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Simplified solution of the Dirac equation with a Coulomb potential
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It is shown that the Dirac equation with a Coulomb potential has a simplified solution
where each component contains one term of a confluent hypergeometric function only in-
stead of two terms. This solution reduces to the usual free-field solution when the
Coulomb potential is turned off. Thus the Dirac Coulomb equation has a solution which
is not very different from the corresponding Schrodinger or Klein-Gordon equations.

I. INTRODUCTION

The traditional Dirac equation with a Coulomb
potential is written as

(E —a.p —Pm —V)4=0,

peter. The radial solution can be expressed in
terms of two functions g(r) and f(r), where each
function is a sum of two confluent hypergeometric
functions.

Martin and Glauber introduced an operator
suggested by Lippmann and Johnson5

where a&, a2, a3, and P are the usual matrices,
obeying

2 2 2 2at ——a2 ——a3 ——P =1, (1.2)

KP —iZe —a, ,

where

K=P(t7 L+1)

(1.7)

a~aq+u2a& ——ata3+a3a& ——a2a3+a3a2 ——0, (1 3) a„=a.r/r .
The eigenvalue of W is

(1.9)

~tP+13~i =~2P+Po2=~313+@~3=0, (1.4) r=+ I) I
=+[»'—(Z")'

where

(1.10)

V= Ze /r . —
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'I

0 0 0 —i
0 0
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0 0 i 0 0 0

One of the representations for u and P is

(1.5}
n2 (J' + )2 (1.11)

However, they treated the solutions to the first-
order Dirac equation as linear combinations of
eigenfunctions of W. Thus their solution to the
first-order Dirac equation still contained sums of
confluent hypergeometric functions.

Biedenharn found a transformation S which di-
agonalizes W. Explicitly,

(1.6) S=exp[ —, pro rtanh —'(Z'e /K)] (1..12)
0 0 1 0
0 0 0 —1

1 0 0 0
0 —1 0 0

1 0 0 0
0 1 0 0

~=OO —1 O

0 0 0 —1

The solution to Eq. (1.1}in spherical coordinates
was obtained by Darwin' and Gordon, and a de-

tailed derivation can be found in Bethe and Sal-

such that

sign(y) =sign(tc)

Biedenharn obtained a solution to the Dirac

(1.14)

SWS '= —p3K
~
[1—(Ze /K) ]'

~

. (1.13)

Thus in this representation W can be considered to
have sharp eigenvalues. Choosing the convention

3396 1982 The American Physical Society



SIMPLIFIED SOLUTION OF THE DIRAC EQUATION WITH A. . . 3397

(E ap+—Pm —V)4 =0 . (1.15)

Second, Biedenharn did not discuss the bound-state
case. We shall show that the bound-state case can
be treated in the same way as the continuum.
Thus we shall show in this paper the following re-
sults.

1. The Dirac Coulomb equation has a simple
solution where each component contains one term
of a confluent hypergeometric function only.

2. The solution is valid for both the bound state
and the continuum. Moreover, they reduce to the
traditional plane-wave solution when the potential
is turned off.

3. Our solution is obtained if one writes the
Dirac Coulomb equation in the form of Eq. (1.15).

One obvious conclusion from our result is that
the Dirac Coulomb equation has basically the same

type of solution as the corresponding Schrodinger
and Klein-Gordon equations. Therefore the Dirac
equation is really not too difficult to deal with, and
should be used more often, because it is, after all,
more accurate.

In a subsequent paper we shall apply our solu-
tion to the Coulomb scattering of fast electrons.

II. TRADITIONAL DIRAC EQUATION
%'ITH A COULOMB POTENTIAL

The traditional Dirac equation for a free field is

(E ap —Pm )'P=O —. (2.1)

We use units such that Pi=1, c =1.
If one includes a Coulomb potential

V= —Ze /r, then one obtains the traditional Dirac
Coulomb equation

(E ap —fjm —V)%'=—0 . (2.2)

Using the matrices for a and P given in Eq. (1.6),

Coulomb equation for the continuum. His solution
is simpler than the previous ones in that each com-
ponent contains only one term of a confluent hy-
pergeometric function, and agrees with the usual
plane-wave solution when the Coulomb potential is
turned off'.

