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The instabilities of quantum gravity are investigated using the path-integral formula-
tion of Einstein s theory. A brief review is given of the classical gravitational instabilities,
as well as the stability of flat space. The Euclidean path-integral representation of the
partition function is employed to discuss the instability of flat space at finite temperature.
Semiclassical, or saddle-point, approximations are utilized. We show how the Jeans insta-

bility arises as a tachyon in the graviton propagator when small perturbations about hot
flat space are considered. The effect due to the Schwarzschild instanton is studied. The
small fluctuations about this instanton are analyzed and a negative mode is discovered.
This produces, in the semiclassical approximation, an imaginary part of the free energy.
This is interpreted as being due to the metastability of hot flat space to nucleate black
holes. These then evolve by evaporation or by accretion of thermal gravitons, leading to
the instability of hot flat space. The nucleation rate of black holes is calculated as a
function of temperature.

I. INTRODUCTION

Gravity, unlike the other fundamental forces of
nature, is universally attractive and cannot be
screened. This property of gravity, to which we
owe our ability to detect this incredibly weak in-

teraction, is the source of many instabilities.
The instability of gravity already appears in clas-

sical Newtonian theory. As Jeans' showed, a stat-
ic, homogeneous nonrelativistic fluid is unstable
under long-wavelength gravitational perturbations.
Consider a nonviscous fluid of mass density p,
pressure p, and velocity v that satisfies the equa-
tion of continuity and the Navier-Stokes equation

Bp + V.(pv)=0,

Bv 1+(v V)v= ——Vp —g,Bt p

where g is the gravitational field, given by

Vgg=O, V g= —4mGp.

One now considers small perturbations 6p, 6p,
5v, and g about the static, homogeneous nongravi-
tating fluid of constant density p and pressure p.

One finds that they are governed by the equation

85
at2

P' 2V2$p 4~Gpf (1.3)

ks (4trGp/V )'~—— (1.5)

This instability is due to the attractive nature of
gravity, which, in contrast to the damping of
charge density fluctuations in a plasma, "anti-
screens" mass density fluctuations thus leading to
their amplification.

The same instability occurs if we consider a gas
in isothermal equilibrium in a finite volume. Sup-
pose that we have a spherical ball of perfect gas

where V, is the speed of sound in the fluid
(V, =c)P/dp). Note that the right-hand side of
Eq. (1.3) has the form of a "mass term, " but with
the wrong sign. Therefore the solutions of this
equation

5p=C exp(i k x icot), —

(1.4)

co=(k V, 4trGp)'i—
will grow exponentially if the wave number k is
less than kJ, where
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that is in isothermal equilibrium under its own
gravitational field. ' At each point, the equation
of state is

p =pT/m, (1.6)

where p is the pressure, p the mass density, T the
temperature, and m is the mass of each molecule.
The equation of hydrostatic equilibrium for such a
system is

(1.7)

where r is the distance from the center of the
cloud. At the origin, r=0, p'(r)=0 Th. e final
boundary condition is the value of the pressure at
the outermost edge of the cloud which must be
specified. These conditions determine the solution
to (1.6) and (1.7). Suppose we surround the cloud

by a spherical box of variable radius R, with exter-
nal pressure P, containing 1V molecules, and whose
walls are fixed at temperature T. Then it follows
that

BP
BR

P(8n.PR Gm N )—
R (4m.PR NT)—(1.8)

along the curve of equilibrium.
For R sufficiently large, then (dP/dR ) & 0 as is

usually expected. However, if R is decreased, then
the pressure increases to a maximum of

Gm X
Sm.R

(1.9)

Thereafter an instability sets in since (Bp/BR ) &0.
Any small fluctuation in the gas that decreases the
pressure will decrease the volume of the box. This
will decrease the pressure further, and so the sys-
tem is unstable.

