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This paper develops variational methods for calculating the ground-state and excited-
state spectrum of Hamiltonian lattice gauge theories defined in the Ao ——0 gauge. The
scheme introduced in this paper has the advantage of allowing one to convert more famil-

iar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approxi-
mations, which are by their very nature gauge-noninvariant methods, into fully gauge-
invariant techniques. We show that these methods apply in the same way to both Abeli-

an and non-Abelian theories, and that they are at least powerful enough to describe
correctly the physics of periodic quantum electrodynamics (PQED) in 2 + l and 3 + l

space-time dimensions. This paper formulates the problem for both Abelian and non-

Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of comput-

ing the partition function of a classical spin system. We discuss the evaluation of the ef-
fective spin problem which one derives for PQED and then discuss ways of carrying out

the evaluation of the partition function for the system equivalent to a non-Abelian theory.
The explicit form of the effective partition function for the non-Abelian theory is derived,

but because the evaluation of this function is considerably more complicated than the one
derived in the Abelian theory no explicit evaluation of this function is presented. Howev-

er, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of
the pure SU(2) gauge theory, we are able to show that extremely interesting differences

emerge between these theories even at this simple level. We close with a discussion of
fermions and a discussion of how one can extend these ideas to allow the computation of
the glueball and hadron spectrum.

I. INTRODUCTION

Quantum chromodynamics may well be the only
satisfactory candidate we have for a theory of the
strong interactions; nevertheless, no satisfactory
treatment of the most basic aspects of the theory,
e.g., confinement, the glueball spectrum, the had-
ron spectrum, etc., has been given to date. At-
tempts to analyze the theory from the point of
view of continuum perturbation theory, even in-

cluding instanton effects, fail to clarify the physics
of confinement. Lattice calculations, which make
the physics of confinement clear at strong cou-

pling, founder when one attempts to extract the
physics of the weak-coupling regime. ' Nonpertur-
bative methods, such as real-space renormal-
ization-group techniques, have not been able to
deal successfully with the requirement that succes-
sive truncation steps must keep one within the set
of gauge-invariant states. In this paper we present

a formalism for carrying out gauge-invariant varia-
tional calculations for the ground state of any lat-
tice gauge theory defined in the Ao ——0 gauge,
which holds out the promise of improving upon
this situation. The virtues of this formalism are as
follows:

1. It provides a general way of converting any
variational scheme to a gauge-invariant one
without losing the ability to compute.

2. It shares with perturbation theory the virtue
of being directly applicable to the weak-coupling
regime (this is the regime of physical interest if
one wants to make a correspondence to the contin-
uum).

3. It can be demonstrated, at least for the case
of Z(2) gauge theories and periodic lattice quan-
tum electrodynamics (PQED), that application of
this method to improve either the mean-field or
Hartree-Pock analysis of these models allows one
to obtain new and better results which cannot be
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obtained using these methods alone.
4. The method is readily generalized from the

case of Abelian theories to that of non-Abelian .

theories.
5. The method in principle provides a way of

carrying out a nonperturbative computation for the
glueball spectrum in a pure gauge theory, and the
hadron spectrum in the case of theories with fer-
mions.

6. It is possible that the method can be extended
to provide implementable nonperturbative compu-
tational schemes for continuum gauge theories.

%e begin by presenting a general formalism for
dealing with gauge theories based upon continuous

gauge groups. %e will then show how to combine
this formalism with a variational technique, such
as the Hartrce-Fock approximation, to obtain re-
sults which are not obtainable from the variational
method alone. To demonstrate how this works we
discuss the physics of PQED in 2+1 and 3+ 1

dimensions and show how one establishes that
PQED in 2+1 dimensions exhibits confinement
for all nonzero values of the coupling constant.
We conclude with a discussion of the extension of
the method to non-Abelian gauge theories. A
description of the way in which this material is di-
vided among the different sections of this paper
follows.

In order to orient the reader unfamiliar with lat-
tice gauge theories Sec. II begins with a discussion
of the general problem and then explains the idea
behind our gauge-invariant variational scheme. In
Sec. III we turn to a discussion of the physics of
lattice PQED. Here we establish notation, discuss
the way in which one implements our technique
within the context of a general Hartree-Fock varia-
tional scheme, and explain how one goes about ar-

guing whether the theory confines or does not con-
fine. The main result of this section is the reduc-
tion of the problem of computing a variational es-

timate of the ground-state energy to the computa-
tion of the partition function for a d-dimensional
statistical-mechanical system. Section IV is less
general and specifically addresses the question of
how one carries out the evaluation of such parti-
tion functions. There are two reasons for includ-

ing this discussion. First, and most important, we
wish to compare the results of the general
Hartree-Pock analysis with those obtained from
the simpler mean-field approach. This cornparisor
will show that the mean-field analysis can be sys-

. tematically improved to allow a straightforward
computation of the string tension. Although this

technique of analysis is not really required for
dealing with the Abelian theory, it holds out the
promise of simplifying calculations for the non-
Abelian system considerably. Second, from the
pedagogical point of view, we wish to show that
this sort of problem is, to a large degree, amenable
to analytic methods of analysis. The arguments
presented in this section make use of results estab-
lished in earlier work by Drell et al. and so the
discussion will not be self-contained; however, the
simple example of the physics of a single plaquette
will be explained in detail. Since this example con-
tains most of the features of the more complicated
problem, knowledge of the previous work will not
be required in order to understand the bulk of the
discussion. Section V explains the extension of
this method to the case of non-Abelian gauge
theories. The Hamiltonian formulation of the
theory is presented in detail and then the generali-
zation of the mean-field and Hartree-Pock approxi-
mations to the specific case of an SU(2) gauge
theory are explained. The correspondence between
the discussion of the Abelian and non-Abelian
theories is made explicit, and the formalism for
carrying out a computation of the string tension
for a non-Abelian theory is set forth. In the con-
cluding section of the paper we summarize the re-
sults obtained to date and discuss the directions in
which this idea can be developed.

II. THE PROBLEM OF GAUGE-INVARIANT

STATES

The rules for formulating locally gauge-invariant
Hamiltonian theories in d +1 dimensions are
chosen to coincide with those which one would ob-
tain by transcribing a continuum Abelian gauge
theory canonically quantized in the Ao ——0 gauge to
a lattice. Such a theory has gauge generators,
6( i ), associated with every site "i" of the d-
dimensional spatial lattice. These generators com-
mute with the Hamiltonian H and, by assumption,
with all physical observables. Their existence re-
flects the fact that setting Ao ——0 restricts the de-
grees of freedom sufficiently to make canonical
quantization possible, but the theory remains in-
variant with respect to arbitrary time-independent
gauge transformations.

Since all gauge transformations commute with
both the Hamiltonian and all physical observables,
the Hilbert space of the theory divides into an in-
finite of number noncommunicating sectors, de-
fined by the condition that the states of any one
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sector span an irreducible representation of the
gauge group. The fact that these sectors do not
get mapped into one another by any physical ob-
servable is what is meant by the statement that
gauge invariance is a superselection rule. To
understand the meaning of the different sectors for
the case of the Abelian theory one notes that quan-
tizing the theory in the Ao ——0 gauge yields all but
one of the Maxwell equations as Heisenberg equa-
tins of motion. The missing equation relating the
divergence of the electric field, V .E( i ), to the
matter charge density p( i ) is not a Heisenberg
equation of motion, and in fact does not hold for
all states in the Hilbert space. It is true, however,
that the operator 6 ( i )= V E( i ) —p( i ) com-
mutes with the Hamiltonian. The 6( i )'s are
nothing but the generators of local time-inde-
pendent gauge transformations and thus they and
the Hamiltonian can be simultaneously diagonal-
ized. The presence of nonzero eigenvalues for a
6 ( i ) measures the existence of a classical back-
ground charge distribution. Thus, the usual quant-
ization of QED in this gauge requires that we re-
strict attention to the sector of gauge-invariant
states, i.e., those states annihilated by the genera-
tors 6( i ). For the Yang-Mills theory, as for the
Abelian theory, it is the sector of gauge-invariant
states for which the source-free Yang-Mills equa-
tions hold.

The necessity of searching for the vacuum of the
theory in the sector of gauge-invariant states great-
ly complicates the task of discussing the weak-
coupling limit of a gauge theory. In the g~O lim-
it the usual perturbative expansion is in terms of
free fields, and eigenstates of the free-field Hamil-
tonian are not gauge invariant; hence keeping track
of effects due to gauge invariance is at best
cumbersome. There is a way to modify any per-
turbative or variational scheme so as to enable us
to calculate with gauge-invariant states alone;
namely, one need only multiply any approximation
to the ground state of the theory by the operator
which projects it onto its locally gauge-invariant
part. In general, an arbitrary state will have a
nonvanishing projection onto a gauge-invariant
state. Furthermore, as one varies over parameters
defining the state, its projection will vary over
some submanifold of the family of gauge-invariant
states. Hence, one need not restrict attention to
gauge-invariant trial wave functions, if one extrem-
izes the ratio

(2.1)

instead of (f
~

H
~
P), where P is the projection

operator onto the sector of gauge-invariant states
and we have used the fact that PHP =HP and
p2 p

Precisely this technique was applied by Boyanov-
sky et al. to the mean-field analysis of Z(2) gauge
theories in 2+1 and 3+1 dimensions. These
authors showed that whereas mean-field theory in-
correctly predicts that Z(2) theory exhibits a first-
order transition in both 2+1 and 3+1 dimen-
sions, the gauge-invariant mean-field calculation
correctly predicts a second-order transition for the
theory in 2+1 dimensions and a first-order transi-
tion in 3+ 1 dimensions. Modifying the variation-
al calculation to include restriction to gauge-
invariant states produces a qualitative improve-
ment in the results obtained even by mean-field
theory.

In the remaining sections of this paper we will
show that this same method readily generalizes to
the case of gauge theories based upon continuous

symmetry groups, and that one can develop a com-
putational scheme for carrying out variational cal-
culations based upon a much more general class of
trial wave functions than that provided by mean-
field theory. The idea of projecting a state onto its
gauge-invariant part is an obvious one; what is
surprising is that for a wide class of variational
wave functions it leads to computations which can
be carried out.

