
PHYSICAL REVIEW D VOLUME 25, NUMBER 12 15 JUNE 1982

Minimum-uncertainty coherent states for certain time-dependent systems
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Nieto and Simmons have defined and studied coherent states for arbitrary potentials

V(q). We show how to extend their results to certain time-dependent potentials V(q, t).
For each V(q) there is a V(q, t), for which we can construct time-dependent coheren'. .

states.

I. INTRODUCTION

In a series of papers Nieto and Simmons' have
constructed generalized coherent states for systems
with Hamiltonians

H= —,p +V(q)

for various potentials V(q). These coherent states
have been further studied in later papers. The
hope is that these generalized coherent states can
be used to describe the interactions between mole-
cules and lasers.

In this paper we point out that generalized
Nieto-Simmons coherent states can be constructed
for certain time-dependent systems

H = —,p + V(q, t) .

Since the function f in (6) is arbitrary, this equa-
tion is the time-independent Schrodinger equation
for an arbitrary potential. Thus, we can perform
the Nieto-Simmons construction for the time-

independent equation (6) and then map the states
so obtained back to the original system via the in-

verse transformations. We shall illustrate this pro-
cedure using the time-dependent harmonic oscilla-
tor for which we have recently constructed
coherent states.

We consider the Hamiltonian (3) with f=0,

H = ,p + 2 to—(t)q

and the Lewis invariant

I= —,(xp —xq) + —,(q/x)

The eigenvalue problem for the invariant I is
We use the results of our recent papers ' on sys-

tems described by Hamiltonians Ig„(q, t)=A,„Q„(q,i) . (9)

H = ,p + , to'(t)q—'+ —f(q/x), (3)

—ix 2/(2')Under the unitary transformation U=e
this becomes

where to(t), f(q/x) are arbitrary functions and x is

a c-number solution to the auxiliary equation with

(10)

x+to (t)x =1/x

Systems such as (3) are called Ermakov systems
and possess an invariant I given by

I= —,(xp xq) + , (q/x) +f(q—/x) . —

(4)

and

fi 8I'= UIU~= — -- + —,02
2 Qg

P„=x'/ Ug„, o =q/x .

II. TIME-DEPENDENT COHERENT STATES

Equation (10) has the form

f2 Q2

, + 2tT' 0»(~)=~»0»(~» (13)

The solution to the Schrodinger equation for (3)
involves solving the equation

, +-, tr +f(tT) P„(tr)=&„P„(o).

whose solution is well known,

A,„=trt(n+ —,)
1

and

(14)

(6) ( ~1/2g1/22»n t )I/2
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For the "Hamiltonian" I' we define the lowering
and raising operators

Ia = 1

(2$)'/2 i c}o
0+l (16)

a If 80 —l
(2iri)'/ i c}cr

J

(17)

which factors I',

I'=A(a' a'+ —, ) .

Coherent states for I' have the form

(18)

p~(cr, t) =e g 1/2 e " p„(cr), (19)
n! '

where from Ref. 5

dt'
a„(t)= (n+——,)fOx (t')

ia„(t) .
The factor e " in (19) is dictated by the require-
ment that when c0(t)~coo ——const and

x(t)~x11——const = 1/coo'

the coherent states P (q, t) become the correct
coherent states for the time-independent harmonic
oscillator. The states P (o, t) are eigen.states of

ta' with eigenvalue aexp [ i dt'/x (—t') j. Note
0

that as co~co0 this becomes o.e ' ", the usual re-
sult. Coherent states for the time-dependent har-
monic oscillator are now obtained by the inverse
transformation on P (o,t) and have the form

q (q t) eixq /(2kc)y ( t) (20)

a/~(q, t) =aexp i fdt'/x P~—(q, t),
where

(22)

The coherent states (20) are just the coherent states
for the time-dependent harmonic oscillator derived
in Ref. 7. There are several ways to prove this
latter statement. For example, consider the eigen-
value problem

a'P~(o, t)=aexp i fdt'/x— P~(o, t) . (21)

Transforming this via the inverse transformation
yields

with the Lewis invariant (8). The eigenvalue of a
in (22} is also correct. The operator (23) was origi-
nally introduced bv Lewis to factor the Lewis in-
variant (8) as

I=irt(a a+ —, )
1

(24)

in the first exact quantum treatment of the time-
dependent harmonic oscillator. Thus, coherent
states for the time-dependent harmonic oscillator
can be derived by (i) finding coherent states for the
time-independent problem (13), P (o, t), and (ii)

transforming to g~(q, t) via (20). These states

g~(q, t) are then the generalized Nieto-Simmons
coherent states for the time-dependent harmonic
oscillator. Note that these time-dependent
coherent states have the Schrodinger property of
giving the exact classical motion for (t/i

~ q ~ f )
as is proven in Ref. 7.