It is essentially this mechanism that causes stars
to condense out of clouds of interstellar gas. This
instability is terminated when a cloud becomes suf-
ficiently hot that nuclear reactions are initiated and
support the cloud against further collapse. Again
the basic reason for this instability is due to attrac-
tive nature of gravitation.

In the general theory of relativity, as formulated
by Einstein, gravitational instabilities are even
more severe, since the spacetime manifold is
warped by the presence of matter. Gravitational
collapse can give rise to singularities in the fabric
of spacetime. Thus, for example, a star with a
mass greater than the Oppenheimer-Volkoff limit
(currently estimated to be about 1.4 M) cannot

support itself against gravitational collapse. After
collapsing to a white dwarf (a degenerate gas of
electrons) and then to a neutron star (a degenerate
gas of neutrons), it will continue to collapse.

It seems that this collapse will lead first to the
formation of an event horizon and then to a space-
time singularity. Thus, a black hole is formed as
a direct result of this type of instability. (It could
be that a spacetime singularity is formed without
an event horizon: a naked singularity. Such
behavior is ruled out by the cosmic censorship hy-
pothesis. However, this conjecture has not been
proved. ) The type of singularity associated with a
black hole is relatively mild. If however we as-
sume that the universe is well described by a
Friedmann-Robertson-Walker model with a density
larger than the critical density of 2X10 9 gcm
which has not been observationally ruled out, then
the universe itself is unstable in the sense that it
too must undergo collapse leading to a spacelike
singularity to the future of all observers.

Given the inevitable instabilities of gravity one
might worry about the stability of the ground state
of quantum gravity. One is accustomed to regard-
ing Minkowski space as the ground state, or vacu-
um, of quantum gravity. Small perturbations
about this vacuum are certainly stable; however
one might find that flat space is quantum mechan-
ically unstable. This would occur if the "poten-
tial" for gravity had the form given in Fig. 1, so
that the metastable vacuum A would decay by tun-
neling through a barrier to some configuration B.
This concern is nontrivial since there is no way to
define a local energy density in gravity whose posi-
tivity ensures stability. Moreover the Einstein ac-
tion is not positive definite, even when continued

FIG. 1. The form of the potential for gravity at zero
temperature that would hold were there "instanton
bounces" in gravity.



332 GROSS, PERRY, AND YAFFE 25

to Euclidean space (i.e., the curvature can be arbi-
trarily large and positive or negative). Thus the
Euclidean functional integral formalism of quan-
tum gravity is not well defined. One might be
worried that this implies the nonexistence of a
ground state.

It is remarkable that the issue of the stability of
flat space was only settled recently. First Schoen
and Yau' proved that there are no instanton
bounces, i.e., solutions of Einstein s equations with
Euclidean metric that asymptotically approach flat
space, which would represent the tunneling
through a barrier. (We shall return to discuss the
meaning of such instantons in Sec. II.) This im-

plies that flat space is stable under processes that
can be treated by semiclassical (or WKB) methods.
Second, Schoen and Yau" proved the long-out-
standing conjecture that the total energy (defined
in terms of the asymptotic behavior of the gravita-
tional field) of asymptotically flat manifolds
(which satisfy Einstein's equations in the presence
of matter that itself has positive energy in any
frame) is positive semidefinite, and that only Min-
kowski space has zero energy. ' This is the posi-
tive-energy theorem, which since energy is con-
served seems to preclude the possibility of flat
space decaying by any mechanism.

In this paper we explore the instabilities of Min-
kowski space at a finite temperature. Here, unlike
the case of zero temperature, we find two distinct
sources of instability. These imply that hot flat
space is unstable and will decay. This result ob-
tains for any finite, however small, temperature.

One source of instability is expected on the basis
of the classical Jeans analysis. Hot flat space is
not empty. It contains a gas of gravitons in ther-
mal equilibrium, which are a source for the gravi-
tational field. For nonvanishing temperature, flat
space contains "matter. " -- Thus one expects a Jeans
instability to occur for large-wavelength density
fluctuations of the thermal gravitons. We shall
show how this instability arises when one uses
functional integral techniques to examine the parti-
tion function for quantum gravity.

