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An adjoint Higgs field with coupling P& is added to the Wilson lattice SU(2) in order

to study the interpolation between the pure SU(2) (PH ——0) and pure U(1} (PH = ao ) gauge

theories. Monte Carlo simulations support our theoretical expectation that the deconfine-

ment transition of the U(1) theory connects to the O(3) Higgs transition to produce a
two-phase structure in the P—Ptt plane. Implications for the physics of SU(2} confine-

ment and for the continuum limit of the Georgi-Glashow model are discussed.

I. INTRODUCTION

As a prototype, SU(2) lattice gauge theory pro-
vides the simplest example in which to explore the
physics of quark confinement. However, even this
model exhibits complex behavior which has yet to
be understood fully. Foremost among these is the
rapid crossover between the strong- and weak-

coupling regimes, with its concomitant sudden on-
set of asymptotically free scaling. ' Thus, it is
worthwhile to extend and modify the original
SU(2) action to attempt to achieve further insight
into the SU(2) dynamics. In this paper, we un-

dertake the study of a non-Abelian Higgs model
that interpolates between the familiar terrritory of
Abelian U(l) and the as yet not fully charted case
of SU(2). In particular, this will allow us to exam-
ine whether the role of Abelian U(l) monopoles in

generating confinement extends beyond U(1) into
the non-Abelian context, as has been suggested
by 't Hooft.

To connect SU(2) to U(1), we introduce on the
lattice an adjoint Higgs field (vector p, a=1,2,3)
coupled to the adjoint link variable 6'

~ with
strength PH,

C&'up= —, Tr(UraU rp),

where U is the usual link variable in the funda-
mental representation. This is a lattice version of
the Georgi-Glashow model for the symmetry

breaking SU(2)~U(1}. The Georgi-Glashow
model has two phases: a broken-symmetry phase
with an unbroken U(1) subgroup and a massless

photon, and a confining massive phase with a full

unbroken SU(2) symmetry. Thus, we also expect
two phases in the lattice model. We investigate
this structure via a combination of analytic
analysis and Monte Carlo calculations. We then
conclude with some comments on the relevance of
our lattice model for the broader issues of confine-
ment and the nature of the continuum theory.

II. THEORETICAL CONSIDERATIONS

In this section, we will first set the notation and
then proceed to study analytically the structure of
the P—Pit phase plane. Our theoretical work will

enable us to formulate a rough picture of the two-

phase (confinement and Higgs} structure of the
plane.

In the Euclidean lattice formulation, the gauge-
invariant contribution to the action SH(U, (b) of the
real unimodular vector Higgs field (b (n) on each
site n coupled to the SU(2) gauge matrices on the
link l from site n is given by

SH(U, P}=gP (n)dp(Uia(n))P '(n+1), (21)

where d'ap is the adjoint link variable (1.1).
The corresponding partition function is given by
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Z(P, PH )

=I [dg] IdU]Iexp —Sg (U) e
—i8

te" 0
UI ——ko+ ik3o.3=

0

+ SH( U,p), (2.2)

shows confining (area law) behavior for all values
of P. For P=O, we have a trivial model, with free
energy per site

r

1 1 —eF=
4

lnZ=ln
L H

+const. (2.5)

We therefore expect no phase boundaries along
this axis, and the P=O Wilson-loop area law per-
sists for all P&. As P~~ oo, we choose the uni-

tary gauge [jb(n) =(0,0, 1)] giving SH —833 a]ld
we parametrize link variable by UI ——ko +i k.o,
with ko +

~

k
~

=1, making each link diagonal,

where S~(U)=g]~~TrU& is the usual Wilson ac-
tion, I dU] I is the integral with respect to the
SU(2) Haar measure over all configurations of the
U's and similarly I dP I is the configuration in-
tegral over the ()]'s with the measure

d n
d()]((n) = 5 {(I] (n) —1) . (2.3)4~

This measure is that of the classical O(3) Heisen-

berg spin model, and (2.2) is the natural gauge-

invariant generalization of that model.
The boundaries of the P—PH plane can be easily

recognized (see Fig. 1). At PH ——0, this is just the
standard Wilson SU(2) model. According to stan-
dard lore and current numerical evidence, ' it under

goes no phase transitions. Thus, the Wilson loop,

(2.4)

