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Absence of N = oo phase transition in (d = 1+1)Hamiltonian lattice gauge theory

D. G. Caldi~
Max Plan-ck Inst-itut fiir Physik und Astrophysik, Munich, Federal Republic of Germany

(Received 28 October 1981)

The Hamiltonian formulation of two-dimensional U(N) lattice gauge theory is shown to
have no nonanalytic behavior even in the N = 00 limit, in contrast to the Lagrangian for-
mulation with Wilson s action and to the (d =2+1) Hamiltonian.

I. INTRODUCTION

In order to implement the program of lattice
gauge theory it is neccessary to investigate the crit-
ical behavior of the lattice theory, since phase tran-
sitions will determine the continuum-limit theory.
One of the usual assumptions is that, while there
exist many different ways to put a theory on the
lattice, as long as these are in the same universality
class, i.e., share the same symmetries, they should
exhibit similar or (in the strongest statement of
universality) identical critical behavior. This is,
from a particle physicist s viewpoint, mostly just a
version of the common belief that the particular
way one regularizes a theory should not affect the
physics.

A lattice field theory, and in particular a lattice
gauge theory, can be formulated by either of two
generally used methods (though others also
exist)—the Lagrangian formulation of Wilson' and
the time-continuum Hamiltonian approach
developed by Kogut and Susskind. Both methods
have their advantages and particular areas of ap-
propriateness. There also exists a well-known pro-
cedure to go from one formulation to the other,
namely, the transfer matrix. Much work has been
done showing that where the type of question is
such that both formulations can give an answer,
the answers in general agree. What we shall show,
however, is that in the case of two-dimensional lat-
tice gauge theory the results are not always the
same.

II. LAGRANGIAN FORMULATION
WITH WILSON'S ACTION

clidean approach, and specifically using Wilson's
action. For the reasons outlined above, we want to
see what happens in the continuous-time Hamil-
tonian formulation of this model. Partly to estab-
lish notation, we begin with a brief review of the
results from the Wilson symmetric space-time for-
mulation.

The partition function of two-dimensional U(N)
lattice gauge theory is defined by

Z= DU exp Sg U (1)

where DU is the Haar measure invariant on the
group U(N), and Wilson's action Ss (U) is defined
to be

Sg(U)=g i Tr(Ut+Ut),
1

with Ut being the oriented product of the group
elements in the Pth plaquette and the sum is over
all plaquettes.

The model greatly simplifies due to gauge in-
variance, ' indeed the problem reduces to an integral
over a single unitary matrix, essentially one U(N)
spin at a point, somewhat erroneously called the
one-plaquette model. An easy way to see this is to
consider the Ao ——0 gauge, i.e., on all timelike links
U, = l. Then after a change of variables one finds

d~n exp 2
Tl Wn+ ~n

1

n n g

v/a2
9

where n labels the lattice sites, V is the volume of
the system, a is the lattic spacing so that V/a is
the number of plaquettes, and

%e are concerned with the discovery ' of a
phase transition in the N = ao limit of U(N) lattice
gauge theory, formulated in the symmetric Eu-

z= I [dS']exp Tr($'+8' )
1

g 2

In order to evaluate Eq. (4) one rewrites the in-

(4)
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tegral in terms of the N eigenvalues a; of W, de-

fined by W=TDTt where D~J. 5,——&e
i and T is

unitary. One obtains

& da;z=, f ff J (a;)exp g cosa;, (5)
Nf o .

)
2m. '

g

where J (ai) is the Jacobian coming from the
change of variables and can be written

a; —aJJ (a;)= ff 4 sin
l +J

The integral (5) can be expressed ' as a deter-
minant of modified Bessel functions and has been
evaluated numerically for finite N.

In the N~ 00 limit one can do things analytical-
ly ' and it was found that a phase transition oc-
curs at A,:gN= 2. —This phase transition is
characterized by having two different analytic
functions for various quantities of interest above
and below A, =2. The origin of the phase transition
was shown to be whether random, unitary matrices
or those close to O'=I dominate the integration.
Furthermore, following the somewhat misleading
Ehrenfest classification, Gross and Witten called
it a third-order phase transition since the derivative
of the specific heat is what shows the discontinui-
ty.

