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Dynamic theory of quark and meson fields
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A new equation describing a confined fermion field is obtained via spinor factorization of the Klein-Gordon
equation. It is shown that the particle-antiparticle bound states which follow from the appropriate Bethe-Salpeter
equation are spin-0 and spin-1 meson fields. It is argued that the new equation describes a quark field.

INTRODUCTION

It is generally assumed that hadrons are com-
posed of quarks. ' Quarks can be described by the
Dirac equation with some additional constraints
imposed to achieve their confinement. Most mo-
dels currently in use introduce the constraints in
a rather ad hoc manner. The confining mechan-
ism may also be provided by the very promising
quantum-chromodynamic (QCD) theory' also based
on the Dirac equation. The confining mechanism
arises nontrivially in two dimensions due to gluon
exchange. However, it is implicitly assumed that
quarks and gluons are always coupled and hence by
definition free quarks are not possible.

In an earlier paper we attempted to derive a
quark equation, describing free quarks, from fun-
damental principles. ' Let us recall that the Dirae
equation can be derived via spinor factorization of
the Klein-Gordon equation. Hence, by a similar
technique, one can try to derive an equivalent of
the Dirac equation which might be suitable for de-
scription of the free field and also interacting with
Yang-Mills gluon qgark fields.

Valuable insights 'into quark properties were
provided by the light-cone approach. 4 For in-
stance, various relations previously obtained in
the p- ~ limit were rederived and apparently dif-
ferent models of current and constituent quarks
were related. 4 Deep-inelastic electron scattering
probes the small-distance (light-cone) structure of
the hadron wave function. ' The most important
part of the wave function is concentrated at almost
light-cone distances between quarks and hence it is
useful to use the light-cone variables p'=p'+ p,
p, =(p', p'), instead of the four-vector p .

The success of the light-cone formalism sug-
gests that it should be fruitful to work with the
spinor components p ~ =p' y p', p' y jp, rather than
in the mixed representations (p, p,). Thus in this
paper we shall use the spinor components p ~ to
factorize the Klein-Gordon equation.

The notation of Bjorken and Drell' is adopted.
Indices u, P =1,2; m, n=0, 1,2, 3; P, Q, R=1, . . . , 8
indicate spinor, four-vector, and SU(3)-vector

components, respectively. The SU(3) matrices
y& are consistent with the Gell-Mann convention. '

The outline of the paper is as follows. In Sec.
I we rederive the fundamental equation' and also
give its Hamiltonian form. In Sec. II the Lorentz
covariance of the theory is discussed. In Sec. III
the fundamental equation is investigated in some
special frames of reference. In Sec. IV inner
degrees of freedom of quark fields are studied.
Finally, the quark confinement and the Bethe-
Salpeter equation for quark-antiquark bound states
are investigated from the QCD viewpoint in Sec. V.
The last section contains conclusions and predic-
tions as well as parallels with other quark models.

p~ —(gg) -1/7, -z&6, -tgs) . (2)

The left and right solutions of Eq. (2) in the mo-
mentum representation,

Q-m)n, =o, M, (k-kf)=o, (3)

k +k
n~= k'+ik', u~=(k' —k', —k'+ik', I),

M
(4)

are independent in contrast to the standard equa-
tions (e.g. , Q= cetyo for the Dirac field).

I. BASIC EQUATIONS

The spinor components p~~= (p'+o p) ~, where
0 are the Pauli matrices, obey the identity

pl 1p22 pl2p21 p pm

so that the system of equations

P1'X =M&

P'x=
p22 g11 pl2 (21 M

implies that for M 0 X obeys the Klein-Gordon
equation.

Equation (1) can be written in matrix form~

(P-~)y, (~)=o, g=p"p„, g, (x)= 0',
X ~
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We note that the Klein-Gordon equat;ion can also
be factorized to give a Hamiltonian form

P'4. = (O'Z, +p'X, +p'X, +M Z, )g, ,

where the identity
(p')' = (p'+ip')(p' —ip')

+ (p'+iM)(p' —iM)

was used instead of the spinor identity.