III. NIETO-SIMMONS COHERENT STATES
FOR GENERAL POTENTIALS

fi 8I'p„(cr)= — 2+ —,o +f(o) p„(o)

=A,„P„(o). (25)

We use I' to construct Nieto-Simmons coherent
states P (o, t) following Ref. 1. We first define
classical variables X,(o),P, (o) associated with the
classical motion of a particle with Hamiltonian I',

dX, (o) co (/1 —X, )'/
X,' =

do 21/2 [I~ y( )a]1 /2

P, =X,=p X, ,

(26)

(27)

where co„A, are constants and p =o. The func-
tion X,(o}is found by solving (26} and then P, is
found from (27}. Next we construct the Nieto-
Simmons operators X, P,

X(cr)=X,(cr), (28)

For other Ermakov systems we can construct
Nieto-Simmons coherent states in the same manner
as just described for the time-dependent harmonic
oscillator. First we consider the time-independent
Schrodinger equation (6),

ixq /(2%x) I —ixq /(2fgx) P=—. X'(o )+X'(o.) a
2l BO' 80

(29)

1

(2iri)'
[q/x+i(xp —qx)],

which is exactly the lowering operator assocj[ated

(23) We then use these operators to construct
minimum-uncertainty coherent states P (cr) follow-
ing Ref. 1,
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1 X . P
2 bX hP

+t P~(&)=&/ (o), (30)

bA =((A') —(A )')' ', (31)

I

V
o

which gives the coherent states

for any quantity A. The states P (cr) have the form

P (o')=pc„P„(cr), (32)

where c„are constants and P„(o.) are the eigen-
states of I'. Next we map these states and opera-
tors using the unitary operator

in this time-independent limit there is no need to
introduce Io, since it differs by only a constant
from Hp. Thus, in the time-independent limit we
are back exactly to the Nieto-Simmons case of
time-independent Hamiltonians. The final step in
obtaining the coherent states for the Ermakov
Hamiltonian (3) is to apply the unitary operator
U =e'" ' ', which gives the states

y (q t) eixq~/(2th:)y
( t)

X

and the operators X', P ' defined by

X'= U~XU, P'= U PU .

(40)

(41)

These states g~(q, t) are coherent states for the
time-dependent system described by the Hamiltoni-
an (3).

I

P (cr, t)=exp i Jdt—'/x—$ (0)

=pc e " P(o), (33)

and new operators X, P defined by

X=VXV, P= VPV (34)

The operator V introduces the time-dependent
ia„(t) .

phase factor e " into (33). This is necessary in
order to obtain the correct coherent states in the
time-independent limit co —+cop, x—+1/cop' . In
this limit

Hp =topIp,

En=a~n ~

U iiq2/(2fix)

a„= E„/iri, —

where

(35)

(36)

(37)

(3g)

Ho= Y& + i ~p q +cppf(~p (39)

and the E„'s are the eigenvalues of Hp. Note that

IV. CONCLUSIONS

It is important to notice that by construction the
coherent states (40) satisfy the time-dependent
Schrodinger equation (7). Thus one can, following
the work of Gutschick and Nieto, time-evolve the
coherent states g (q, t) and study their evolution.
Here, this will be a somewhat more involved prob-
lem since one must calculate x (t) and a„(t). In
the constant-frequency case the functions x and a„
have trivial time dependence.

The physical interpretation of time-dependent
coherent states is discussed in Ref. 7. For the
time-dependent harmonic oscillator they are states
that are associated with the exact classical motion.
They should be useful in describing the radiation
field of a single-mode laser as the laser is tuned. If
the Nieto-Simmons coherent states have practical
applications for molecule-laser interactions, then
the time-dependent coherent states derived here
should have similar applications involving such
time-dependent systems.

As a final result, we mention that most of the
results of this paper can be generalized to N-
dimensional Ermakov systems (Ref. 9).
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