III. HAMILTONIAN FORMULATION

The standard method for obtaining the Hamil-
tonian of a lattice theory from the Lagrangian for-

t

+ H.c.—2I] (7)

where P=1/2g r, n=(no, ni) labels sites, v.

denotes the lattice spacing in the time direction,
and we have explicitly included a factor of twice
the identity matrix for normalization. One should
note that because we are in only two-dimensional
space-time, the usual spacelike coupling of four
spins in a plaquette is absent. This absence of an
interchain coupling is what reduces the model to
the trivial one-dimensional statistical mechanics
system of classical spin chains with nearest-
neighbor interactions. We shall see that it is just
this simplification which is responsible for the ab-
sence of a phase transition.

To construct the Hamiltonian is a standard exer-
cise, here even simpler than usual. We merely in-
dicate a few of the steps since it will be helpful to
refer to them later. The transfer matrix is ob-
tained from (7),

mulation is via the transfer matrix. ' ' We will

follow the usual approach' using the Ao ——0 gauge,
although the same result can be obtained using the
modified procedure suggested by Wadia. " The
sum over plaquettes in the action (2) simplifies to a
sum over links when we fix Ao ——0, and we then
distinguish between spacelike and timelike links:

S=Pg Tr[U„(n)U„'(n+r)+H c.—.2I]
n, x

Pa QTr[ U, (n)U, '(n+r)
n)~x no

(U'~ T
~
U) =exp —Pa QTr(Ui ''Ui+H. c —2I).

I

with
~

U ) =Ri
i U) and Ri a unitary rotation operator on the 1th link (here only in the x direction). When

lSJh ~

we parametrize the group elements in the standard form U=e J ', with AJ the group generators, R =e
where L&~ are conjugate momenta to sJ and differential operators in the group parameters. For the transfer
matrix T one obtains

T= ff . f fI dsj J(s)e 'exp[Pa2 Tr(cosA. s —I)] . ,
I J

where J(s) is the Jacobian for the change to the sj
variables. When we take the v.-continuum limit,
v~0, then P—+ 00 and Pr remains fixed at 1/2g .
In this limit the integral is dominated by sJ small
and slowly varying so that we expand the cosine to
lowest order,

I

Now the Gaussian integrations give

T=exp( rH}—
with

H= g QLi'=—
2Q I 2Q 2

(12)

2Tr(cosA s I}=—s +O(s ) . — (10) and Li2 is the quadratic Casimir operator for the
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N

, (J ), (13)

group, which is also minus the group Laplace-
Beltrami operator 6, and can also be expressed as
the "electric field" squared. Equation (12) is of
course the (1+1)-dimensional version of the
Kogut-Susskind Hamiltonian, and could also have
been easily derived starting directly from there.
However, since we are interested in studying possi-
ble differences between formulations, it is impor-
tant to see that the Hamiltonian is in fact derivable
from the Lagrangian formulation.

What strikes one immediately about the Hamil-
tonian (12) is its simphcity. Restricting to the
gauge-invariant sector, it is after all nothing but
the Laplacian over the group which in the space of
class functions can be written, up to a constant, in
terms of the eigenvalues of the group as introduced
above,

is totally antisymmetric and represents a separable
many-fermion problem. In fact we have a nonin-

teracting Fermi gas where each "particle, " and this
is the crucial point, is free. This is in contrast to
the case studied by Wadia" where the noninteract-

ing fermions were each in a central potential since
there the single-particle Hamiltonian was

Hg =—2g +——(1—cosa) .2 2

Ba g

Therefore in that case there was a Fermi level

which could be greater or less than the potentia1
barrier, and this is precisely what gave rise to hav-

ing two distinct analytic functions in the N = ao

limit and so a phase transition. In our case there
is no potential, hence the system is always in the
strong-coupling phase and there is no phase transi-
tion. The ground-state energy E0 is given exactly
for all N by

with J as defined in Eq. (6). Hence the eigenvalue
problem for the Hamiltonian (12) is simply (setting
a =1) so

N/2
N2g g pp2—N/2

g2 1 N g2
Hq = —g ——,(PP)=E%,

) Ba;
(14) gN

0 24
(20)

or, using 4=J%,
2 N g2

,e=Ee.