III. PQED: GENERAL FORMALISM

A. Notation

Formulations of lattice gauge theories distin-
guish between gauge fields and matter fields in
that gauge fields are associated with links of the
lattice and matter fields with vertices. The Hamil-
tonian consists of two sorts of terms: the first, pro-
portional to a sum over links of the squares of
gauge generators, and the second, a sum over pla-
quettes of exponentials in the "magnetic field"
variables. Before beginning our discussion of the
specific case of PQED we must establish a general
notation for labeling of vertices, links, and pla-
quettes, and variables associated with these funda-
mental objects.

In general we will be discussing Hamiltonian lat-
tice gauge theories in d + 1 dimensions, where
d =2 or 3. Vertices of the lattice will be labeled
by d-tuples of integers, i =(ii, . . ,id) Since ea.ch.
link joins two adjacent points we will label any link
W by an integer a = 1,. . .,d and a lattice point i,
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e.g., W=( i,a). This notation means that W is

the link joining the points i and i +n, where n~
stands for the unit vector associated with the d-
tuple of integers which has a 1 in the ath place
and zeros everywhere else. A variable associated
with a link will be denoted as 8( i,a) or 8~, when-

ever no confusion can arise.
In order to label variables associated with pla-

quettes we must adopt a convention for naming
such objects. Since plaquette terms in the Hamil-
tonian involve forming ordered products of vari-
ables associated with the links bounding a pla-
quette, one also needs to specify an orientation for
each plaquette. One way to denote a plaquette, to-
gether with its orientation, is the by symbol

=( i,a,p), where this symbol means the pla-
quette obtained by traversing the links W' =( i,a),
W:—( i +n, p), W =—( i +n&,a), and W—:( i,p),
in the order in which they are given. For the case
d =2 there is only one positively oriented plaquette
associated with each point i, and so we can simpli-
fy our notation and denote every plaquette ( i,a,p)
by the symbol CI( i ) or just when no confusion
can arise. In the case d =3, there are three posi-
tively oriented plaquettes associated with each
point i . To simplify notation we will adopt the
usual right-hand rule and subscript each plaquette
so that each component of the vector ( i ) stands
for the plaquette whose normal points in the direc-
tion of the unit vector n .

B. General formulation of the problem

Periodic (or compact) @ED (i.e., PQED) (Ref. 4)
is a U(1) lattice gauge theory defined by the Ham-
iltonian

I= gE~ + g [I—cos(8~)], (3.1)

where E~ is the electric field operator for link W
and 8 ( C]) is the magnetic field operator associated
with the plaquette O. An explicit realization of
these operators is given by defining the Hilbert
space of the theory to be the set of periodic
square-integrable functions of angle variables P~,
where we assume there is one angle variable P~ as-
sociated with each link of the lattice. The opera-
tors E~ and Bp are defined as

where (VX /)~ stands for the lattice curl of the
variables P~ associated with the plaquette Cl, eg.,

(VXP)o=4' +4'~ (3.4)

the lattice divergence of the link operators being
defined in the usual way,

V.E( i )= g E~ — g E~, (3.6)

where W+ stands for the set of links
W+ =

I ( i,a) I and W stands for the set of links
=

I ( i —na, a) I.
A general state in the Hilbert space of this sys-

tem can be expanded in terms of the eigenstates of
the electric field operators as follows:

~

4)=g exp igm~P~ „1fj(.. .,m~, . . . )

where the variables m~ are integers associated
with the link W.

(3.7)

C. A simple class of variational wave functions

For simplicity we focus on a family of variation-
al wave functions which allow us to carry out all
computations analytically. This permits us to es-
tablish contact with earlier work on the subject of
Hamiltonian PQED (Ref. 3) and to discuss the
physics of confinement in a way which readily
generalizes the non-Abelian theories. The class of
wave functions we will consider is the set of
periodic Gaussians in the link variables P~. The
most general wave function of this class has the
form

1~ql)=g exp ig m((~ I m~
J 2

(3.8)

where we have defined I (m~) to be the general-
ized Gaussian function of the link variables,

1(m~}=exp —gm~b(W, W'}m~ . (3.9)

where W' through W are the links associated
with O. The U(1) gauge generators of the theory
are defined by

(3.5)

&~=(VXP)g,

(3.2)

(3.3)

In general the values of the function b, (W, W'),
can be taken as variational parameters. One form
of this function which will be of interest to us in

subsequent discussions is the single-site mean-field
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form of the wave function

b, r(W, W'}=5~p5-;- —,l

where we have taken W and W' to be ( i,a) and

(rn, P), respectively. Equation (3.10} can be viewed

as the diagonal part of a more general function
which does not vanish for i +m. Such a function
can be generally represented by its Fourier trans-
form as

(3.10)

5, (W, W')= gexp[ik. ( i —rn)]
k

which are eigenvalues of the operator [—V~]'~ .
When we apply this approximation to the case of
PQED we will find that in the weak-coupling limit

(3.11)
where the c ], are variational parameters and the
links W and W' are taken to be ( i,a) and (rn, P),
respectively. Equation (3.10) corresponds to the
extreme case c k

——const. In general, it is natural
to assume that the c

&
's are functions of the "fre-

quencies"
1/2

Q k
= d —2g cos(k~) (3.12)

the variables c k ~Q k, whereas in the strong-
coupling limit c k ~const i.e., the mean-field form,
becomes a good approximation. A combination of
these two extreme sorts of behavior is necessary to
accurately describe the interpolation between these
two regimes.

D. Computing gauge-invariant expectation values

As noted, the wave functions given in (3.8) are
not the wave functions of gauge-invariant states.
Hence, we must proJect them onto their gauge-
invariant component. This is easily accomplished
by operating on them with the projection operator

P =gP (i),
where

Ps( i )= f da( i )exp[ia( i ) G( i )] . (3.13)
2%

If we define Z = (P ~ Ps
~
g}, then for the class of

wave functions defined by (3.8) through (3.11) we
have

(3.14)

where %~a is the difference between the a parameters on the two ends of the link W=( i,a). There are
options open to us at this stage. One is to explicitly carry out the {(}integrations and do the m~ sums. This
gives Z and the expectation value of HPs in terms of the partition function of a classical system whose de-
grees of freedom are given by the a parameters which define the gauge transformations. It is not useful for
us to pursue this point in this paper but in other cases there could well be an advantage, for certain ranges
of parameters, to define an effective action as

L(a( i ))=ln P f dg~ g(. . .,P, . . . ) g(. . .,P + V a, . .). (3.15)

and then try to evaluate the integral, (3.15), by a stationary-phase approximation. For now it will be more
convenient to carry out both the P and a integrations, leaving us with the problem of evaluating a set of
discrete sums over the integer variables m~.

Carrying out the P integrations for the wave functions defined by (3.11) we obtain

1Z =g f da( i ) g exp ig (m~+V~a) grn~b(W— , W')m~
2m

(3.16)

By explicitly carrying out the a integrations one
obtains constraints on the configurations of Im~]
which make nonvanishing contributions to (3.16);
i.e., (3.16) becomes

I

where I (m~) was defined in Eq. (3.9). The nota-
tion 5( V.m( i )) means, as before, that we only in-
clude configurations of the variables m~ for which
the lattice divergence

Z =g r(m )g 5( V.m( 1 )) (3.17) V 111( 1 )= g Per~ — g rrr~
WGW+
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iii~ ——( vgxK)~, (3.18)

where the plaquette curl of the L variables is de-
fined to be

m~=L~( i ) —L~( i n, ) f—or W=( i,2)

vanishes. In the case of the (2+1)-dimensional
theory this condition can be removed by introduc-
ing a set of integer-valued plaquette variables Lz
and defining

Fock wave function onto its gauge-invariant part.
In order to discuss the question of confinement we
need to be able to introduce static sources into the
problem. This means that if we wish to discuss
the force between two charges of opposite sign in

PQED we must deal with states for which V E is
either +1 at two points and zero otherwise. One
obtains such states by operating on a general
Hartree-Fock wave function with the projection
operator

m~=L~( i }—L~( i —n2) for W=( i, l) .

(3.19)

Psources( P» P 2 }= P, ( i ) P,(pi)P, (pi),
' AP)s Pp

(3.25)

z=gr[(v, xl. ) ] (3.20)

The sum over the Lz variables being uncon-
strained, we find Z is given by the expression

where

P+= expia i 6 i +1 (3.26)

and the expectation value (P ~
HPg

~ P) is given by

g (E~ ) — g (cos(B~))g', 1

Z 2 g

+ (volume),
1

g
where

(E ') =g ( v, x L) 'r[( v, x L)]

and

(3.21)

(3.22)

(cos(a, ))=/ rI[v, x(i—s)]~lr[(v, xs)~],

where the shift function Sp is defined to be

0( i ) 2 0( i ),0( m )

(3.23)

(3.24)

E. Introducing sources

The preceding section discussed the general for-
mulation of the problem of projecting a Hartree-

The shift function appears in the formula for the
expectation value of cos(8&) because this operator
is

—,[exp(iV~x p)+exp( i V~x p—)]

and the operator exp(+i/~) acting on a state of
the form specified in (3.5) changes the factor
exp(im~P~) to exp[i(m~ —

+1)P~]; or, in other
words, the exponential of the curl of the P's about
a given plaquette shifts the L value associated with
that plaquette by one unit.