The second source of instability is the nucleation
of black holes. This is a quantum effect, which
cannot be understood on the classical level. We
discovered this effect by investigating the contribu-
tion of Euclidean instantons (i.e., the Euclidean
section of the Schwarzschild metric) to the func-
tional integral. These instantons have been dis-
cussed by many authors, notably Hawking who at-
tempted to use them to deduce the thermodynamic

properties of black holes. ' Our interpretation of
their meaning is somewhat different. We found
that there exist small fluctuations about these in-
stantons that decrease the action. ' These give rise
to an imaginary part in the free energy of flat
space, which is to be interpreted as a finite lifetime
for decay. The decay proceeds by thermal (=
quantum) fluctuations nucleating black holes of ra-
dius R =Pic/4vrkT and mass=Pic l8mGkT (.where
T is the temperature). These then either expand or
contract by absorption or emission of gravitational
radiation.

We shall be discussing throughout the paper the
quantum version of Einstein's theory. As is well

known, this theory is problematical at high ener-

gies or small distances due to its nonrenormaliza-
bility. However we believe that our considerations
should be insensitive to possible short-distance
modifications of the theory (e.g., R or R' R,b

terms in the action, supergravity, etc.) as long as
we restrict the temperature T to be small (in natur-
al units, kT « mac ). We shall use units in

which A'=c =k =1, and often will express masses,
inver'se lengths, and temperatures in units of the
Planck mass mp = (ficlG)'~ —or mp ——2. 18X 10
g. When discussing spacetime, we shall use the
signature ( —+++).

The main purpose of this paper is to use the Eu-
clidean functional integral formalism to explore the
instabilities of gravity. It is evident that gravity
must exhibit instabilities by the arguments of this
section. The Jeans instability, of course, has been
known since 1902. Also, it is clear that a second
instability should exist. If we imagine a box whose
walls are kept at constant temperature, then it will
certainly be filled with thermal gravitons. Now if
we assume that this system is in some sense ergod-
ic, then all points in phase space will eventually be
reached from any reasonable initial state, for exam-

ple, from a configuration of thermal gravitons. In
particular the spontaneous formation of a black
hole (as opposed to collapse via the Jeans mechan-
ism) would appear to be a possible process. If this
process can happen, it will happen. However, this
argument does not yield the rate for such events to
occur. One of the main results of our work is the
calculation of this rate from the Euclidean formu-
lation of gravity.

Black-hole formation, via nucleation or via the
Jeans instability, renders the canonical ensemble ill
defined. This is because, even classically, some
trajectories run into the boundaries of the allowed
region of phase space. Such a catastrophe happens
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when a black hole starts to grow and engulfs the
box in which the system is contained. One way
out of this impasse would be to use the micro-
canonical ensemble to discuss the thermodynamic
properties of gravity. We do not know how to car-
ry out such a program.

Although this paper deals with the instabilities
of self-gravitating systems its conclusions bear on
an issue of much greater importance. In the func-
tional integral formulation of quantum gravity the
following question arises. Should one, when sum-

ming over path histories of spacetime, include the
contributions of all possible metrics, independent
of their topology'? In ordinary field theories (e.g. ,

gauge theories) the issue of which topological
classes of field configurations must be included in
the path integral is resolved by energy considera-
tions. Thus for example instantons must be in-

cluded in the Euclidean path integral (for Yang-
Mills theories) in order to construct the correct
ground state. Here one can show that this must be
so by continuously deforming the naive vacuum
into a widely separated instanton-antiinstanton pair
with a finite cost in action. Thus one can smooth-

ly construct a configuration that has a nonzero to-
pological charge in any given finite volume.