II. LORENTZ COVARIANCE

The Lorentz covariance of Eqs. (2) and (3) can
be studied in the standard fashion. The infinites-
imal transformations B= 1 + y n5 V, 8 = 1 —ig n66,
n n= 1, & = (X„X„X3)represent boosts and rota-
tions, respectively, ' and correspond to the SU(2)
subgroup of SU(3) degrees of freedom of g, (x).
These Lorentz transformations are complex; they
transform a general four-vector k into a complex
one k . However, the transformations in the g ~
and x'x' planes (&23 and Z», respectively) can be
made real if the following generators are intro-
duced:

B(X„,) = 1+y5V(x, +—x, + c, ),

R(X„)= 1 —,' i 5 8 X, ——y, —+c.,),
where the constants c„c,do not change the com-
mutation relations of generators and will be de-
termined in Sec. IV.

The rest-mass four-vector k 'O'= (M, 0, 0, 0) is
transformed by Lorentz transformations into a
general four-vector k = (k', k', k', k') (Ref. 3):

Ol )„03
k ' ' =(k" k' 0 0) =(k, k' k' 0) =k (7)

The little group of k"'" is O(2) and not O(3) as it
is in the case of standard equations for M c 0.
Hence Eqs. (3) are not covariant in frames with

p,'W p, . On the other hand, the equation for the
density matrix p,
p, = [(k'+ M) —M '(k' 8)]/2M =

I
u—„)&u I/2M,

Tr(p p„)=k, p, '= p (k'=M'),

can be written in the explicitly covariant form'

p„(P —M) = (k —M)p =k —M 2=0.
To complete the discussion of relativistic covar-

iance let us note that the matrices
-1 0 0 +1 0 0

p, = 0 -1 0, q= 0 —1 0

correspond to the CI'T and I', symmetries

CPry, (x) =p, g, (—x),

P,q, ( x) = q~), (x', —x', -x', x') .

The symmetry P, reflects the collinear symme-
try of the quark field g, . We note that CPT and P,
(as well as their product) are the only discrete
symmetries of Eq. (2).

It is important that Eq. (4) implies in the low-
momentum limit that the second components of so-
lutions are small. Thus the elimination of the
small component $22 from Eqs. (1) and (2) gives

[v'p' —(1 —v')p, '/2M —(-iv2)P3]y =M y,
or in the Hamiltonian form

p'y= [(v' —iv')p, /2M + v'p'+ v'M]y . (13)

In the nonrelativistic limit ~p~ «M or for ~p, ~

«M Eq. (12) becomes the two-dimensional Dirac
equation

( opo 3p3)~ My o vl 3 iv2 5 v3

(i4)

It is interesting to compare Eq. (12) with the
nonrelativistic (or p„=o) limit of the Dirac equa-
tion transformed nonlocally by the Melosh trans-
formation. ' ~' The Melosh-transformed Dirac
equation

[ OpO 3p3 y P(p2 + M2)l /2]P 0

(01)i, (0 -ii (v' 0)
&10) &I oj Eo v'j

reduces also for ~p ~
«M or ~p, ~

«M to the two-
dimensional Dirac equation (14), the 4 &&4 Dirac
matrices being the only difference (this accounts
for the presence of spin which has been neglected
in our model) . The nonrelativistic ( ~ p ~

«M) and axi-
al ( ~ p, ~

«M) consistency of Eqs. (12) and (15) is very
satisfactory because the Melosh representation of
the Dirac equation turned out to be very useful in
relating current- and constituent-quark pictures. '
The Melosh equation (15) has two disadvantages,
however. First, it originated from the Dirac
equation via nonlocal transformation; second, it is
not linear with respect to p and hence cannot be
treated as the fundamental quark equation. Ac-
cordingl, its utility is restricted to the frames
with ~p, «M.' 4' On the other hand, the above-
mentioned analogy suggests how to incorporate
spin into our theory.