In principle, since the system with sources is no
longer translationally invariant, one must redo the
variational calculation for the parameters
b(W, W') for each of these sectors of the gauge
theory. This is, however, unnecessary whenever
there are only a finite number of sources. The
reason for this is that no finite number of sources
can modify the part of the ground-state energy
which diverges like the volume. Since the parame-
ters b, (W, W') are determined by extremizing the
ground-state energy density the changes in them
due to any finite number of sources must vanish
like li(volume) in the limit (volume} —+ oo. Follow-
ing the same procedure as one followed in treating
the source free case, one can show that the normal-
ization factor Z„„, = (g

~ P„„„„~f) and the en-

ergy I'„„„=( P ~
HP„„„„~f) are given by ex-

pressions identical to those for Z and I' except
that the condition that the divergence of the in-
tegers m( i ) vanish at every vertex, must be re-

placed by the statement that it vanishes at every
vertex except p &

and p2 where it must be + 1 and
—1, respectively. It follows from this that
evaluating 8'„„„„provides an upper bound on the
ground-state energy of the sector with two oppo-
sitely charged sources in the same way that 8' pro-
vides an upper bound on the ground-state energy
of the source-free sector of the theory. Within the
spirit of the approximation one can determine
whether or not PQED exhibits linear confinement
for a given value of the coupling constant by tak-
ing the difference, 8'„„„„—8', and seeing if it
grows linearly with separation or goes to a con-
stant. Of course, since our energies are derived
from variational calculations, finding a non vanish-
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ing string tension by this method is no proof that
the theory truly exhibits such behavior. Neverthe-
less, experience has shown that when results ob-
tained in this way can be compared to exact results
the variational calculation seems to consistently
give good answers.

This concludes our discussion of the general for-
malism for carrying out gauge-invariant Hartree-
Fock computations for Abelian gauge theories.
The main result of this discussion is that the varia-
tional computation for the ground state in the
presence or absence of static sources can be recast
as a d-dimensional statistical-mechanics problem.
In the next section we turn to the practical prob-
lem of evaluating partition functions of this sort,
and extracting information about the physics of
the original quantum system.

IV. EVALUATING PARTITION FUNCTIONS

A. The theory of a single plaquette

1. Basic formulas

In order to work out in detail an instructive ex-

ample of the methods presented in the preceding

1
cos(B0), (4.1)

where the magnetic field operator is defined to be

&o =0 i+0 2
—0 3

—0 4 (4.2)

and where a constant I/g has been dropped from
the Hamiltonian. A complete set of states for the
Hilbert space of the theory is given by the set of
all functions

section, we will restrict attention to a world made
up of exactly four links arranged to form a single
square plaquette. The four vertices of this simple
lattice will be labeled 1 = (0,0), 2 = (1,0), 3 = (1,1),
and 4=(0,1). Associated with each of the four
links of the lattice, Wj=—(1,1), W2=—(2,2),
W3:(4,1), and &4=(1,2), are angular variables
0 &, 0 2, and 0 4 and their associated electric
field variables, E~ = —i 8/80~.

The Hamiltonian of the single-plaquette universe
is

2

H = (E',+E',+E',+E', )

m ] m 2 m 3 m 4} exp[i(m f 8 J+m 28 2+m 38 3+m 48 4)] (4.3)

where the variables m ~ run over the positive and negative integers.
The four gauge generators of the single-plaquette system are

G(1)=E,+E, , G(2)=E, E, , G(3—)= —(E,+E,), and G(4)=E, E—(4.4)

In terms of these generators, the most general position-dependent gauge transformation is given by the
operator

4

U(a(1),a(2),a(3),a(4))=exp i g a( i ) G( i )

i = 1

It follows from the canonical commutation relations that application of U to a state P(8 &, 8 „8~3 8~4)
yields the state (Uf), where

(Ug)(. . .,8~, )=p[. . ,8~+a( j +n. p) a( j ), . . .],—
where we have assumed W=( j,P).

The most general state of the Hilbert space is of the form

~
g}=gf(.. .,m~, . . . ) ~. . .,m~, . . . } .

(4.6)

(4.7)

The projection of this state onto its gauge-invariant part is accomplished by operating upon it with the pro-
jection oPerator Ps =Ps(1)Ps(2)Ps(3 ) Ps(4); hence

Ps
~
P}=g J da( j ) g(f(. . .,m~, . . .)exP[im~(8~+7 a)]}.2' (4.8)

The partition function is defined to be the norm of Pg
~
g) and is a function of "f". Taking the nprm of
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(4.8), recalling that Pg =Pg we obtain

Z(f)= (Q—IPg IP)=g f da( j ) g f(. . .,m~, . . . ) f(. . .,m~, . . . )exp i+a( j )V m( j )
2m'

(4.9)

where the lattice divergence of the m's is

V.m(1}=rn &+m~4,

and

V.m(2}=m i —m~i,

V m(3}=—(m~/+m~3), (4.10)

V m(4)=m &
—m 4 .

m
&
——m 2 — m 3 — m 4 —Lg (4.11)

Carrying out the a( j ) integrations, leads to the re-
lations

I

f(LL, —L, L). —
It follows from (4.12) that there is no difference

between the mean-field approximation and the
more general Hartree-Pock approximation to the
ground state of the single-plaquette system after
gauge projection. This fact is just another way of
saying that the single-plaquette system admits only
one gauge-invariant combination of the variables
8~. Since the general Hartree-Fock approxima-
tion, as we defined it in the preceding section, cor-
responds to choosing a general quadratic form in
the variables m~, it follows that in this approxi-
mation the partition function is given by

I

which allows us to rewrite Z(f) as Z(y) =g exp
4L

(4.13)

Z(f)=g f'f(L) (4.12)

for an arbitrary function "f". Note, we have used
the relations (4.11) and written f(L) for

Proceeding in the same way we obtain for the ex-
pectation value of the Hamiltonian in an arbitrary
Hartree-Pock state,

(1(
I
HP

I g) =g 2g'L'exp
I

4L

y

1
exp

g
2

4(L + —,)' 1 Z
exp —— ~ +

'Y g
(4.14)

Given (4.13) and (4.14) we can determine the varia-
tional parameter y by minimizing the ratio

&it IHPg I 0&

In order to project a trial wave function into a
sector corresponding to a given distribution of stat-
ic sources, one multiplies by a different operator.
In the case of a positive charge at 1 and a negative
charge at 2 the operator of interest is

P,o„„„(1,2)=P +(1)P (2)Pg(3)Pg(4) .

(4.15)

I

uct over links of independent Gaussians in the
variables m~ (4.16) becomes

Z sources exp
3 g exp

4y
(4L +1)'

4y

(4.17)

If, on the other hand, one assumes the most gen-
eral Hartree-Fock wave function with
b, (W, W'}=5~@b, ( i —j ), one obtains

(6~p+ ~i)
Zsources =e p

8

Applying this operator to the state
I g) and com-

puting the normalization factor Z„„„„oneobtains
the general result

Xgexp ( —45p+26i) (4L +1}'

(4.18)

Z„„„„=gf'f(L+1,L, L, L) . — —(4.16)

If one assumes that the function "f"' is a prod-

where we have defined 5(0)=b,p and b,(n i )

=b,(nz) =b, i. While overall normalization factors
differ, if one identifies the parameter y

' with the
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combination —4b,o+2b, ~, then the partition func-
tions are exactly the same for both the mean-field
and general Hartree-Fock wave functions. Since
the normalization factor is L independent it plays
no role in ratios, and so it can be ignored. Exam-
ination of (4.17) reveals only one important differ-
ence between the partition function for the source-
free problem and the problem with sources at the
points 1 and 2; namely, that for the case with
sources the argument L is shifted by —,. This
comes from completing the square in the exponent.
We will see in the sections to follow that this is a
general result, as is the fact that the shift parame-
ters are the same for the mean-field and general
Hartree-Fock wave functions.

2. Evaluating Z for weak and strong coupling

@'(y)=
2g'L'exp

exp
4L

4L

(4.19)

Evaluating (4.13) and (4.14), and the analogous
formulas for the situation in which there are
sources at 1 and 2, is particularly straightforward
for g »1, so we will begin with this case. Exam-
ination of (4.14) reveals that for large g the energy
is essentially given by the first term in the ratio

well approximated by its first two terms, i.e.,

Z(y) =1+2exp ——+4

y.
(4.20)

and e(y) can, to leading order in exp( —1/y), be
written as

&(y) =

4 2 2
4g'exp ———

2 exp
g

1+2exp
y

1+ 2
g

(4.21)

We can check our assumption about the size of y
for large g by minimizing e(y) as defined in (4.21)
and verifying that the value of y which extremizes

e(y) is small. Taking the derivative of (4.21) with

respect to y we obtain

2 4exp —=4g
. y

(4.22)

for g ~g1.
Given the relationship between y and g for a sit-

uation with no static sources we can carry out the
same exercise for the case of the situation with
static sources at 1 and 2. Forgetting the overall
normalization factor we have, to leading order in
exp( —I/y),

and so we would expect that in order to minimize

the energy for large g the parameter y must be
chosen to be quite small. In this case (4.13) can be and

1 9
sources = p +eXp +

4y 4y

g 1 3g
+sources = exp + exp

2 4y 2
9 1

exp
4y g2

5
Zsources .

4y
(4.23}

Minimizing Ã(y) sources with respect to the
parameter y yields

r

exp —~2g1 4

y.
(4.24)

which differs somewhat from the source-free case.
In either case, we see that as g —+ ao, y~O as In(g}.
As already mentioned, when we discuss the case of
an infinite lattice the variational parameters for the
source-free case and the case with sources must be
the same, unlike what happens for one plaquette.
The reason the values of y come out different in

&E~ ) =gL exp
4L

y

and

the case of a single plaquette is that finite-volume
effects play a significant role.

Obviously, all sorts of information can be ex-
tracted at this point; but, we will limit ourselves to
a discussion of the ground-state expectation values
of the operators E~. In the source-free case we
have
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&E,&=«,&= —&E,&= —&E .&

(4.25)

we have

which vanishes. However, in the case of sources and

&E,&=gL exp — exp
3 (4L +1)'

4y 4y
(4.26)

from which it follows that at strong coupling, up
to exponentially small corrections, all the flux goes
down the shortest line joining the two sources.
This is, of course, the one-plaquette version of con-
finement.

We now turn to the study of the evaluation of
Z, g'(y), and the expectation values of the electric
fields in the presence of sources in the limit g~O.
The reason for carrying out this calculation in de-
tail is to introduce the tricks needed in the more
general case to evaluate the weak-coupling results,
and to see explicitly how the field in the presence
of weak sources goes over to the Coulomb configu-
ration.

We see from the preceding discussion that as
g~O, 1/y must also tend to zero. This is because
for small g, exciting high m values costs very little.