We wish to make two modifications on Bieden-
harn's work. First one notices that Biedenharn's
Dirac equation differs from the traditional Dirac
equation (1.1) in the sign of E We. shall keep the
sign of E the same as in Eq. (1.1), but we shall

change the sign of m. That is, we shall start with
the equation

one obtains from (2.2) four partial differential
equations in agreement with Bethe and Salpeter
(Ref. 3, Eq. 14.2). The solution to these equations,
originally obtained by Darwin' and Gordon, can
be found in Ref. 3. One notes that the solution is
complicated, and that each component contains the
sum of two confluent hypergeometric functions.

It is the purpose of this paper to show that the
solution to the Dirac Coulomb equation can be
written in a simplified form, where each com-
ponent contains one term of a confluent hyper-
geometric function only. Thus the solution is very
similar to the corresponding solution of the
Schrodinger or Klein-Gordon equation.

An improvement over the traditional solution
was made by Biedenharn for the continuum case.
Biedenharn starts with the equation

[p2o" V +pi(E/Ac —aZ/r)+mc/A']4=-0 . (2.3)

(E —a.p+Pm —V)4=0 . (2.4)

2. Biedenharn did not discuss the case of the
bound state. We shall show that the solution for
the bound state is just as simple as the solution for
the continuum. Moreover, they both agree with
the traditional solution of the free field when the

It can be seen that (2.3) differs from (2.2) in the
sign of E.

The main contributions of Biedenharn's work
are the following. (1) He uses the "Lippmann-
Johnson" or "Martin-Glauber" operator W [Eq.
(1.7)] and finds a transformation S [Eq. (1.12)] that
diagonalizes W. (2) He obtains a recurrence rela-
tion for the confluent hypergeometric functions,
which are solutions to the second-order Dirac
Coulomb equation. Thus he was able to obtain a
solution to the Dirac Coulomb equation (2.3) where
each component contains one term of a confluent
hypergeometric function only. Moreover, he shows
that this solution easily goes over to the plane-
wave case when the Coulomb potential is turned
off.

In the next section we shall make some modifi-
cations on Biedenharn's work, and obtain some
simple and general results for the Dirac Coulomb
equation.

The new features of our work are as follows.
1. We shall start with a Dirac Coulomb equa-

tion which differs from the traditional equation
(1.1) in the sign of the mass term m. Our equation
differs from Biedenharn's equation in the sign of
both E and m. The equation we start with is
therefore
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potential is turned off. Finally, we find that the
solution of the Dirac Coulomb equation is very
similar to the solution of the corresponding
Schrodinger and Klein-Gordon equations.

In a subsequent paper we shall apply our results
to the Coulomb scattering of fast electrons, obtain-

ing results in agreement with McKinley and Fesh-
bach. '

sign of E or both a.p and pm. Thus we shall
start with the Dirac Coulomb equation

(E —a.p+ pm —V)ql =0, (3.1)

where a and p will still have the same properties
a»n (1.2), (1.3), and (1.4), and we shall use the
same representation for a and p as Eq. (1.6).

Equation (3.1) can also be written as

III. SIMPLIFIED SOLUTION
OF THE DIRAC COULOMB EQUATION

[p2o V p3(E—+Ze'lr) m]%—'=0,
where

PIPj Pj Pi Pk

(3.2)

(3.3)

First one notes that the sign of a.p and pm in

Eq. (1.1) is somewhat arbitrary. In fact,
Biedenharn's Eq. (2.3) is equivalent to changing the

The subscripts I,, j, k, are cyclic permutations of 1,
2 3

Now consider the second-order Dirac equation

0 0+4&=[p2cr V p3(E+Z—e Ir) m][p~—o"V p3(E+Z—e Ir)+m]4'=0 .

Equation (3.4) can be written as

(3.4)

1 8 p 8
r

r2 Br Br
K Z e 2Ze E P3K+iZe pl,o' r

+ + -+E2 m2 @—0
r r r

(3.5)

where e is sometimes written as

a =the fine-structure constant,

K =p3( o"L+ 1) .

(3.6)

(3.7)

1 O, a
P2 QP QP

W(M+1) w
2 4p

4

(3.13)

Equation (3.7) is the same as (1.8), since p3
——P.