In this limit we then obtain a U(1) theory with

P= 1/e(],

Z (P) =f t d ~] I exp Pgcos8]
P

(2.6)

The model then reduces to the O(3) Heisenberg
spin model. This model has a well-studied
second-order transition from a massive phase for
small PH to a Goldstone, massless phase at large

PH. Rigorous bounds on this transition exist. An

upper bound given by Frolich, Simon, and
Spencer states that

d k 1

(2]r) 4+sin (k "/2)
(2.7)

for an O(E) spin model in d dimensions. The
lower bound is given by mean-field theory"

(2.8)

For our case, these bounds translate into

0.75 &P,*, &0.93 . (2.9)

It has been shown rigorously that the area law
which occurs at small P fails at weak coupling,
where the system is in a Coulomb, massless phase .
This phase transition has been observed in Monte
Carlo simulations to be second order and to occur
at P=1.0. Finally, at P= ((c, up to a gauge
transformation the adjoint matrix becomes diago-
nal,

d'
p
———, Tr(U]r, U] rg)~5~p.

1

Trivial

Confined

d O(3)

Heisenberg
.' Spin

We can extend our analysis away from the boun-
dary through perturbation theory. First, we will
consider the effects on the U(1) model of unfreez-

mg the non-Abelian "charged" vector modes for
small 1/PH. Consider the unitary gauge and
para][netrize the link variable by

ei8 0U=, , (1—A, ' —A, ')'"

+i (A ] 0 ] + A 2(T2), (2.10)

Wilson SU(2)

FIG. 1. Theoretical expectation for the P—PH phase
plane.

where A ] +id 2 are charged fluctuations. Expand-
ing S]] and SH, Eqs. (2.1) and (2.2), to quadratic
order ln 3 ) 2, we have
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r r

Z= I I d8i I I d Ail Iexp P—H+(Ai'+Ai')i exp Pgcos8p 1 —
2 g(Ai'+Ai')i

I P 1cI'
(2.11)

Performing the Gaussian integrations for P»y P gives
r

2Z= I [d81 Iexp P ff+cos8p P ff=P 1'p ' '
PH

(2.12)

(2.13)

This result tells us that to first order in 1/PH, the non-Abelian theory gives an effective U(1) theory with

coupling P,ff. Thus, the phase transition moves off the U(1) line towards the O(3) line, We will verify this
shortly in our Monte Carlo calculation.

Similarly, we can expand for small PH around the pure SU(2) theory, obtaining the effective action

4
PH 2Trz Up+ coilst XPH,

where Trz(U) =Tr (U) —1 is the trace in the adjoint representation. Thus, the first nontrivial correction is

the addition of an adjoint [i.e., SO(3)] gauge term, identical to the one studied by Bhanot and Creutz. They
find a first-order line extending from Pz ——ao that ends at (P,Pq ) = (1.6,0.9), where to lowest order

Pz ——3(PH/6) in our effective action. (Their modified action is —,PTrUp + 3 Pg Try Up. ) The ending of
the first-order line implies at the least that the introduction of PH does not cause a transition very close to
the Wilson PH ——0 line. We shall discuss this further after analyzing the Monte Carlo results.

A similar perturbation expansion can be applied to the P= ao Heisenberg theory yielding

8„(n)
SH(Up)=g 1 — " p(n) p(n+p) —8&(n) [p(n))&p(n+p)]+ —,'[8 (ii) p(ii)][8 (n).p(ii+~)],

n, IJI,

(2.14)

where UI has been expanded as

III. MONTE CARLO RESULTS

We have performed Monte Carlo calculations on

periodic lattices of size 4 and 5 sites and meas-

ured the Wilson action per plaquette,

Ep —— lnZ = ( —, Tr Up )
1 8

6L, ' dP
(3.1)

ie v/2 &gg pU=e " =1+
2 2

We see that here the lowest-order brings in addi-
tional P interactions into the effective action.
Thus, a finite 1/P does not just produce an effec-
tive renormalized O(3} model, so the behavior of
the critical line is more difficult to predict.

From the above discussion, we are led to conjec-
ture the phase structure depicted in Fig. 1. We
have speculated that the U(1) transition at PH ——ao

and the P= oo O(3) transition are connected to
separate the Higgs phase from the confinement

phase. We now turn to Monte Carlo simulations

to test this expectation.