I

I

Evaluating (4.13) or (4.17) appears to be difficult
for small 1/y, since in that case one has to keep a
great many terms in each sum. There is a way,
however, to recast (4.21) and (4.2) into a form
which is easily evaluated in the limit of small 1/y.
To do this we make use of the Poisson identity

gf(M) =g Jdg f(P)exp(i 2mNP) .
M N

(4.27)

Substituting (4.27) and (4.13) and performing the P
integration we obtain

( )
(my) ~ HyN

(4.28)

At this stage it is useful to define the more general
function

Z(y, il) =g exp
4(I. +~)' (~y)'" HyN'~ exp exp —i2irrlN .

y 2 4
(4.29)

1 —exp ——Z(y, —,)
1 1 1

g y

Using the leading N =0 and 1 terms we find

(4.30)

The expectation value of the Hamiltonian can be
defined in terms of Z(y, il ) as

g
2

&a&=g ' Z(y, o)
2 Bf

3 1

Zsources exp
4y

To leading order this is a shift in the continuous
variable I. and therefore leads to 8'„„„„=8' in the
limit g~0 Keeping the next-to-leading-order
terms in the calculation we find that 8'„„„„hasan
additional, exponentially small, term so that

+ [I —exp( —1/y)] .g g 1

4 g2
(4.31)

ir —4
+sources —

2 p
g 2g

(4.32)

This result coincides also with what we would have
gotten by treating I. as a continuous variable in
(4.13) and (4.14). Minimizing (4.31) with respect
to y we find that y=2g in the weak-coupling
limit.

One can carry out analogous calculations in the
presence of sources. In this case &H & retains the
same functional form but both Z(y, O) and Z(y, —, )

get replaced by

This nonanalytic dependence upon the coupling
constant g is a well-known property of the Mathieu
problem. If one rewrites the problem as that of a
particle in a periodic potential, then in the limit

g —+0 we are studying the "tight-binding region"
and these nonanalytic effects come from "tunnel-
ing corrections" to the energy.

Let us now turn to the evaluation of the electric
fields. In the source-free case we see from (4.25)
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that the expectation value of the electric field van-

ishes. However, when sources are present the L
distribution gets shifted as shown in (4.26). Using
the expression for Z(y, g) we can write

(E 2) = ——,+ exp
1 1T 77

g

=1—&E, &. (4.34)

Hence, for small g, we see that the expectation
value of the fields on the four links is that which

one would expect to obtain by solving the Coulomb

problem in the four-link universe. By the
Coulomb problem in the faur-link universe, we

mean that configuration of classical fields (E~),
for which the energy

2

@',.~. ,——g (&E i&'+(E i&'+&E 3&'
2

+« .&') (4.35)

is minimized subject to the conditions

(E,&+« .&=1,

&E, &
—«, &= —1,

&+&E

and

(4.36)

Equation (4.36) is satisfied if we let

and

(4.37)

This allows us to rewrite the Coulomb energy as

2

@'couiomb= 8 1 —»'+»'1 .ou om (4.38}

(E 2) = — lnZ(y, ri) ——, (4.33}
8QQ iy4

and all other values of (E~ ) follow from (4.24).
In the strong-coupling limit, where we can use the
L expansion directly, Z —+exp( —4' /y), (E,)
vanishes and (E, )~l. This is the expected re-

sult, i.e., that in the strong-coupling limit the
string of fiux joining the two external charges
chooses to have the shortest possible length. In the
weak-coupling limit, one must use the X expansion

given in (4.28). This leads to

Taking the minimum of (4.38) with respect to x
1

yields x;„=—,; hence, three-quarters of the flux

flows along the straight line joining the charges
and the remaining one-quarter of the flux flows

along the longer route between the vertices 1 and 2.
From this we see that whereas at strong cou-

pling the flux is essentially confined to the straight
line joining the two external charges, as the cou-

pling tends to zero the flux spreads out into the

appropriate Coulomb configuration, up to terms of
order exp[ —(const)/g ]. The effects of these ex-

ponentially small terms is to slightly strengthen the
field along the line joining the two charges and

slightly weaken the field which spreads out to the

other links. These are the terms which are respon-

sible for the linear confinement exhibited by the

(2+ 1)-dimensional theory at weak coupling, and

we will sketch the treatment of this problem in the
next section.

B. Partition functions and string tension
for infinite lattices

1. The string and its radiation field

To treat PQED on an infinite lattice, in both
2+ 1 and 3+ 1 dimensions, one proceeds in
essentially the same way; however, all computa-
tions are more complicated. This calculation was
already carried out by Drell et al. using a dif-
ferent approach which was suitable for PQED but
which could not be generalized to non-Abelian
theories. In this section we will develop our treat-
ment of PQED and bring it to a stage at which it
can be directly compared to Ref. 3, so that the rest
of the calculation can be drawn from there. Since,
for the case of QCD we are most interested in es-

tablishing confinement for all couplings, we will

concentrate on showing that our methods are
strong enough to establish this phenomenon for the
case of PQED. For this reason the detailed discus-
sion to follow will quickly be restricted to the case
of PQED in 2+ 1 dimensions. We will, however,
establish the connection between our projection-
operator formulation of the problem and the
methods used by Drell et al. in sufficient detail to
enable the interested reader to refer to their work
to see how the same technique can be used to es-
tablish the existence of a deconfining transition for
the (3 + 1)-dimensional theory.

Our first aim is to recast the problem in the
presence of sources inta an equivalent form in
which the sums over link variables are uncon-
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strained and external variables representing the ap-
pearance of the string joining the charges appears
explicitly.

The general problem which confronts us in the
presence of arbitrary charge distributions is the
evaluation of the partition function

Zs,„——g exp[ —g m ib, (Wi, Wg)m p]

X g [5(V.m)( j ) —p( j )], (4.39)

where the charge distribution p( j ) is taken to be
an arbitrary integer-valued function. The special
case p( j ) =0 for all j is the source-free situation,
and the case p(pi) = —p(p2) =1 and p( j ) =0 for
all j +p, or p2 describes the situation with an op-
positely charged pair of external sources. We al-
ready observed in passing from the constrained
sum (3.17) to (3.20) that one could eliminate the
constraint in the source free case in 2 + 1 dimen-
sions. What we now wish to do is show that one
can do the same for the situation with sources.
For simplicity let us consider the case of two
sources one at pl and one at p2. In this case the
constraint on the m configurations is that V' m is

zero everywhere except at the points p I and p2
where it is + 1 and —1, respectively. To elim-
inate the constraints appearing in the sum we ob-
serve that if we have a configuration of m s satis-

fying these constraints then it can always be
rewritten as

m~ =E,«„s(W)+m ~, (4.40)

where E,„„.„(W) is zero for all links except along a
line joining pl and pz, along which it is either + 1

or —1 (depending upon the location of p i and pq
and the way in which the line of links joining them
is chosen), and where the configuration m ~ satis-

fies the condition V.m'( j ) =0. If we choose p i

and p2 to be two points on the 1 axis with p I lying
to the left of pz, then the line joining these two

points can be chosen to lie along the x axis. In
this case E„„„s(W)is plus one for every link W
lying between pl and p2, and is zero otherwise.

Since every configuration of m ~'s satisfying the
source conditions can be written as a given config-
uration E„„„gplus a source-free configuration, it
follows from our discussion for the source-free
case that

Z„„„„,(pi, p2)=+exp[ —(V XL+&„.„,) &(~,~')(VXL+I„.„,)~'], (4.41)

where now the sum over the integer variables I. ( j,a) is unconstrained.
Equation (4.39) can be further simplified if we observe, as is proven in Ref. 3, that the function E„„„s(W)

can be written as the lattice gradient of a scalar function p„„„s(j ) plus the curl of a plaquette function
E(O), i.e.,

~si~~«~) = —V~0( j )+(VtiX ~)~ . (4.42)

Substituting this expression into (4.41), using the fact that for b, (W, W ) =5~~6( i —j ) there is no cross
between the gradient of a scalar and a curl, we obtain

Z„„„„,(pi, p2)=Z +exp[ —[VaX(L+&)]~A( F, F')[VoX(L+e)]~ j (4.43)

which is the infinite volume generalization of the
fractional shifts which appeared in the case of the
one-plaquette universe. Z' is the part of the parti-
tion function which depends on the scalar function
P„„.„s alone. This is the source of the Coulomb
term in the expression for the energy of the state.
The presence of this term plays no role in the
question of linear confinement and does not have
any interest for us at this time.

The field P„„„sis the unique solution to the lat-
tice Coulomb Problem b, P„„.„s=P( j ). Since
V~/„„.„s is the Coulomb field of the pair of static
charges the plaquette function ep is the vector po-
tential of the radiation field configuration which

I

must be added to the Coulomb field of the pair of
charges in order to focus it into a string joining
them. For a given E,«„s the function ep is
uniquely defined. Since E„„„~is introduced as a
mathematical artifice to remove constraints on a
sum of integers, we can shift it around at will so
long as the location of the endpoints of the
"string" stay fixed at pl and p2, respectively. Such
a shifting of the string corresponds to changing the
plaquette function ep by integers. Following Drell
et a/. , we will use the convention that the function

1 1

ep will take values in the range ( ——,, —,). If the
sources lie on an axis of the lattice, we will also as-
sume that the string is drawn along the straight
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link (shortest path) joining the two charges.
We can now restate the problem of determining

the parameters h(W, W') in the presence of arbi-
trary charge distributions as that of minimizing
the energy of the system for a general partition
function Z(e). The vacuum state of the theory is
given by setting e~ ——0, while the case of two static
charges is obtained by choosing the ez configura-
tions discussed above. The manipulations which
allow us to rewrite the problem in terms of an e~
configuration and Coulomb field are unique to
PQED, and depend upon the simple form of

Gauss's law for the Abelian theory. The situation
is not so simple for the non-Abelian case and we
know of no straightforward generalization of the
discussion we will now present.

C. Field-theoretic techniques

For simplicity we restrict discussion to the case
of the (2 + 1)-dimensional theory, for which the
partition function can be rewritten as

Z(e)=g exp[ —( V X(L+e)]~A(W, W')[V X(L+e)]~] .