0 0 +1,, 0 0 +1,

[p„p"],=0, , n=0, 1,2, 3,

[2i, p'], =0=[@,p ], I=1,2, m=0, 3

(io)

III. BASIC EQUATION IN SPECIAL FRAMES
OF REFERENCE

It will be useful to study Eq. (2) in some special
frames of reference. Let us first investigate the
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( p'p' p'-p') A ™P.,

A(p p p-p ) = M-P. , (16)

case of p= (p', O, o,p') frame. The basic equations
read

(popo plkl pOk2)v

v (p'k' —p'k' —p'k') =Mv,

'DkVk = 2M=+ ~-k~-k P

(23a)

(23b)

(24)

0 0 1

1 0 0

(0 I)
Oi '0 ='~ ~—

= r ~

II 01
In the momentum representation we have

(17)

and are equivalent to the two-dimensional Dirac
equations for fermion fields y, y,

(r'P' —r'P') &™P,P(r'P' —r'P') = -M 9»

different from the fermion ones, Eq. (19), so that
the operators e, P,

y, (x)=Q( o,v,e ""+p,'v, e""), (26)
k

obey the boson commutation rules and it can be
shown that t;he Hamiltonian and conserved charge
operator have proper form.

Now some meaning can be given to the nonphy-
sical complex Lorentz transformations relating
frames (k', 0, 0, k') and (k', k, o). Such transform-
ations would mix fermion and boson fields and thus
are not allowed.

(p'k' —p'k') u, =M u, ,

u, (p'k' —p'k') =Mu„

o (k'+ k') '~',

(18a)
IV. INNER DEGREES OF FREEDOM

Results presented in this section have a rather
preliminary character. A four-potential B, cor-
responding to the Yang-Mills field, is introduced
into Eq. (1) or Eq. (2) in the usual fashion:

(18b)
i&-i(a -iga )=v . (26)

(19)

The second quantization of the field ~P, (x) gives

u, =u', q = (M, O, k'+ k')(k'+ k')-'~'.

The solutions are normalized as in the Dirac
theory:

ukuk =2M = -u ku-k

The presence of inner degrees of freedom can be
detected by squaring Eq. (2) in analogy with the
procedure used in the Dirac theory. '

Let us first assume that the four-potential has
axial symmetry compatible with the axial symme-
try of the fie1d $„e.g. ,

B =(--', Ex', 0, 0, ', Ex'), E-=-const,

g, (x) =Q (a,u, e ""+fl,'u, e""), (2o) or (27)

where ak, bk have to obey the anticommutation fer-
mion relations [note the equivalence of Eqs. (16)
and (17)].

In the case of p = (p', p„o), p, = (p', p'), we have

(p'p' p'p' p'p')4=MP--, ,

V, (p'p'- p'p'- p'p') = MV, , -

0 0

7tl, =g,'q, li= 0 -1 0

0 0 ].

(21)

If the second component of g, is eliminated we get

p'y = [(o' —io')p, '/2M + o'M ]q . (22)

We realize that Eq. (22) is the well-known Fesh-
bach-Villars representation of the Klein-Gordon
equation' describing a boson field [p=(p„o)].
Thus the second quantization has to be consistent
with boson commutation rules. In the momentum
representation Eq. (21) yields

B =(0, &Bx, --,'Bx', 0), B =const.

We have now

(lr'+ v')g, =M/, ,

( +viz')y, =M&, ,

(v' —v')g, + (-v'+iv')g, =Mt', .
Equations (28) due to [no+ v', v'+ in'] =0 [cf.

Eq. (27)] can be squared to yield

(28)

[(»m -M') + ig&OO&OO+ g&lO&l2]&. = 0

where

F„=a,a, —a,a, +kg[a„a,],
F,2

= a,ao —a2B, + ig[B, , B2]

(29)

(3o)

and the constants c„c,in Eq. (6) are now deter-
mined and equal to -', and --'„respectively. We
note that the form of Eq. (29) is in close analogy
to the form of the squared Dirac equation. '

Equation (29) reveals thus the presence of inner
degrees of freedom corresponding to the SU(3)
generators. The squared equation, however, does,
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+ v3o3+Mo')q. (32)

Compa. rison of Eqs. (32) and (13) shows that the
substitution

P /2M- 7), /2M —(g/2M)m B, m= (0, 0, 1), (33}

should be made in Eq. (13). Thus the field li has
an additional, degree of freedom giving rise to the
change of its kinetic energy. It is interesting that
the interaction in Eq. (33) has axial symmetry.
The vector m corresponds to the direction of the
(internal) particle Yang-Mills magnetic moment
aligned along the distinguished axis x'.