I

as well as the Higgs action per link

M= 1nZ=( —,P (n)d' P~(n+p)),a

4L r)PH

(3.2}

employing the unitary gauge [P (n )=5~3]
The results for the phase boundaries are shown

in Fig. 2. As anticipated in the previous section,
we see that there is a second-order phase transition
line connecting the U(1) and the Heisenberg transi-
tion points. The location of the U(1) critical point
agrees with its value previously determined by
Monte Carlo studies, while the location of the
Heisenberg point, although not determined by our
data as accurately, is consistent with the theoretical
bounds.

One should note that we found no evidence for a
separate line pointing towards the SU(2) crossover
at P=2.2, as seen by Bhanot and Creutz in their

model. However, this is not inconsistent with our
result that for small PH these models coincide. In
fact, if one computes the PH which corresponds to
the critical Pz at which their first-order line ends,
one obtains PH ——4.4. Not only is this clearly out-
side the perturbative regime where the identifica-
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FIG. 2. Monte Carlo results for the phase plane.

tion of the two models is valid, but it actually lies
in the vicinity of our second-order line. The lack
of such a first-order line pointing to the crossover
provides evidence for the conclusion that the U(l)
behavior is irrelevant for confinement in SU(2).
We will return to this paint in the conclusion.

Finally, we check the validity of our first-order
formula Eq. (2.12) for the transition near the U(1)
line. Setting p,rr=0. 98 for a 5 lattice, we obtain

I

0 .2 .4 .6 .8 1.0 1.2

FIG. 3. Comparison of Monte Carlo results for a
critical line with first-order perturbation theory in 1/PH.
(The rigorous bounds are indicated on the 1/P=O axis. )

ine the relevance of this work to the broader ques-
tions of confinement and the continuum limit.

1 1 2

P, 0.98 Prr
(3.3)

IV. DISCUSSION

To check this, it is canvenient to plot our data on
reciprocal axes, 1/P=ec and 1/PH (Fig. 3).
Indeed, we see the correct linear behavior for small

1/pH. Moreover, if we use the first-order formula,

As a generalization of the pure SU(2) theory, it
might be hoped that an analysis of our model can

2 2
Ep= 1 — EU(]) p 1

pH pH
(3.4)

where EU~i~ is the U(1) energy per plaquette, the
agreement for pH

——20 is very good, while for
PH ——4.5 the nonlinear corrections are clearly im-

portant (Fig. 4). Obviously, there are order-1/pH2
corrections visible even for 1/pH ——0.05, so the
range of validity of the first-order approximation
is limited. On the other hand, it is remarkable to
note the smooth behavior of the entire transition
viewed in reciprocal couplings.

We thus see that our theoretical expectations are
fulfilled by the Monte Carlo data. We now exam-

.5
P

.2

0 I I I

.2 4 .6 .8 I,O 1.2 1,4 1.6 L8 2.0 2.2 2.4

FIG. 4. Comparison of Monte Carlo data for E~ with
the linear perturbation from the U(1) theory [Eq. (3.4)].
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lead to more insight into the dynamics of confine-
ment. In fact, 't Hooft has suggested that con-
finement might be understood as a "condensation"
of monopoles with U(1) charge. If this were to be
the case, we would expect to see some evidence
that the SU(2) crossover was connected to the U(1)
dynamics. Our work, however, does not seem to
support this idea. There is no hint of any relation-
ship of the monopole-induced second-order phase
transition and the SU(2) crossover.

A possible description for the behavior of the
second-order phase transition is as follows. As PH
decreases from oo, the effective mass of the mono-
pole decreases due to the availability of non-
Abelian paths in group space. The monopoles can
then condense at a larger value of P, and the phase
transition disappears. Thus, the monpoles exhibit
trivial dynamics for small PH, and so have no
bearing on the SU(2) crossover and the problem of
confinement.

All this is in contradistinction to the recent re-
sults concerning the relation of Z2 degrees of free-
dom to the crossover. There, the densities of the
Z2 monopoles were shown to undergo dramatic
changes at the crossover. Furthermore, directly
manipulating the Z2 dynamics via a chemical po-
tential for Z2 monpoles changes the crossover to a
first-order transition. Finally, even the Bhanot-
Creutz model, which superficially seems related to
our Higgs model as shown in Sec. II, can be under-
stood through its underlying Z2 dynamics.