Using the representation of (3.11) and the notation of (3.12) we have

b,(W, W')= ——gexp[ik ( i —j )/c-„],

(4.44)

(4.45)

where V stands for the volume of the lattice. Now, by invoking the Poisson identity, we can replace the
integer-valued plaquette variables L by continuous fields P( CI). In terms of these fields the partition func-

tion can be written as

Z(e)=g f diaz 1+2+cos(2nN&gz) exp —g(P+E)zh, (H, CI')(P+e)z (4.46)

where we have integrated by parts and defined the new plaquette function

(4.47)

This is the representation which coincides with Eq. (4.32) of Ref. 3. Since the variables Pz are continuous
fields we can shift the ranges of integration and absorb these factors to rewrite Z as

Z(e)=g f dP I+2+cos[2n'N (P —e )] exp —gP b, , (CI, Cl')P,

The Hamiltonian can now be rewritten as

(H) =g f diaz 1+2+cos[2nN~(P e)~] —O'H% (4.48)

where

(4.49)

and where the operator H' is defined as

2
H'= N'c,„i, b+ g (V~/) + g 1 ——,[exp(B/BP~)+exp( —8/BP~)]uom

g
2

(4.50)

It should be noted at this point that we are rather
committing an abuse of notation in using the sym-
bols P and 4' at this point, since they do not stand
for the objects introduced in Sec. III. We have
done this in order to establish the connection with
the notation of Ref. 3 and the normal quantum
mechanics of a system of many degrees of free-
dom. This abuse of notation will not carry over to

I

the following sections of the paper.
In the weak-coupling limit one saturates the

magnetic term in the Hamiltonian which means

that one can expand the cosh(B/Bgz) as a power
series in its argument keeping only the first two
terms. This leads to an approximate form for H';
c.e.,

@Coulomb+ +1
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where

a'I,= g(V y)'—
2 2g2 (jP

(4.51)

m. —42

+sources vacuum +Coulomb+
4~

pD

(4.55}

where V stands for the volume of the lattice, i and
j are integers labeling the centers of the plaquettes,
and

(4.52)

Comparing this result with the general form for
we see that in the weak-coupling limit

e-„0/g .
The reader will have realized that in the preced-

ing discussion we have implicitly neglected all the
contributions of the terms cos(2irE~P&). This is
allowed because they are negligible to leading order
in g. We already saw this effect when we explicit-
ly carried out the one-plaquette calculations. In
that case the corresponding N e~pansio~ Eq. (4.28),
was very well approximated by the N =0 term.
Using harmonic oscillator techniques, it is straight-
forward to show that any N = 1 term of (4 46) con-
tributes a term of the form

f dy 4'(y)cos[217(y —e )]e(y)

1
=Zocos(2nez)exp .—

2 g (4.53)

which is exponentially small compared to the
E=0 term, Zo. Using this expression one can
write the ground-state energy as

1E (&)= g Couiomb+ z X ai i+, g(~' —4)
1 a'Z(e)

g'Z (e) Be~

(4.54)

The last term in this equation represents the N =1
correction to both the kinetic and potential terms
of the Hamiltonian. It has a negligible effect on
the energy density but it plays an important role in
establishing the existence of the string tension.

Starting from the equivalent of (4.54) Drell et al.
show that

Hi is the Hamiltonian of a free massless scalar
field P; hence, it is natural to take 4 as the wave
function of the ground state of this system of cou-
pled harmonic oscillators. This means that 4' can
be represented as in (4.49) with

2

b, i(CI, Cl') = g exp[i k ( i —j )]co-„,

for the problem of two static sources separated by
a distance D along the x axis. The "mass" param-
eter p is given by

p =4m exp
m2 1
,~X (4.56)

Z f=gexp —+ [VX(L+e)] /y (4.57)

and this is just the partition function of the X-F
model in two spatial dimensions. This model is
known to exhibit a Kosterlitz-Thoules (KT}phase
transition at a finite value of y.

Although one must conclude from this analysis
that the mean-field approximation gives the wrong
answer for PQED in 2+ 1 dimensions, it is in-

teresting to ask how wrong it is, and if one can use
it as the basis for a systematic treatment of the
problem. If we compare the strong tension as

It may be understood as a correction to ~ k ~co k

+p /g induced in the P propagator by the factors
cos(2mNP). The factor p, represents the existence
of a nonperturbative screening effect in the P-field
theory whose existence turns out to be crucial for
confinement; i.e., it is only because p is different
from zero that a nonvanishing string tension per-
sists in the weak-coupling limit. The screening of
the P field keeps the effect of the e parameters
from dissipating and thus the focusing of the field
persists to order exp( —const/g ); hence, even at
weak coupling, there is a string of electric flux
joining the two static charges.

At this point it is interesting to ask what would

happen if we did not adopt the general Hartree-
Fock form of our wave function but rather persist-
ed in using the mean-field form down into the re-

gion of weak coupling. This amounts to choosing
the case c k

——const and co k -0& . We would then
find that we not only obtained a poor value for the
ground-state energy density for values of g ( 1, but
also there would be a value of g, below which the
string tension vanished. The reason this occurs is
that inserting co k -0-„ in (4.56) results in a loga-
rithmic infrared divergence of the exponent leading
to p =0. The disappearance of the string tension
implies the existence of an apparent phase transi-
tion in the mean-field approximation. Indeed, the
partition function in the mean-field approximation
1s
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computed in the mean-field and Hartree-Fock ap-
proximation, Fig. 1, we see that in the region
below the KT phase transition the real string ten-
sion is also small. Since the difference between
these two calculations is that in the Hartree-Fock
calculation we allow the variational parameters
h(W, W'} (or alternatively the parameters ck} to be
arbitrary, we see that if we generalize the mean-
field approximation by allowing a b, (W, W') to be
nonvanishing for a finite number of links we ob-
tain a sequence of partition functions to evaluate
which interpolates between the mean-field calcula-
tion and the full Hartree-Fock approximation. As
shown in Fig. 1, we expect these finite range
theories will also be expected to give a KT phase
transition, but the location of this transition should
inove towards g =0 as the range of the function
h(W, W') increases. Hence, if one is only interest-

ed in doing a good job in computing the string ten-
sion for 1 »g »gc, then one should be able to
carry this out by performing a cluster expansion
about the Kosterlitz-Thouless approximation to the
partition function. Of course, in the case of
PQED, such an approach is uninteresting since one
is able to deal with the general Hartree-Fock case
without any serious problems. However, as we will

see in the next section, for the case of the non-

Abelian gauge theory, dealing directly with the
Hartree-Fock approximation might prove quite dif-
ficult, and the procedure just outlined may prove
to be the only feasible one.

V. NON-ABELIAN GAUGE THEORIES

A. A review of the general formalism

Extension of the formalism presented in the
preceding sections to non-Abelian gauge theories is
straightforward. Unfortunately, the evaluation of
the resulting partition functions and the expecta-
tion value of the ground-state energy with and
without static sources is not as easy as it is in the
Abelian theory. We will not, at this time, give any
results for SU(2) or SU(3) gauge theories relating
to the string tension, spectrum, etc. What we will

do in this section is present the general formalism
for the case of an SU(2) gauge theory, and outline
the treatment of the mean-field and Hartree-Fock
versions of the variational calculation. As we will

show, significant differences between the SU(2)
gauge theory and PQED emerge from very simple
considerations.

Before going on to a discussion of the projec-
tion-operator formalism we will discuss the general
formulation of non-Abelian lattice gauge theories
in a way which emphasizes finite, as opposed to in-

finitesimal, gauge transformations. Our treatment
will be brief, but we will try to keep the intuitive
notions clear by emphasizing the parallels between
the treatment of the Abelian and non-Abelian
theories, as well as pointing out differences.

1. Reformulating the Abelian theory
in abstract language

Z0
CA
z.'
LLj
I—

I—
M

~ a) 0

g

COUPLI NG CONSTANT

FIG. 1. Graph of the string tension in (2+1)-
dimensional PQED as it would be calculated in mean-

field (solid curve), perturbative Hartree-Fock (dot-dash
curve), and finite-range Hartree-Fock approximations
(dashed curves).

The Hilbert space of the Abelian gauge theory
was defined to be the space of periodic functions
of the link variables 8~. This set of functions is
acted upon by a gauge group, which in the case of
the Abelian theory is a product of a U(1) group for
each vertex i . The U(1) group is the set of com-

plex numbers of unit modulus and group multipli-
cation is just the usual multiplication of complex
numbers. Hence, we can identify the variable 8
with the complex number exp(i8). Under this
identification, we can think of the Hilbert space
for each link of the lattice gauge theory as being
the set of functions from U(1) into the complex
numbers. The Hilbert space of the full theory is

then generated by taking the product over links of
these spaces. Alternatively, we can think of it as
the space of complex valued functions from the
direct product U(1) X U(1) X XU(1), where the
product has a U(1) factor for each link in the lat-
tice. In order to extend this notion to a gauge
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theory based upon an arbitrary Lie group 6 we re-
place U(1) by G in the preceding definitions; i.e.,
the Hilbert space associated with each link of the
non-Abelian lattice gauge theory based upon the
Lie group G is the space of square-integrable func-
tions from the group G into the complex numbers,
where integration is done with respect to the usual
Haar measure on the group.

Now that we have defined the Hilbert space for
the arbitrary gauge theory, the next step is to
establish the way in which an arbitrary gauge
transformation acts upon any function. Referring
back to (4.5) and (4.6) we see that the effect of the
arbitrary position-dependent gauge transformation
defined by a gauge function a( j ) is to take
g(. . . ,8~, . . . ) to p(. . . ,9~+a(j +np)
—a( j ), . . . ), for W=( j,P). Following the con-
ventions just established we can rewrite the period-
ic function 1((. . . ,8~, . . . ) as g(. . . ,u~, . . . ),
where u~ is the U(1) element exp(i0~). It then
follows that shifting the argument 0~ by a gauge
transformation corresponds multiplying the group
element u~ by a phase factor,
exp[i [a( j +np) —a( j )][ which is itself a product
of group elements. Hence, we can rewrite the for-
mula for gauge transforming a wave function as

g(. . . ,u~, . . .)~p(. . . ,g '(a( j ))u~

Xg(a( j +nii)), . . .), (5.1)

where g(a( j )) stands for the group element
exp[ia( j )]. Obviously, for the case of the Abelian
theory the order in which we write the factors is
irrelevant, but for the non-Abelian theory the order
matters.