Equations (32} and (33) are in close analogy with
the Pauli equation' obtained from the Dirac equa-
tion within the formalism of the small component.

not have the Hamiltonian form and we shall not in-
terpret it further in this paper.

Let us now consider the case of a general four-
vector B . We can gain some insight using the
method of the small component' and thus working
in the Hamiltonian formalism. The second corn-
ponent of ~P, can be eliminated from Eq. (28) to
give

[( 0~0 3 3)

+ (1 —y3)(-~'+ iv')(v'+iw')/2M]X =My . (31)

The Hamiltonian form of Eq. (31) reads

&0li =([(o' —io3)v3/2M —(g/2M)a, ]

physical meaning and thus free fermions disappear
from the theory. The lack of relativistic covar-
iance of the basic Eq. (2) suggests that the fermion
quarks can show up in high-energy scattering only.

The density matrix p can be given more pre-
cise interpretation on the basis of the BS equation.
The BS equation, based on Eq. (2), should have the
following structure'.

(M —p"k„)(t) (k, 0) (M —p„k")

d'k' ", ", . &"P(}'3',0)&", (34)v'i (f —u')' —ie

so that the BS equation for Dirac particles in two
dimensions is obtained for ~k~ «M or k, =—0. We
shall compare the solutions of Eq. (34) with an-
alogous results for the BS equation, based on the
four-dimensional Dirac equation' in the simplest
case y-0.

In the Dirac case there are three sectors in the
BS amplitude: P, AT, SV,' which for g =0 cor-
respond to the solutions of the Klein-Gordon, the
Duffin-Kemmer spin-1, and the Duffin-Kemmer
spin-0 meson equatioiis, respectively. Similar
analysis for the Bogoliubov model" (based on BS-
type equations) yielded the same results 3 This
shows that the BS formalism, based on the four-
dimensional Dirac equation, leads to meson states.

The BS amplitude of the qq pair, based on Eq.
(3), can be decomposed in terms of the SU(3) ma-
trices (in analogy with the procedure used in the
Dirac BS equation'):

V. THE BETHE-SALPETER EQUATION FOR BOUND
PARTICLE-ANTIPARTICLE STATES
AND THE FERMION CONFINEMENT

((k, o)=g x (' (k)+(.(k), (35)

It follows from the discussion of the Lorentz
covariance of Eq. (3} that the density matrix p3
—~u, )(u3 ~

is covariantly defined in contradistinc-
tion to u„(or u ). The density matrix is the Bethe-
Salpeter (BS) amplitude for the particle-antipar-
ticle pair (qq) in absence of a binding potential. 3

This situation is somewhat analogous to the
Maxwell theory of electromagnetic fields. Elec-
tric or magnetic fields are not covariantly defined
and hence have to be united in the Maxwell tensor
(E, B) F™t.Similarly, the qq amplitude p

(u3, u3) turns out to be the fundamental physical
quantity in our theory. This fact can be inter-
preted as the quark confinement of the relativistic
origin. Quarks can be detected in (P', 0, 0,P')
frames, i.e., in high- energy s cattering condi-
tions, ' in which they should obey the two-dimen-
sional Dirac equation, and in these frames our
theory predicts fermions. Qn the other hand, in
(P', P„O) frames there are only boson degrees of
freedom and in general. frames (p', p', p', p') only

qq pairs, represented by the density matrix, have

and the substitution of Eq. (35) to Eq. (34) gives
for y =0 the standard spin-0 (and spin-1) meson
solutions. Therefore, the density matrix p~ cor-
responds to quark-antiquark pair mesons.