This is, of course, a separable problem, with

(16)

a; —aj
40(a i, . . . , aN ) = Q 2 sin

i&j

)&ql (a,, . . . , aN), (17)

g
2 Q2

P(a) =eP(a),
a

and (16) is trivially exactly soluble with plane
waves. Thus there is certainly no phase transition
for finite N

We now want to consider what happens as
N~ ao. It certaintly looks like it would be ex-
tremely improbable for anything of a nonanalytic
nature to occur even when X= Oo with such a sim-
ple Hamiltonian as (15). Indeed there is no phase
transition, and out of the no doubt many ways to
see this, we feel it is instructive to focus on a com-
parison with the (2+ 1)-dimensional one-plaquette
Hamiltonian model analyzed by Wadia" following
the method of Brezin et al. '

In the ground state the wave function %'0 is a
symmetric function of the coordinates a;, so that
the scaled wave function

If one prefers, one can of course consider this
value for Eo [Eq. (20)] as the constant mentioned
in connection with Eq. (13) and use it to shift Ee
to zero.

IV. CONCLUDING REMARKS

We have seen that the same model defined on
the one hand by Wilson's Lagrangian method and
using his form of the action shows a so-called
third-order phase transition in the N = ao limit in
two space dimensions, while on the other hand the
model as formulated in the Kogut-Susskind Hamil-
tonian framework in one-latticized-space —one-
continuous-tine dimension shows no such phase
transition. At first this may seem alarming since,
as noted above, we expect the same physics regard-
less of regularization. However, is this phase tran-
sition physics~ We remind the reader that the
N = ao phase transition, as shown by Gross and
Witten, is not associated with a zero in the P
function nor, therefore, with an infinite correlation
length. The usual arguments about universality
(which anyway sometimes appears to be violated in
two dimensions ) are not so easily extended to this
situation. So perhaps one should not worry too
inuch about this discrepancy from the point of
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view of universality, although it is still somewhat
disturbing. Nevertheless, it does imply that this
N = oo phase transition is only an artifact of the
particular lattice method used. Furthermore, one
may make the argument that since the Hamiltoni-
an version is already halfway to the full continuum
limit and moreover is in some sense closer to the
quantum mechanics of the ground state, the
features it shows about a theory are perhaps more
to be trusted.

It is also relevant to note that, since our work
was completed, a couple of relattxl articles'3'~ have
come to our attention showing that even within the
context of Wilson's Lagrangian formulation, if one
uses a different form for the action than his, name-

ly Manton's action' or a generalized Villain action
based on the "heat kernel, "' there is also no
N = Oo phase transition. [The authors of Ref. 14
are also aware that the (1+1)-dimensional Hamil-
tonian is singularity free.) These results are not
surprising in light of our investigation since both
these forms of the action are closely related to the
Hamiltonian formulation in the following sense.
In deriving the Hamiltonian from the transfer ma-

trix, we saw that one expands the cosine term of
Wilson's action and keeps only the quadratic term
(10). It is this procedure that essentially avoids the
interactions which give rise to the nonanalytic
behavior seen using Wilson s action. This, howev-

er, is not an approximation as far as the Hamil-

tonian is concerned since throwing away these
terms is dictated by the r-continuum limit. In the
case of Manton's or the generalized Villain action
there are no terms to neglect, for if one writes the
action in terms of the eigenvalues a; as in (5), then

instead of the cosa; of Wilson's action, Manton's

action has only a; and the generalized Villain ac-
tion has (a;+2m n; ) . So both are already the
Gaussian "approximation" of the Wilson action.
But, to be sure, they are no more actual approxi-
mations than the Hamiltonian is. All are perfectly
acceptable' ways to put the theory on a lattice and
all have the same naive continuum limit. There is
no particular reason to prefer the Wilson action
over the other actions or over the Hamiltonian.
Indeed, as we (above) and various others including
the authors of Refs. 13 and 14 have discussed,
there exist some reasons for tending to favor the
non-Wilson-type formulations. In this regard it is
worth noting that continuum QCDz has no N = ac

phase transition. ' Thus it gives one ground for
caution in accepting the conjecture that this
X= 00 phase transition found in one version of
two-dimensional lattice gauge theory but not in
any of the others so far considered, including the
Hamiltonian, has something to do with the abrupt
change seen in, for example, the string tension in
four-dimensional SU(2) or SU(3) lattice gauge
theory. Nevertheless, as discussed elsewhere, the
situation once one leaves the simplicity of the
two-dimensional one-plaquette world becomes
much less clear and there is evidence on both sides.
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