When we generalize (5.1) to the case of a non-
Abelian gauge group it is not particularly con-
venient to cont. inue to think of the gauge transfor-
mation g(a( j )) as being given by a function a( j ),
and one tends to drop the a label entirely. There
is no loss of generality if we define the arbitrary
gauge transformation to be given by specifying a
group element g( j ) for each vertex j. In this
case, an arbitrary function g(. . . ,R ~, . . . ), where

R~ stands for the group element of the link W,
transforms under a gauge transformation specified
by the g ( j )'s as follows:

g(. . . ,R~, . . . )

~p(. . . ,g '( j )R~g(j +n&), . . .} . (52)

Now the fact that the gauge transformation associ-
ated with the left multiplication of R~ is by g
and right multiplication is by g is forced by the

condition that the product of two gauge transfor-
mations is a gauge transformation.

We should observe that the formula (5.2) plays
an important role in theory of group representa-
tion. The space of square-integrable functions
from the group SU(2) to the complex numbers is a
representation of the group SU(2) XSU(2), called
the regular representation of the group. Its impor-
tance lies in the fact that, for compact groups, it
contains every irreducible representation of the
group a number of times equal to the dimension of
the representation. The reason the group
SU(2) X SU(2} acts on the regular representation is
that SU(2) can act on the space of functions in two
ways, either by left or right translation; i.e., for a
given function f(h) we can define the left transla-
tion of f tobe

(&sf)(h)=f(g 'h) (5.3)

and the right translation of f (h) can be defined as

(Rsf)(h) =f(hg) (5.4)

Given the definitions (5.3) and (5.4) it is easy to
check that

Lg, ——LgL, ,

Rg, ——RgR, ,

LgRg: RgLg (5.5)

for arbitrary g, t ESU(2). A general result of har-
monic analysis is that every function over the
group can be expanded uniquely in terms of the
basis functions of the irreducible representations of
SU(2)XSU(2} (or GXG for the general case). For
the special case of SU(2) this means that every
function f(g) can be expanded as

where the D functions are nothing but the repre-
sentation matrices of the spin-j representation of
SU(2). Under left translations the D matrices
transform as

and under right translations

(RsDP')(h) =g D(~~'(h)DP '(g) . (5.7)

From these equations we see that each matrix ele-

ment of the representation matrix Di'J'(h) is a func-
tion over the group, and that these (2j+1) func-
tions transform among themselves under the action



25 GAUGE-INVARIANT VARIATIONAL METHODS FOR. . . 3347

(. . . ,R, . . . )=Pi)'j(R ) . (5.8)

For the specific case of the U(1} theory we chose
for g(8~) the Gaussian form

of SU(2) X SU(2).
This concludes the definition of our general Hil-

bert space, and the definition of the way arbitrary
gauge transformations act upon our space of states.
Let us now turn to the question of generalizing our
formulas for the arbitrary mean-field and Hartree-
Fock wave functions. Recall that the arbitrary
mean-field wave function was defined to a product
over links of the same wave function for each link;
1.e.)

nal set of functions over the group, and the eigen-
values of the Casimir operator of U(1),
L =(—iB/B8), are m .

Adopting this notation we can rewrite our
single-link mean-field wave function in a way
which immediately generalizes to the non-Abelian
case. To be specific, we write P(R~) as

P(R~)=g exp
g2

X'-'(R )
2y.

(5.10)

Obviously, this form of the wave function immedi-
ately generalizes to the case of SU(2), in which
case we write

P(8)=g exp( —m /2y)exp(im8) . (5.9) g(R~) =g exp

In order to generalize this to the case of the arbi-
trary compact Lie group we need to rewrite this
form in slightly more general notation.

Since the group U(1) is Abelian, all of its irredu-
cible representations are one dimensional, and are
given by the functions X (8):exp(—im8) We .have
already noted that U(1) acts upon these functions
by multiplication by a phase factor. In other
words, the representation matrices of the group are
1 X 1 matrices and so the group characters (i.e., the
traces of the representation matrices) and the rep-
resentation matrices themselves, coincide. More-
over each representation of U(1) is characterized by
an integer m; the characters X (g) are an orthogo-

=g exp — (2j+1)X"'(g),j(j+1)
2y

(5.11)

where J stands for the three generators of SU(2),
J J is the quadratic Casimir operator of SU(2)
whose eigenvalues are j(j+1),and (2j+1) is a
normalization factor introduced to simplify later
formulas.

Generalizing the Hartree-Fock wave function to
the non-Abelian case is equally simple. All one
has to do is define it to be

p(,R, )=+exp —g& (~)&(~,W')J (W') g [(2j+1)X"'(R )], (5.12)

where h(W, W') is, as before, an arbitrary set of
variational parameters, and where the subscripts
"m" indicate that one is to sum over the three gen-
erators of SU(2).

The final concept which needs to be defined in
order to be able to write down the Hamiltonian of
an arbitrary non-Abelian gauge theory is the notion
of the U operators associated with a link. These
link operators are the lattice equivalent of the
path-ordered exponentials

[U(path)] p
——[P[exp(i f dx"r A„)]] & (5.13)

and like these operators tranform under gauge
transformations like the (n, n) representations of
SU(2) XSU(2) (or G X G), where the representation
"n" is determined by which matrix representations
of the generators r we use in (5.13). Given the dis-
cussion presented in the preceding paragraphs it is

I

easy to find a set of link operators which trans-
form as an irreducible representation of SU(2)
XSU(2) under arbitrary gauge transformations; all
one has to do is define

[U Jpg](R ) =D'~p(g)P(R ), (5.14)

and so we see that under the same transformation

U'~p~D J„'(gi ')U,'~qDq~p(gg) .

Adopting this definition we can form gauge-

(5.16)

where the functions D~~p(R ~) are the matrix ele-

ments of the spin-j representation of SU(2). Under
an arbitrary gauge transformation by elements g~
and gq the functions D J~(R~) transform as

D~p(g i 'R ~gg )=D~,'(g, ')D'„q(R ~)D„'p(gi)

(5.15}
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X'J'(R,R,R,-'R 4-'), (5.18)

where X'1'(R } is the character of the spin-j repre-
sentation of SU(2) and is equivalent to

X'J'(R) =Tr[D J'(R)] . (5.19)

invariant expressions in the U's associated with
the links of a plaquette, , by forming the ordered
products of the form

Q Uap(R~ )Up„(R, )U '„„(R~3)U ' (R,),
(5.17)

where W', . . . , W are the four links associated
with the plaquette H taken in the same order we
used in the example of the one-plaquette universe.

Replacing the operators U ti(R~) by their defini-
tions in terms of D matrices, we see that a sum
over products of operators of this form, when act-
ing on a function of the group variables, is
equivalent to multiplying that function by

example, one could generalize this expression to in-

volve an arbitrary sum over characters. It is com-
monly believed that the Hamiltonian as defined in
(5.20) confines charges in the fundamental repre-
sentation (i.e., j= —, ) but that this is no longer true

if X"i ' is replaced by X"'.

3. Defining projection operators

Having defined the Hilbert space of our theory,
the Hamiltonian, and the space of trial wave func-
tions it remains for us to give an explicit expres-
sion for the projection of a state onto its source-
free (or gauge-invariant) part, and onto a state hav-

ing sources at a finite number (usually two) points.
These formulas, too, are analogous to the formulas
for the Abelian case.

To derive the general form for the projection of
a function over SU(2) onto its spin-j part, we first
expand the function in terms of DJ functions; e.g.,

f(g)=g~'t D'i (g) . (5.21)

The Kogut-Susskind Hamiltonian for the SU(2)
gauge theory can be written in a form which paral-
lels that of PQED; namely,

a=g gz '—
g

2
(5.20)

where R [j stands for the plaquette ordered product
of group elements defined in (5.19), and the nota-
tion E~ stands for a sum over the links of the
quadratic Casimir operator constructed from the
sum of squares of left-handed gauge generators for
that link. Note that it follows from our definition
of the gauge transformations that the sum of the
squares of the left-handed gauge generators is the
same as that of the right-handed gauge generators.
Hence, the form of the Hamiltonian appearing in
(5.20) is quite general.

The interaction term in (5.20) has been chosen,
following Kogut and Susskind, to be given as the
operator which multiplies any wave function by
the character of the fundamental representation.
This is not the most general thing one can do; for

3. The Hamiltonian of the general non-Abelian theory Using the orthogonality relation for DJ functions
we obtain

a Jt~ =(2j + 1) f dg f(g)Df~"'(g) . (5.22)

Defining the projection off (g) onto its spin-j part
to be

(5.23)

we obtain

f(g)=(2j+1)g f dh f(h)Di"~'(g)

=dj f dh f(h)X'~'(g 'h)*

=d f dh'f (gh')X'J'(h')*, (5.24)

where dj is the normalization factor (2j+1). It
follows from this discussion that in order to pro-
ject a function of the link variables onto its gauge-
invariant part we integrate it against the constant
function, and to project onto a configuration with
sources we integrate it against the appropriate
character. To be exact, the gauge-invariant projec-
tion of a function g(. ..,R~, ... ) is

(p q)(,R, ...)=g f dg( i ) it(. . .,g '( i )R g( i+n), ... ) (5.25)

and the projection onto a state with spin-j sources at pi and p2 is

p„„„„=dj'g f dg( i ) p(. ..,g '( i )R g( i +n), }X"'[g '(.p. .i)]*X"'[g '(pi)]* (5.26)
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B. SU(2) mean-field theory

Equation (5.11) defines a mean-field approximation to the SU(2) gauge theory. This is by no means the
most general mean-field wave function which one can choose, but it does provide a simple one-parameter
family of variational wave functions and has reasonable behavior in both the strong and weak-coupling lim-
its. If one takes y~O, one obtains the exact ground-state wave function for the infinite coupling-constant
limit of the gauge theory. If one takes y~ ao one obtains a 5 function over the group parameters, which
maximizes the expectation value of all X"~ '(R) as it must in the limiting of vanishing coupling constant.
The small vibrations around the weak-coupling point are not treated as well in the mean-field approximation
as in the Hartree-Fock approximation, but one must pay a price for having only a single variational parame-
ter.