Next define the Martin-Glauber operator W,

(p3K+iZ—e p, o"r) . (3.8)

Equation (3.13) is completely similar to the corre-
sponding radial wave function of the Schrodinger
equation (see, e.g., Ref. 7, Eq. 16.7)

Then (3.5) becomes 1a 2a
2 BP BP

1(l +1) A, 1+———8=0.
2

p
1 a, ar

r Br Br
W(&+1)

2 (3.14)

2Ze E +E'—m' e=O. (3.9)
r

Let us now discuss the solution for the bound
state, when m —E g 0. Introduce the transforma-
tion

(3.15)

a.=+(j+—,), (3.16)

The eigenvalues of K and W can be found as
follows:

K =(o"L+1) =(L+ , o) + —,=—J+ —, ,
2 ~ 2 ~ ~ 2 ~ 2

p=2pr =2(m E)'~ r, —

(
2 E2)1/2

w/4=Ze El@ .

Equation (3.9) becomes

(3.10)

(3.11)

(3.12)

where x is the eigenvalue of K.
The eigenvalue of W is denoted by y:

~2 K2 (Z 2)2 ( +')2 (Z 2)2

) =+[(J+ , )' (Z")']'-" .—
(3.17)

(3.18)
Since ~ can take both positive and negative values,
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we shall define co to be the sign of a".

co=sign(a) . (3.19)

Similarly we shall define y to be the sign of y:

y=sign(y} .

Next we introduce A,(y) such that

x(y)= iyi+-, (y—».
Then the solution of (3.13) is

(3.21)

C&i( )(p)=Ci( )px'r'e i'~ iFi( ——,w+A(y)+1, 2A(y)+2, p),
where

[I ( —,w+&(y)+1)&( —,w —~(y)+1)1
I (2A(y)+2)

For the confluent hypergeometric function to terminate, we must have

4 w =A, +1+n',
where

n'=non-negative integer =0, 1,2, ... .

From Eqs. (3.24), (3.12), and (3.11) we obtain the eigenvalue of E:

Ze E
(m E)—,„,=

I y I
+ , y+ -, +'-.

or

(3.22}

(3.23)

(3.24)

(3.25)

(3.26)

[1+(Ze')'I(
~ y ~

+ , y+ , +n')'—]' '—

(1+(Ze')'/[[(j+ , )' Z—'e'—]' '+ , y+ ,—+n']—')''

(3.27)

(3.28)

Equation (3.28) agrees with the usual energy spec-
trum of the Dirac Coulomb equation.

In order to obtain an explicit solution to the
first-order Dirac Coulomb equation (3.1), we shall
choose a special representation in which the opera-
tors p3, E, and W have sharp eigenvalues. We
shall choose the eigenvalues as follows:

(3.29)

(3.30)

(3.33)

and have the following solution:

(8,& )Xig2

or, equivalently,

(3.34)

Then the spinors P"„obeythe eigenvalue problem

(~.L+1)X~= ~X"„

y=y[(J+ , }' (Ze—')'1—'", (3.31)

(3.32)

1

2

We would like to point out that Eq. (3.32) is not
just a convention, but a necessary consequence of
Eq. (3.29). The justification lies in the fact that
when the Coulomb potential is turned off (or when

Z =0), W= p3E. Therefore y must be—equal to
co, when p3 ———1.

where

(3.35)

(3.36)

Note that either (3.34) or (3.35) includes both
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cases for co=+1. In other words, Eq. (3.35) is
equivalent to Eq. (3.34) and each of them includes
two equations.

Under the operation o.r, we have

(3.37)

Since we have chosen the eigenvalue of p3 to be
—1, we can write the solution to (3.13) as

% =SO+S-'4

where 0+ is defined in Eq. (3.4). We find

(3.39)

1 —yp3 Eze'
SO+S ' =p2o'r — + +p3Br r y

as given in Eq. (1.12). Thus the solution to the
first-order Dirac Coulomb equation (3.1) or (3.2) is

0
(3.38)

EK—p3 +m .
y

(3.40)

We have mentioned before that W is diagonal-
ized by the transformation S, found by Biedenharn

I

Explicitly in p space the operator SO+S ' be-

comes

SO+S
—+i o'r +

Br
1 —y EZe 2

+

1+y EZe—i o'r +
Br r

(3.41)

' 2 1/2

(3.42)

Next we use the recurrence relation between 4~t &) and 4~~ &). This recurrence relation is a mathematical

identity and is found to be
e

2 1/2
d 1+y Eze Eze . 2 KE+ — ~'u. y) =O'V —1 4g( y) =lf m X( —y) .
dr r p pf

V=N(y)

K
m —E—

y

K
co m+E—

y

@A,( —rg —a

' 1/2

@A,(rgb

(3.43)

where N(y) is a normalization constant whose
value will be given in Eq. (3.45).