Apart from the question of confinement, our
model possesses interesting physics in its own

right. Specifically, it allows a rigorous definition
of a fixed-length Higgs-field version of the contin-
uum Georgi-Glashow model. To make contact
with the continuum theory, it is necessary to exam-
ine the behavior of the lattice model under
renormalization-group transformations. Under a
chage of scale (such as block spinning), the fixing
of a physical mass defines a flow in coupling-
constant space. A second-order transition point, or
critical point, is an unstable fixed point under such
a transformation. That is, the flow on opposite
sides of the point is towards two different limiting
theories. The continuum theory is defined by
shrinking the lattice spacing to zero. We can do
this by going backwards along the flow lines, end-

ing up, of course, at a critical point. There, the
correlation length measured in lattice spacings
diverges or, keeping the correlation length (the

physical mass) fixed, the lattice spacing goes to
zero.

Our work suggests the phase flow diagram
schematically sketched in Fig. 5 for the adjoint
Higgs model. The second-order points fall into
two classes. First, a line of critical points whose
flow on either side is to P=O, PH ——0 and to
P= oo, PH

——oo, respectively; and second, three iso-
lated critical points each with different flow struc-
tures. The first of these isolated points, point A,
on the U(1) line defines on one side regular QED
and, on the other, a confined phase of QED with a
condensate of magnetic monopoles. The second,
point 8, on the 0(3) line, is the usual critical point
of a Heisenberg spin system. The third, at P= oo,
P~=0, is the critical point of pure SU(2). The
fact that each of these three critical points
possesses only a single flow line associated with it
allows the theory infinitesimally off these flow
lines to differ from the theory on one of these flow
lines. For example, it is known from Elitzur's
theorem' that (P) is identically zero everywhere
in the interior of the phase plane due to gauge in-

variance. For the Heisenberg model (P= oo ), on
the other hand, it is clear that (P ) is nonzero in
the ordered phase.

The line of critical points, which will correspond
to different versions of the Georgi-Glashow model,
remains to be examined. Approaching the line
from below, one obtains a confined, SU(2)-
symmetric, massive theory by holding the string
tension fixed. Incidentally, this theory provides a
viable alternative to conventional QCD, where the
Higgs field describes a massive scalar gluon in ad-
dition to the usual quark and vector-gluon consti-
tuents. Approaching from above, keeping the mass

0 P oo

FIG. 5. Sketch of renormalization flow diagram in
the P—PH plane.
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of the vector meson fixed defines a broken SU(2)
theory with a massless photon. Such a theory
[generalized to SU(3)] was considered by DeRujula,
Giles, and Jaffe' as a possible mechanism for
quark liberation at long distances, but as pointed
out by Georgi, ' a second-order transition is neces-

sary for such a scheme to be consistent with a
linear potential at short distances. The resulting
theory has a free parameter, denoting the location
on the line. Our continuum theory is then defined

by two parameters, the physical mass and a single

coupling constant corresponding to the above free
parameter. However, a naive continuum descrip-
tion of the standard Georgi-Glashow model con-
tains three free parameters: the gauge coupling,
the Higgs self-coupling, and the Higgs mass. It is
not immediately clear, then, how to connect our
theory with this one. There are two possibilities.
It may be that a consistent, nonperturbative defini-
tion of the model does indeed contain only two
parameters and cannot be studied in perturbation
theory. The situation would then be similar to
what is believed to occur in A,P theory in four di-

mensions. There, a rigorous field theory can be de-

fined by going to the Heisenberg transition
corresponding to a nonlinear 0. model, and it is be-

lieved that the one parameter (i.e., the mass scale)

theory obtained is unique and is in fact free
(X=O). On the other hand, there may be an alter-
native lattice model which allows a more general
continuum limit. Such a question is clearly worthy
of further study.

During the final phase of this investigation we
received a report describing related work by Lang,
Rebbi, and Virasoro. ' They performed Monte
Carlo calculations on a finite-group analog of the
adjoint Higgs model herein considered. The phase
structure they obtained contains the transition line
observed here, along with other transitions directly
attributable to the finiteness of their group.
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