PHYSICAL REVIEW D

VOLUME 25, NUMBER 12

15 JUNE 1982

Minimum-uncertainty coherent states for certain time-dependent systems

John R. Ray
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631
(Received 11 January 1982; revised manuscript received 12 February 1982)

Nieto and Simmons have defined and studied coherent states for arbitrary potentials
V(q). We show how to extend their results to certain time-dependent potentials ¥ (q,t).
For each V(q) there is a V(g,t), for which we can construct time-dependent coherent

states.

I. INTRODUCTION

In a series of papers Nieto and Simmons' have
constructed generalized coherent states for systems
with Hamiltonians

H=5p*+V(q) $))

for various potentials V' (q). These coherent states
have been further studied in later papers.>~* The
hope is that these generalized coherent states can
be used to describe the interactions between mole-
cules and lasers.

In this paper we point out that generalized
Nieto-Simmons coherent states can be constructed
for certain time-dependent systems

H=%p2+ Vig,t) . (2)

We use the results of our recent papers>® on sys-

tems described by Hamiltonians

H=5p>+ 50X 1)g*+ éf(q/x) , &)
where w(t), f(q/x) are arbitrary functions and x is
a c-number solution to the auxiliary equation

X+ tx=1/x%. (4)

Systems such as (3) are called Ermakov systems
and possess an invariant I given by

I=5(p—3g P+ 5(q/x)*+f(g/x) . (5)

II. TIME-DEPENDENT COHERENT STATES

The solution to the Schrodinger equation for (3)
involves solving the equation
# 3
~7$2—+%02+f(a) Gn(0)=A,d,(0) .

(6)

Since the function f in (6) is arbitrary, this equa-
tion is the time-independent Schrodinger equation
for an arbitrary potential. Thus, we can perform
the Nieto-Simmons construction for the time-
independent equation (6) and then map the states
so obtained back to the original system via the in-
verse transformations. We shall illustrate this pro-
cedure using the time-dependent harmonic oscilla-
tor for which we have recently constructed
coherent states.’

We consider the Hamiltonian (3) with £ =0,

H=5p*+50X1)q?, @)
and the Lewis invariant

I=%(xp —)&q)2+%(q/x)2. (8)
The eigenvalue problem for the invariant I is

I, (g,t)=A,,(q,t) . 9)
Under the unitary transformation U=e —bkg? /(o)
this becomes

I'éy=~An¢, , (10)
with

1'=U1U"=—%2£—:;+%02 (11)
and

b,=x'"2Ut,, o=q/x . (12)
Equation (10) has the form

—%za%zz—ﬁaz $n(0)=Apds(0),  (13)

whose solution is well known,

Ap=fin+7) (14)
and

1

—o2/24 172
dn(0)= RV PV e o /MH (a/%'7%) . (15)
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For the “Hamiltonian” I’ we define the lowering
and raising operators

, 1 .# d
a =(2ﬁ)1/2 U+l_i_—é; , (16)
R | # 9
T TIZN Ta—] an
which factors I',
'—#ata’+5) . (18)

Coherent states for I’ have the form
n .
¢a<o,t>=e-'“'Z/ZEﬁﬁe’“"(’)qsn(a), (19)
& (n!

where from Ref. 5

t dt’
(=—(n+3) [ ——.
" HE fo x(t")
The factor "*"” in (19) is dictated by the require-
ment that when w(t)—wy=const and

x(t)—xg=const=1/wo'"?,

the coherent states ¢,(g,t) become the correct
coherent states for the time-independent harmonic
oscillator. The states ¢,(0,?) are eigenstates of

a’ with eigenvalue aexp [—i f dt'/xXt')]. Note

that as w—w this becomes ae ~'  the usual re-
sult. Coherent states for the time-dependent har-
monic oscillator are now obtained by the inverse

transformation on ¢a(a, t) and have the form

Yalgst)=—1/7 L R0 (5p) (20)

The coherent states (20) are just the coherent states
for the time-dependent harmonic oscillator derived
in Ref. 7. There are several ways to prove this
latter statement. For example, consider the eigen-
value problem

——ifdt’/xz](ﬁa(a,t) @D

a'dolo,t)=aexp

Transforming this via the inverse transformation
yields

a,(g,t)=aexp

—i [dt'/x? ]¢a(q,t) , 2
where

a =ei:2q2/(2ﬁx)are —ikg2/(2#x)

(2ﬁ)1/2 ———[q/x+i(xp—gx)], (23)

which is exactly the lowering operator associated

with the Lewis invariant (8). The eigenvalue of a
in (22) is also correct.” The operator (23) was origi-
nally introduced bv Lewis® to factor the Lewis in-
variant (8) as

I=#a'a+7) (24)

in the first exact quantum treatment of the time-
dependent harmonic oscillator. Thus, coherent
states for the time-dependent harmonic oscillator
can be derived by (i) finding coherent states for the
time-independent problem (13), ¢,(o,?), and (ii)
transforming to v¥,(q,?) via (20). These states
¥,(g,?) are then the generalized Nieto-Simmons
coherent states for the time-dependent harmonic
oscillator. Note that these time-dependent
coherent states have the Schrodinger property of
giving the exact classical motion for (¢, |q |¥,)
as is proven in Ref. 7.