It is remarkable that the canonical transforma-
tion S, together with the recurrence relation (3.42),

Equation (3.42) contains actually two equations,
for +y.

Then applying (3.41) to (3.38), and using (3.42),
we obtain the decoupled solution to the first-order
Dirac Coulomb equation as follows:

' 1/2

which is purely a mathematical identity, should

give rise to the solution of the first-order Dirac
Coulomb equation in the form of Eq. (3.43) which
is so simple, symmetric, and may we add, elegant.

Let us add here that so far we have chosen to
project out the p3 ———1 part, thereby making y=co.
Equation (3.43) then states that the lower com-
ponent is the "large" component. If we have
chosen the eigenvalue of p3 to be +1, then we have
to choose y= —co. Equation (3.43) would still be
valid, but the upper component will then be the
"large" component.

It remains to find the normalization constant
N(y) This can be .done as follows. The spinor
functions X"„arealready normalized. From (3.43)
we obtain

N(y) J m —E—4&[ z) + m+E—4~~ ) r dr=
K 2 K

y y
(3.44)

' 1/2

N(y) = [(n —y)!(n —y —1)!] ' [(n y)(n —y+1)—(m coEaly)+(m+coE—~ly)] ', (3.45)
n
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where ' 1/2

n =ur/4 . (3.46)

The solution of the Dirac Coulomb equation for
the continuum is similar to that of the bound state.
Here we have

V=X(y)
@A,(rg»

(3.54)

E —m &0.2 2

Let us define

k'=(E —m )'

Then

w/4=Ze E/ik'= iZe E/—k'.

(3.47)

(3.48)

(3.49)

where X(y) is a normalization constant.
We shall now show that our solution (3.54) goes

directly over to the plane-wave solution by turning
off the Coulomb potential, i.e., by putting Z =0.
Then (3.50) becomes

@~, , =~(k'r) e,-' "F,(A, +1,2A, +2,2ik'r)

~ P()i+ )r
—t/22k. + /2g (k r)

fhe solution to the second-order equation (3.13)
becomes

@~(ri=c&(r)(k ")g(y) k I]

)& F(A( y) +I iri, 2A—(y)+2, 2ik'r),

=N"j~( )(k'r),

where j ~~ i(k'r ) is a spherical Bessei function.
If one defines

p= eigenvalue of p3

(3.55)

(3.56)

where

cq=2 e v/ I (A+I+ir))
i
/I (2k+2),

ir)=w/4= iZe E/k—' .

(3.50)

(3.51)

(3.52)

one obtains the plane-wave solution of the Dirac
equation from (3.54),

r

(m pE)' jt—„i ri(k'r)P"
„

V=X(y)
co(m+pE)' j (k'r)X"

d 1+y EZe
dr T

1/2
Z2e4E2= —k co 1+ k' C'~(- )y

' 2 1/2
2= —l N tel @g( r) . (3.53)

Finally the solution to the first-order Dirac
Coulomb equation in the continuum is

The recurrence relation (3.41) can now be writ-

ten as

Equation (3.57) agrees with the traditional solu-

tion of the Dirac equation for the plane wave.
Thus we have reached the following conclusions.
1. The Dirac Coulomb equation for both the

bound state and the continuum can be solved sim-

ply in the form of Eqs. (3.43) and (3.54), respec-
tively.

2. This solution is very similar to the corre-
sponding solutions of the Schrodinger and Klein-
Gordon equations.

3. The plane-wave solution of the Dirac equa-
tion can be obtained from the Dirac Coulomb
equation as a limiting case, when Z =0, i.e., when

the potential is switched off.
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