To derive the effective statistical-mechanics problem equivalent to this class of variational wave functions,
we must compute the partition function

Z—= (tp~&
~
g)=g f dR g f dg( i ) itl(. ..,R, ...) f(.. .,g '( i )R g( i+na), ... ) . (5.27)

Since the mean-field wave function is a product of independent link wave functions, carrying out the R~ in-
tegrations is quite straightforward. Each R~ integration gives a factor

=f dR +exp — exp
j(j+1)

2y

l (1 +1) (2j+1)(2l+1)X'l'(R~)~X"'[g '( i )R~g( i +n)] .
2y

(5.28)

Substituting the definition of the character as a
trace of D'l' functions, using the fact that the D'J'

functions are the representation functions of the
group, and using the orthogonality relations among
the D'~' functions we obtain

=exp — (2j+1)Xi [g ()g( '
+—„)]j(j+I)

y

and so

Z=g f dg( )gg .

(5.29)

(5.30)

where C, [(j,m, m')~] is a factor associated with

Having carried out the R~ integrations we have
reduced the evaluation of the partition function Z,
or normalization factor for the projection of the
mean-field state, to the evaluation of sums of in-

tegrals over the group variables. The explicit
structure of each integrand appearing in the sum is
determined by specifying an integer j~ for each
link in the lattice. We will now carry out the
group integrations explicitly and convert this for-
mula for Z into a partition function defined in
terms of sums over configurations which are speci-
fied by giving three integers per link. More specif-
ically, Z will be shown to have the general form

Z=ggC; [(j,m, m') ]gQ(j,m, m ),
(5.31)

every vertex of the lattice and is a function of only
those integer variables j~, m~, and m ~ belonging
to links attached to the vertex i . The functions

Q (j~,m~, m'~) are link dependent factors. For
the case of the mean-field wave function Q will be
a function of j~ alone and is given by

Q(j~) =(2j+1)exp j(j+1)
r

(5.32)

where we have, for simplicity of notation, dropped
the dependence on the link label on the right-hand
side of (5.32). The vertex factor C-, is a factor
which expresses the constraints imposed by gauge
invariance and is different for the cases of two and
three spatial dimensions. The Q-,. factors come
directly from the weighting factors appearing in
the expression for g~, (5.29), and nothing more
needs to be said about them. Deriving the form of
the factors C-,. is a bit more complicated and the
remainder of this section will be devoted to deriv-
ing their explicit form for the case of two spatial
dimensions. The generalization to three spatial di-
mensions is straightforward, and will not be
presented here.

Since the C-,. factors are associated with a single
vertex of the lattice they can be derived by fixing
attention upon that part of theyartition function
which involves the variable g ( i ). Isolating that
term in (5.27) we find, for the case d =2, that we
need to evaluate a sum over expressions of the
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form

V-, =f dg ( i )g~]g~3g~3g~4,

where we have taken W'=( i, l), W =( i,2),
&3=( i —n], 1), and W =( i —n3, 2), respectively.
We now proceed by rewriting g~ as

(5.33)

g~= Y(j)Tr(D]~'[g '( i )]D'J'[g( i +n, )]) (5.34)

where I (j) is the weighting factor in (5.29), and we

expand the trace as

Tr[D"'(g 'h)]=yD"' (g ')D]J'(13) ~

(5.35)

Note that in expanding the trace we have intro-
duced two more integer fields per link, i.e., m and
m', where we have adopted the convention of al-

ways ordering the indices m and m' so that the
matrix associated with the inverse of a group ele-

ment is subscripted in the order m, m' and the ma-
trix associated with the second group element al-

ways is subscripted in the order m', m. With these
conventions each term in (5.33) is specified by giv-

ing three integers for each link attached to each
vertex, and for each one of these terms it is a sirn-

ple matter to carry out the group integrations.
Dropping all factors associated with vertices other
than i we define

C-, [(j,m, m )~]=f dg(i )D ' [g(i ) ']D 2 '3[g(] ) ]D 3' 3[g( i )]D 4 4[g(i )] . (5.36)

We can now use the identity

D~~J'~ (g)D~ ~'(g) =g(n, i'
~
J,m', k,p' & (g, mk, p ~

n, i &D;;Is~

and its complex conjugate to rewrite (5.36) as

(5.37)

C-, [(j,m, m')~]=g (j],m ',jz,m
~

J',M'&(J M
~
j],m', j2,m &

X (&',M'
~
j„m ',J„m'&(q„m',J„m'] Z,M & . (5.38)

It follows immediately from the properties of
the Clebsch-Gordan coefficients that

7tl +01 =7' +Pl and Pl +01 =Pl +PS

which can be rewritten as

V m'=0 and V m =0. (5.39)

Hence, the two sets of integer fields, m and I',
separately satisfy divergence conditions of the sort
encountered in the treatment of PQED in two di-
mensions, and the constraints on their sums can be
removed in the same way. In this case removing
these constraints amounts to introducing two
integer-valued variables L and L' for each pla-
quette and defining

m=VpXL and m'=VgXL . (5AO)

The only nontrivial constraint is the one on the j
fields, and this is automatically taken care of since
the Clebsch-Gordan coefficients vanish for j's not
satisfying the appropriate constraints.

This completes our derivation of the form of the
partition function Z for a mean-field approxima-
tion to the d =2 SU(2) gauge theory. This parti-
tion function cannot be treated as easily as the par-

tition function for the Abelian theory, and the gen-
eral problem of evaluating this sort of function is
under study. To date it is not at all clear how
much of the general problem can be handled by
analytic methods, and how much requires the use
of a computer. What is clear is that even if one
has to go to Monte Carlo techniques to evaluate
this function, the fact that one has reduced the
problem by one dimension by working with the
Hamiltonian formalism, and the fact that for most
ranges of y only a few j values per link contribute
to the energy of the ground state should allow us
to work on significantly larger lattices than one
can deal with in the Euclidean formalism.

Introducing sources into our problem only modi-
fies things in a simple way; namely, it introduces a
limited number of distinguished vertices for which
the vertex factor is more complicated. This comes
about because one projects the mean-field wave
function against a character X'"[g ( j )] for any
vertex j at which a source is located, instead of
against the constant function. If one loosely sum-
marizes the formula derived for Z by saying that
only those configurations of j's, m's, and m "s
which add up to zero angular momentum at each
vertex contribute to the partition function, then in
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the case of sources of spin —,, only configurations

which add up to spin —, at the source locations and

zero otherwise contribute to those partition func-
tions.

Although no calculations of this sort have been
carried out by us, it is expected that for the case of
d =3 the mean-field approximation to the SU(2)
theory will incorrectly predict a deconfining phase
transition, in analogy to what happens for the case
of PQED in 2+ 1 dimensions. It is our hope that,
as for the case of (2+ 1)-dimensional PQED, this
will be remedied by going over to the Hartree-Fock
approximation. Unfortunately, dealing with the
Hartree-Fock wave function is considerably more
difficult for the non-Abelian theory than it is for
the Abelian theory, and we will close this section
with a disucssion of what we know about this
problem.

C. The Hartree-Fock approximation
to the SU(2) gauge theory

The Hartree-Fock approximation for the non-

Abelian gauge theory is defined in (5.12). Note
that even before gauge projecting, by using the per-
turbation theory form of h(W, W') in the defini-
tion of the differential operator and letting it act
on a sum of products of characters, we already in-

clude effects related solely to the fact that the

group is compact. While gauge projecting the per-
turbative wave function would force this anyhow,
this method of incorporating perturbation theory
into our formalism simplifies subsequent manipula-

tions considerably. Unfortunately, even with these

tricks the evaluation of the equivalent partition
function (and energy) for the Hartree-Pock approx-
imation is considerably more difficult than for the
mean-field case. The problem of finding the best
way in which to carry out this evaluation is under
study. We will limit the discussion in this section
to outlining the derivation of the partition function
in order to exhibit the new difficulties encountered
in the Hartree-Fock case. Our approach will be.
the brute-force procedure alluded to at the end of
the discussion of the Abelian theory. It may well
be true that this technique will be superceded by
better computational techniques in the near future,
however this analysis is very interesting. We will
show that a qualitative difference between the
Abelian and non-Abelian gauge theories emerges
even before we carry out an evaluation of the parti-
tion function. As in the preceding section, since
no explicit evaluation of energies, etc., will be
presented we will focus on the partition function
alone. Analogous formulas for the expectation
value of the energy, string tension, etc. can be de-
rived in exactly the same manner.

The principal problem encountered in evaluating
the partition function for the Hartree-Fock wave
function comes from the fact that the differential
operators appearing in the exponential in (5.12) do
not commute with local gauge transformations, nor
with one another on the same link. This fact
makes it impossible to carry out the gauge integra-
tions in closed form. However, one can evaluate
this expression as an expansion about the mean-
field partition function, and that is what we will
do in this section. We begin by rewriting (5.12) as

P»(. ..,R~, ...)=+exp —g(J J) 6(O) exp —QJ (W)~(W W )J (~ )1+X"'(g~), (5.41)

where we are able to break the exponential into the product of two terms because the operator J.J is a
Casimir operator of SU(2) and commutes with all of the operators J~(W). The first term in (5.41) acting
upon the product of characters produces the mean-field wave function, hence if we expand the second ex-

ponential is

exp —g J~(W)b(W, W')J~(W') =1—g J~(W)h(W, W')J (W')+(1/2!) + 0 ~ ~ (5.42)

then we can derive the partition function corresponding to the Hartree-Fock representation as a sum of
terms, each of which is the mean-field average of a product of operators. This is of course a crude pro-
cedure, and there is reason to believe that one can do much better than this in the future. However, we have
already seen in our discussion of the physics of PQED in 2 + 1 dimensions, that one can go a long way to-
wards analyzing the physics of the theory by means of such an expansion. We believe that in order to ob-

tain some intuition for the physics of confinement in 3+ 1 dimensions, it will be fruitful to begin by analyz-

ing the differences between the Abelian and non-Abelian gauge theory in this approximation.
Using the expansion given in (5.42) we can rewrite (5.41) as
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, ...)=g II exp[ —j (J +1)h,(0)]X"'(R )

+g .g ~(~,~ )Tr[T.'~'D' '(R~)]Tr[r."""(R~.)] IIX'"'(R „)+... , (5.43)

(5.44)

where we have used the fact that the character of a representation is simply the trace of the D function and
the fact that the left generator of SU(2) XSU(2) acting upon that representation is equivalent to multiplying
the D function to the left by the matrix representation of the appropriate generator of SU(2).