In gravity, however, energy considerations are
notoriously problematic. Furthermore the topology
of spacetime is not additive —one can add handles
to a manifold (with a positive increase of the Euler
character) but there are no corresponding "antihan-
dles. " In fact there is no convincing argument that
one must include anything but continuous defor-
mations of flat space in the path integral. It
would be very desirable to investigate a set of phy-
sical situations in which this issue arises. Given
that one has little hope, with present techniques, of
going beyond semiclassical approximations this
means that one must come up with very special si-
tuations. These must have the property that they
give rise to boundary conditions for the Euclidean
functional integral that allow for the existence
of finite-action gravitational saddle points (instan-
tons) with nontrivial topology. The only case we
know of where this condition is met is the example
of hot flat space discussed below.

In the case of the canonical ensemble the
boundary conditions for the Euclidean functional
integral for the partition function do indeed allow
two kinds of saddle points. There is, of course, the
topologically trivial fiat-space saddle point, but
also the Schwarzschild instanton with nonzero
Euler character. Thus we can address the impor-

tant issue of whether one should or should not in-

clude strange topologies in the path integral in the
context of a well-defined calculation.

As described below, we find that the effect of
summing over Schwarzschild instantons is to pro-
duce a totally reasonable physical process, namely,
the nucleation at finite temperature of black holes.
If we were to ignore these topologically nontrivial
manifolds there would be no mechanism, in the
semiclassical limit, of producing this expected pro-
cess. We therefore present this calculation as evi-

dence that one should include nontrivial topologies
in the path integral, and that no strange effects
need emerge.

The remainder of the article is arranged as fol-
lows. In Sec. II we discuss various quantum-
mechanical systems at finite temperatures, by ex-

ploring the functional integral representation of the
partition function. We discuss the stability of vari-
ous systems. We show how many of the features
of the finite-temperature behavior can be calculated
using semiclassical approximations. We then ex-
amine the issue of stability in gravitation. In Sec.
III, we show that the functional integral can be
used to explore the gravitational vacuum at zero
temperature. Perturbation theory is discussed, and
we conclude that, at least semiclassically, the
theory is stable. In Sec. IV, we extend our treat-
ment to perturbations of flat space at finite tem-

perature. We show how the Jeans instability
emerges in the language of quantum field theory.
In Sec. V, we discuss the role of gravitational in-

stantons in the finite-temperature case. We discov-
er that there is a further instability associated with
the nucleation of black holes. This process cannot
be described by perturbations of flat spacetime.
Finally, we discuss some of the physical conse-
quences of this instability in Sec. VI.

II. TOY MODELS

In this section we consider quantum theories
describing a single degree of freedom. In particu-
lar, we discuss how certain features of the finite-
temperature behavior of a system may be extracted
from the Euclidean function integral formalism.
Most of this material is, or should be, well
known. ' Our intention is to remind the reader of
various points which will prove useful when we ap-

ply familiar techniques in an unfamiliar context.
The finite-temperature theory is defined as that

given by the canonical ensemble. Thus, the density
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matrix, exp ( —PH) (P—:1/T, T is the temperature)
represents the equilibrium behavior of the system
that is weakly coupled to an external heat bath.
All thermodynamic quantities may be extracted
from the partition function

Z—:Tr[ exp( —PH)] .

For example, the free energy ~—:—P 'lnZ. The

expected value of any observable 6 is given by

(6') = Tr[d'exp( PH—)]/Z . (2.2)

Functional integral representations may be de-
rived for these quantities by repeatedly inserting a
complete set of states. If the Hamiltonian has the
standard form H = —,p + V(x), then the partition
function is given by

Z= lim
N —+oo

dP ) dPN

27Th 27' dX) ' ' dXN PN — H XN XN PN

T

X PN &
1 ——H xN & P~ 1 ——H x& X] P

= lim
N~ oo

dp] 1

(dx;) exp ——g [—,p; + V(x;)+ip;(x;+, —x;)/e]
2m'

