass 5m =m —mo, or more

precisely the dynamical origin of the mass, implies
that 5(a) & 0. We note that (cf. Ref. 5)

q (a) =a+0 (a ), and from the work of Kallen
and Sabry, as the coefficient of (m /Q ) for

Q ~ ao in d, (Q ), the following expression may be
extracted'. q, (a)=2a/m+O(a ).]

We may write

and

n. csc[—5(a)m ]Co(a)= —qo(a), (16)

where positivity requires that Co(a) &0. [We note
that since qo(a) =2a/m+0 (a ), (16) implies that
Co(a)=3a /n +O(a ), and this is consistent with
positivity and coincides with the coefficient of
(m /p ) coming from the so-called photon self-

energy proper diagrams in Ref. 7.] The rapid van-

ishing property of p(p /m ) in (15) is to be noted.
We rewrite the potential in (1) in the form

v(
I
x —x'I )=, [q((a)—q2(a)m

I
x —x'I+~(

I
x —x'I )]

4m
I
x —x'I

(17)

where

[e-&~'&'"~"-"'~—1+( ')'"I x —x'I]
P 2 m 2

QQ d 2 2 21'
(19)
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1

ie '—1
i
=a f e dx&a, (20)

ie '—1+a
i &af ie '"—1 idx

a2(a xdx =—,
0

(21)

The factor (p )'~z in (19) improves the low-energy
behavior of the integrand in it for p ~0. This, to-
gether with the finiteness of q~(a)(1/Z3) in (13).
and the power-law behavior obtained for p(p /m )

in (15) for p ~ oo, implies that qq(a) is finite.
Finally we use the following inequalities:

for a & 0, to bound R (
i
x —x'

i
) in (18) as

iR(ix —x'i)i &

(22)
2 2

xf d ", p ",
and with the asymptotic behavior of p(p /m ) ob-
tained in (15), there is no question of the existence
of the integral in (22).

Upon readjusting the units and hence introduc-
ing the fundamental constants c and A, we obtain
from (17) and (22)

y(i, i)
2

(
mc ix —x

i
m c ix —x

4nix —.x'
i

A'
(23)

for mc
i
x —x'i /fi«1. '

&s very little is known about the full Callan-Symanzik function beyond its infinite-order-zero nature (if
indeed it does have a zero) and beyond its low-order structure, we will not go into the philosophical implica-
tions of (23).
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' 1/2
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mc [ x —x'i
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