In order to compute the Hartree-Fock partition function we need to compute the overlap integral

ZHF ——f dg( i )f dR~p H(F. . . ,R~, . . . ) $H„(. . .,g '( i )R~g( i +n ),. . . ) .

Substituting (5.43) into (5.44) we obtain ZHF as a
sum of terms. The first contribution is the mean-
field partition function which we have already dis-
cussed. The remaining contributions have a struc-
ture which is different from those obtained in the
mean-field approximation. One difference is obvi-
ous from the form of (5.43); namely, that these
contributions to the partition function appear with
link factors involving matrix elements (T,'J')„on
some of the links. The second, more interesting,
difference is that when computing the effects of
terms of this sort the condition that one only sums
over configurations of link variables for which the

I

angular momenta at a vertex add up to zero is no
longer correct. It must be replaced by the condi-
tion that one sums over configurations which add

up to angular momentum zero or one. Of course,
the vertex factors for the different configurations
are different. %e close this section by outlining
the derivation of this result.

In order to derive the general structure of the
expansion of the Hartree-Fock partition function
about the mean-field case, we only need to focus
on two typical terms which appear in the expan-
sion of (5.44). The first of these terms is of the
form

f« II f d ( ) II y"(R )' gb, (w, w')T [T„''D' '(R )]*T [T D' '(R )]

xII x"'[g '(i)R.~ g(i+ii, )] (5.45)

Now one can do the R~ integrations. As we already saw when we evaluated the mean-field partition func-
tion this leads to Kronecker 5's, and so (5.45) becomes

f dg( i ) g ~(~,~ )r,(~ ),
where the factors rb(W) are defined to be

r&(W)=TrtD"'[g '( j )]T&"DJ'[g( j +na)]J (5.46)

for W=( j,p). At this point one proceeds to evaluate the integrals over the variables g ( i ). As in the
mean-field case, we do this by expanding out the expressions for characters of products of group elements as
sums over products of D functions, and then we focus on one vertex at a time. In the case of (5.46) this
leads to the same set of vertex factors derived in the mean-field case; however, two of the link factors are
modified due to the fact that Tq'~' matrices appear in the traces in (5.46). One then sums over all insertions
of this sort.

The second sort of term one encounters in evaluating the Hartree-Pock wave function as an expansion
about a mean-field configuration is of the form

II f«, II f d ( ) II ~"'(R )* Z&(~,~').'(R ).,(R )II x"'[g-'( )R g( +.-,)],
where the factors rb(R~) are defined by

&j(R~)=TrITs 'D [g '( j )R~g( j +ii~)]J .

As before one now carries out the R~ integrations and obtains

(5.47)
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I dg( i } g b(W, W')ri, (W)rj, (W'),

where the link factors rb(W) are

r&(W) =Trf Tbj'D'J~[g '( j )g( j +n~)]J . (5.48)

Comparing (5.48) with (5A6) we see that there is an important difference in these two expressions in that the
matrices Ti',J' and Ti',

"' appear in different places in the trace. In order to compare the equations and carry
out the explicit integrations over the g( i } variables it is convenient to write the traces appearing in (5.48) as

Tr[Tqj'D'J'[g '( i )g( i +n )]I =D"'[g( i )],bTr[D' '[g( i )]T,' 'D'1'[g( i +n )]I, (5.49)

where the factor D"'[g( i )] comes from the fact
that the SU(2) generators transform as the basis
vectors of a spin-1 representation of the group
under the transformation T,~D (g) T,D '(g).
Substituting (5.49) into (5.48) we see that this sort
of term modifies both the link factors and the
"vertex factors" which one must use in evaluating
this contribution to the Hartree-Fock partition
function. The link factors are changed in the same

way as they were changed when we evaluated
(5.45) and (5.46); namely, by the introduction of
the matrix Tbj . It is the change in the vertex fac-
tors which is new, and it comes about because of
the extra factor of D"'[g( i )] appearing in (5.49).
In all of the preceding cases we did the g ( i ) in-

tegrations and derived the condition that only
J,m, m' configurations for which the sum of the
angular momenta at a vertex added up to zero
could contribute to the partition function. Howev-

er, when we carry out the same procedure for
(5.48) we see, substituting (5.49), that this condition
is changed at the vertices 1 and m. In this case
there is one additional D'" function appearing at
the vertices i and m and so, in order for the link

plus this extra vertex angular momentum to add

up to zero, the link momenta must add up to
spin-1. This feature of the expansion of the non-

Abelian Hartree-Pock wave function about its
mean-field part has no parallel in the case of the
Abelian theory. It has the effect of introducing a
new kind of charged medium into the effective
statistical-mechanics problem, and it is our hope
that the effect of this medium will be to wipe out
the deconfining phase transition which one expects
to find in the mean-field approximation to the
(3+ 1)-dimensional gauge theory.

VI. SUMMARY AND CONCLUSIONS

A. Pure gauge theories

In this paper we presented a formalism for car-
rying out nonperturbative gauge-invariant calcula-
tions for both Abelian and non-Abelian Hamiltoni-

an lattice gauge theories. One virture of this tech-
nique is that the formulation of the method is the
same for both the. Abelian and non-Abelian theory,
and when applied to the Abelian theory it simpli-
fies previous formulations of the Hamiltonian
problem without losing any of the results. This
method differs from other mean-field approaches
in that incorporates the requirement of gauge in-
variance exactly in all space-time dimensions, and
can be used outside of the framework of the
mean-field approximation. In particular, although
our focus in this paper was on application of these
methods to approximations which could be written
out analytically, it is a simple matter to incor-
porate these techniques into numerical procedures
such as real-space renormalization-group calcula-
tions. While this holds out the promise of allow-

ing us to accurately calculate the behavior of the
string tension for couplings of order unity, we have
already seen that one has reason to hope that
reasonable results might be obtained by carrying
out the generalized Hartree-Fock calculation which
we have described; that is, a Hartree-Fock calcula-
tion wherein the function b(W, W') is treated as
the set of variational parameters. As we have seen,
this kind of calculation would give reasonable re-
sults for PQED in 2+1 dimensions. To our
minds, the most exciting possibility at this time is
that a calculation of the gauge-projected
perturbation-theoretic wave function will lead to an
understanding of the physics of confinement in the
weak-coupling regime. As we indicated at the end
of the last section, we believe this for two reasons:
first, because this statement proved to be true for
PQED, and second, because a comparison of the
expansion of the Hartree-Fock wave function for
PQED and the SU(2) gauge theory revealed, at the
crudest level, significant differences between the
gauge-projected structure of the perturbative wave
functions. Obviously, we believe that one of the
most important things to do at this time is to ac-
tively pursue the Hartree-Fock calculation for the
non-Abelian theory.
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B. Introducing fermions

The introduction of fermions presents no new

difficulties in either the mean-field or Hartree-
Fock formulation of these methods. In the mean-
field approximation one chooses the fermion wave
function to be a product over sites of the same
single-site wave function, whereas in the Hartree-
Fock approximation one uses a generalization of
the fermionic free-field wave function. While, in
the case of systems with a large number of degrees
of freedom, this leads to additional complexity the
reduction of the combined boson-fermion problem
to an effective statistical-mechanical partition
function is quite manageable.

since one could take the perturbation-theory state
of two gluons in a global color-singlet state of non-
vanishing three-momentum. The nonvanishing
three-momentum forces this state to be orthogonal
to the vacuum state determined in the original cal-
culation. By plotting the spectrum as a function
of the three-momentum minus the vacuum energy
one should be able to estimate the glueball mass.
Obviously, all of these calculations are subject to
the usual caveats related to doing variational calcu-
lations and taking differences of upper bounds, but
one can only try and see how well the method
works.

D. Conclusion

C. Computing the hadron spectrum

Since the introduction of fermions into this
scheme seems to be an extension of the techniques
we have discussed in this paper, one very interest-
ing aspect of this sort of nonperturbative computa-
tional scheme is that it permits us to formulate the
problem of computing the spectrum of quark
bound states in a concrete way. The key point to
be made is that having computed a variational
form of the ground state one can consider carrying
out a variational calculation for the lowest-lying
states of nontrivial flavor; i.e., one could gauge
project states of the form

l@h.d.o ~ Xf P(31 32)+*(ii) +(i2)Pl@,.... &

(6.1)

The variational parameters in this problem are first
the "bound-state" wave function f p( j ), and then
the parameters appearing in the trial wave function

). Since the parameters appearing in the
vacuum part of the wave function are determined

by the computation of the vacuum energy density,
it follows that the only "freegarameter" in the
Problem is the function f p( j ); hence, Performing
the variational calculation for the energy of this
state will yield an equation for this fixed-time
"bound-state" wave function. A similar calcula-
tion is in principle possible for the "glue-ball"
spectrum of the theory with or without fermions,

This discussion briefly summarizes those aspects
of the formalism presented in this paper which we
feel merit the most study at this time. There will

be a great deal of work involved in learning how

best, in practice, to carry out the evaluation of the
partition functions of the effective statistical-
mechanics problems. At this time it is not possible
for us to say what the best balance between analyt-
ical and numerical methods will be, nor can we say
with certainty that the results one will be able to
obtain will be accurate enough to compare with ex-
periment. Nevertheless, we are heartened by the
way this problem works out in the case of PQED.
Even if one is forced in the end to use Monte Car-
lo methods for doing the statistical-mechanics
sums, the fact that one is always working in one
dimension less than the corresponding Euclidean
problem, and that one is doing discrete sums rather
than continuous integrations should make it possi-
ble to deal with more complicated systems on
larger lattices.
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