It thus seems necessary to study the BS equation
for quark-antiquark bound pairs in the presence of
the Yang-Mills fields [i.e., based on Eq. (28)].
It follows from our results of Sec. II that the quark
fields at low momentum or in the frame p, =0 obey
the two-dimensional Dirac equation. Hence it is
natural to start with the two-dimensional theory.
We find it particularly useful that there was a
tremendous work done in the field of two-dimen-
sional theories. Now, it is convenient to sum-
marize the results of 't Hooft for the two-dimen-
sional qq BS amplitude within the QCD formal-
ism." The theory is described by the Lagrangian
density' "

(s8)

where m, n = 0, 1; i,j= 1, . . . , N; g correspond to
the space-time, color, and flavor degrees of free-
dom, respectively.
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The Yang-Mills tensor and the covariant deriva-
tive have the form

(3I)

where A is the Yang-Mills potential, m =0, 1.
't Hooft found that the Bethe-Salpeter equation

satisfied by the ladder diagrams for the quark-
antiquark scattering amplitude reduced to an
eigenvalue condition for the two-particle spec-
trum. The spectrum was found to be discrete only
and thus the theory does not contain states with two
free quarks.

VI. CONCLUSIONS AND PREMCTIONS

Let us summarize the results of our model. It
follows that (i) the Hamiltonian and the Lorentz
generators are built from the SU(3) matrices;
(ii) it has been shown that if a four-potential is in-
troduced into Eq. (2), the interaction terms which
arise are proportional to the hypercharge and iso-
topic spin operators; (iii) in the low-momentum
limit and in the axial momentum frame we get the
two-dimensional Dirac equation corresponding to
a fermion field; (iv) in the (P', P„O) frame there
are only boson states and in a general momentum
frame only meson qq states have physical meaning;
(v) the quark field g, has collinear symmetry;
(vi) solutions of the BS equation for the bond par-
ticle-antiparticle states contain spin-0 and spin-1
meson fields.

Results (i)-(iii) show that Eq. (2) describes
a fermion field [in the (p, 0, 0,p ) frame] having

SU(3) degrees of freedom that suggests a quark
field. One of the most important results is that
Eq. (14), the low-momentum limit (or axial mo-
mentum limit) of Eq. (2), is consistent with sev-
eral models of the quark field. The string mod-

els," the Gross-Neveu approach" (based on the
Dirac equation in two dimensions), the parton
model'~ successful in the region ~p'~/~p, ~

»1, and

the MIT bag model" (at high angular momenta) can

be considered to be of two-dimensional space-
time character. In the light-cone approach the
frame p, =0 was found to be of great importance
and collinear symmetry of the quark field was es-
tablished. Also @CD suggests a tubelike charac-
ter of quark fields. " Our theory predicts quasi-
two-dimensional behavior of the quark field at low
momentum and demonstrates the collinearity of
quark fields [point (v)]. Point (vi) provides an im-
portant argument. It shows that particle-anti-
particle states correspond to meson fields and
hence P, can be interpreted as a meson component.
Furthermore, it follows that only qq states, me-
sons, have physical meaning in all momentum
frames.

The picture emerging from points (iii) and (vi)
supports the quark-parton model of hadrons" " in

which the fermion partons (valence quarks) are
submerged in the cloud of boson partons (quark-
antiquark pairs) and gluons. It follows from our
theory that fermion partons correspond to the p
= (p', 0, 0,p') frames while the boson partons cor-
respond to the p=—(p', p„0) frames of reference.
Therefore, the boson partons, obeying the Fesh-
bach-Villars equation in our theory, can be identi-
fied with so-cal. led wee partons "4' for which the
~atio

~

p'
~ / ~ p, I is small.

It is interesting that the theory yields some new

phenomenological predictions. First, the present
approach shows directly that quarks at low mo-
mentum or p, =0 obey the two-dimensional Dirac
equation (8). Second, the wee partons are shown to
obey the Feshbach-Viilars equation [p —= (p', p, 0)].
Third, it follows from Eq. (2) that quark fields are
QPT and P, invariant only. However, quarks are
detected in experimental conditions corresponding
to p —= (p', 0, 0, p') frames and obey approximately
the Dirac equation so that the C or CP violation
should be small.
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