'2
(dx;) e. 1 x;+ &

—x;= lim )~2 exp ~ —— — +V x;
(2M@)'~ R,. 2 e

= J &X(t) exp ——I dr[ —,x(t) + V(x(t))] (2.3)

Here e=Pfi/X and x~+~=—x~. The argument of the exponential is ( —I/A') times the Euclidean action,
SE = ~dt[ , x + V(x—)],and the integral is over all periodic trajectories with period pter0

If we rescale time t~rjhr, then the action becomes

—S,( ——P I dr[ —,[x(r)/Br] /(Ph') + V(x(r))J .

This shows that the action of any nonstatic trajec-
tory becomes arbitrarily large as (PA')~0. There-
fore, for small (PA') the integral is highly peaked
about static trajectories, and in the (pR)~0 limit
the quantum partition function reduces to the clas-
sical result

Z, i
——J dx exp[ —PV(x )] .

This limit may be regarded as either the classical
(A~O, I3 fixed) limit, or the high-temperature
(P~O, fi fixed) limit; the important fact is that the
temperature becomes arbitrarily large compared to
the spacing between quantum levels.

Typically of more interest is the semiclassical
limit (Pi~0, PA fixed). This is equivalent to the
weak-coupling, g ~0, limit if we replace V(x) by
the rescaled potential (1/g ) V(gx). In this limit
the integrand is highly peaked about trajectories
which minimize the classical action. These are

I

periodic trajectories obeying the Euclidean equa-
tions of motion

x(t)+ V'(x(t)—) =0 . (2 4)

Suppose that the potential has the simple form
shown in Fig. 2, with V(x) having a single
minimum with positive curvature:

FIG. 2. An example of a potential for which there is
no instability.
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V(x) = —,co x +O(x') .

Then the only classical trajectory obeying (2 4) is

simply x(t)=0 E. xpanding about this trajectory
yields

Z= f &x(t)exp ——f dt[ , (x—+cox )
PCflOd1C

+ O(x )j a b

=[det+( —5, +co )] '~ [1+O(iri)]
—Pfao/2

[1+0(iil)] .
e

—PACO
(2.5)

FIG. 3. An example of a potential that exhibits an
instability. A particle with zero energy at x=0 can tun-
nel into region x&b.

(Here, det+( —5, +co ) indicates the determinant
of ( —8, +co ) on the interval [O,Ph] with periodic
boundary conditions. See Appendix A for the
evaluation of such functional determinants. ) This,
of course, is the standard result for a harmonic os-
cillator. Higher-order terms in the saddle-point ex-
pansion around x(t) =0 yield an asymptotic series
in powers of i'.

Now consider a potential of the form shown in
Fig. 3. x =0 is now only a local minimum of the
potential. The genuine equilibrium thermodynamic
behavior of the theory obviously depends crucially
on the behavior of the potential for x )b Aparti-.
cle initially placed to the left of the barrier will
have a finite probability of escaping. However, if
the associated lifetime is very long, then it makes
sense to speak of the metastable quasiequilibrium
state describing particles confined within the po-
tential well. Two different effects contribute to the
finite lifetime of this state, quantum-mechanical
tunneling through the barrier, and classical thermal
excitation over the barrier. At sufficiently low
temperatures tunneling will dominate, while at
high temperatures thermal excitation will dom-
inate.

To calculate the thermodynamic properties of
this metastable state, one may begin by expanding
the functional integral (2.3) about the local
minimum x(t) =0. This yields a free energy

, %co [ 1+(2/pf—ico) in[1 —exp( pirtco) ]J+ O(fp—) .