III. NIETO-SIMMONS COHERENT STATES
FOR GENERAL POTENTIALS

For other Ermakov systems we can construct
Nieto-Simmons coherent states in the same manner
as just described for the time-dependent harmonic
oscillator. First we consider the time-independent
Schrédinger equation (6),

ﬁ2a

I'¢,(0)= 2 307

—+3 S0+ f(o) dnlo

=Apdn(0) . 25)

We use I’ to construct Nieto-Simmons coherent
states @,(0,¢) following Ref. 1. We first define
classical variables X, (0),P,(0) associated with the
classical motion of a particle with Hamiltonian I’,

,_dX(o) o, (4°-X2'
do 2172 [1— Vio)]'?’ 26)
Pc =Xc :poXc ’ (27)

where o, A, are constants and p, =¢. The func-
tion X, (o) is found by solving (26) and then P, is
found from (27). Next we construct the Nieto-
Simmons operators X, P,

X(o)=X_,(0), (28)
#i| 0 d
— _— ’ ’ —_— 2
=% aaX (o)+X'(o) % | - (29)

We then use these operators to construct
minimum-uncertainty coherent states ¢,(c) follow-
ing Ref. 1,
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1{ X

S D N = 3

> [ +i 7 dol0)=ad,(0), (30
where

AA-——((AZ)—<A )2)1/2 , (31)

for any quantity 4. The states @,(o) have the form

$ol0) =zcn¢n(a) ’ (32)
where ¢, are constants and ¢, (o) are the eigen-
states of I'. Next we map these states and opera-
tors using the unitary operator

I ’ 2
V=exp —1}1— fdt /x

which gives the coherent states

' ,
balost)=exp | —it Jdt'/x? |$ql0)
ia, ()
=Yc,e " $,l0), (33)
and new operators X, P defined by
X=wvxv', P=vpr'. (34)

The operator V introduces the time-dependent
phase factor e 4 into (33). This is necessary in
order to obtain the correct coherent states in the
time-independent limit ®—wq, x —1/wy'/%. In
this limit

Hy=wol, , (35)

E,=wohy, , (36)

U = eia°/(2x) _ | , (37)

a,=—E,/#, (38)
where

Ho"—“%Pz-f"%wozqz-i-wqf(wol/zq) , (39)

and the E,’s are the eigenvalues of H,. Note that

3419

in this time-independent limit there is no need to
introduce I, since it differs by only a constant
from H,. Thus, in the time-independent limit we
are back exactly to the Nieto-Simmons case of
time-independent Hamiltonians. The final step in
obtaining the coherent states for the Ermakov
Hamlltoman (3) is to apply the unitary operator
U =eia®/2%0) , which gives the states

¢a(q,t)— txq 2ﬁx)¢ (o,1), (40)

and the operators X', P’ defined by
X'=u'ku, P=U'PU . 1)

These states 1,(q,t) are coherent states for the
time-dependent system described by the Hamiltoni-
an (3).

IV. CONCLUSIONS

It is important to notice that by construction the
coherent states (40) satisfy the time-dependent
Schrodinger equation (7). Thus one can, following
the work of Gutschick and Nieto,? time-evolve the
coherent states ¥,(q,#) and study their evolution.
Here, this will be a somewhat more involved prob-
lem since one must calculate x (¢) and a,(¢). In
the constant-frequency case the functions x and a,
have trivial time dependence.

The physical interpretation of time-dependent
coherent states is discussed in Ref. 7. For the
time-dependent harmonic oscillator they are states
that are associated with the exact classical motion.
They should be useful in describing the radiation
field of a single-mode laser as the laser is tuned. If
the Nieto-Simmons coherent states have practical
applications for molecule-laser interactions, then
the time-dependent coherent states derived here
should have similar applications involving such
time-dependent systems.

As a final result, we mention that most of the
results of this paper can be generalized to N-
dimensional Ermakov systems (Ref. 9).
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