(2.6)

P is real to all orders in the perturbative expan-
sion around x =0: no sign of any instability is
found. However, x(t) =0 is no longer the only
periodic solution of the Euclidean equations of mo-
tion (2.4). Since these equations are identical to
the usual classical equations of a point particle
moving in the potential —V(x), it is trivial to see
that other periodic solutions exist which describe a
particle oscillating back and forth under the bar-
rier. The period of these trajectories is given by

Z2

r(E) =2 f dx I2[V(x)—E]]'i
Z,)

(2.7)

where E= V(x) ——,x is the conserved energy. If
V(x)- Vp ——,copx near x=a, then r(E) varies
from + 0o down to 2ir/cop as E varies from 0 to
Vo. Since the only trajectories which contribute to
the functional integral are those with period PR,
one finds that for temperatures 0 & kT & fop/2m.
=Pp ' there is another extrema of the functional
integral given by the periodic trajectory x =x(t)
for which r(E) =PA. These solutions are common-
ly called "bounces" (see Fig. 4).

At temperatures above the critical temperature
Pp

' the periodic bounce degenerates to the static
solution, x(t) =a, which simply sits at the top of
the barrier.

One may now try to evaluate the contribution to
the functional integral coming from the neighbor-
hood of the bounce. Expanding in 5—:x —x (t ),
one finds

5Z= exp[ S[xE(t)]/A'J f—[&5(t)]exp — f dt5[ —8, +V"(x(t))]5 +O(5 )

= exp[ SE[x(t)]/fi —,—lndet+[ —8, —+ V (x(t))+O(R)]I, (2.8)
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I

0 X} a Xzb X

FIG. 4. A plot of —V, V being defined as in Fig. 3.
A particle can oscillate between x ~

and x2, the so-called
"bounce" solution.

where

Although formally correct, this result is ill defined.
The quadratic operator M—:—8, + V"(x(t)) is
not positive definite. For P&Pp, M equals
—8,2 —too and the lowest eigenvector, 5(t)

const, has a negative eigenvalue —coo . For
P&Po, 5(t)=x(t) is a zero mode of M, Mx
=8,[—x+ V'(x(t)) ]=0. Since x(t ) changes sign
there must be a lower eigenvector with a negative
eigenvalue. This shows that x(t) is only a saddle
point, not a minimum, of SE[x(t)] and conse-
quently the Gaussian integral leading to (2.8) was
actually divergent.

These negative modes could have been predicted
from the outset if we had been more precise about
the meaning of the metastable state. A careful de-
finition always requires a process of analytic con-
tinuation. Suppose we began with a potential of
the form shown in Fig. 5, where x =0 is the global

PAE+2 J dx I2[V(x)—E]]'i, P) PpSExt
P&Vo P&Po .

FIG. 5. A potential from which the potential shown
in Fig. 3 might be obtained by some suitable analytic
continuation.

X exp( —PVp) . (2.9)

For P& Pp, one must also deal with the zero mode
of ~/E. However, this is a simple consequence of
the fact that x(t) is not time translation invariant.
To preserve the symmetry one must simultaneously
expand about all time translates of the bounce,
x(t+tp) 0 & tp & Ph. This is accomplished by
standard collective-coordinate techniques, which
automatically remove the zero mode of Ml. ' One
finds

minimum. The functional integral is perfectly well
defined and a is obviously real. If we now analyt-
ically change the potential back to the desired form
(Fig. 3), then certain contours of integration in
function space will have to be rotated in order for
the integral to remain convergent. Examining this
in slightly greater detail allows one to show that
half of the contour of integration away from the
bounce in the direction of the zero mode must be
rotated to the imaginary direction. ' ' Therefore
for P&Pp one finds

Im& =Z '(2P) '
~

det+( —8 ~ —co 2)
~

X exp( —PV, )

=[( sinh Pfico/2) /(2P sin Pkcoo/2) ]

Ima = —,AZ '(W/2vrh)'~
~

det'+[ —8, + V"(x(t))]
~

'
expI —SE[x(t)]/AI

= [( sinhPhco/2)/(2~~'/I) ] exp I SE[x(t)]/fi] . — (2.10)

I

state is reflected in the presence of nontrivial sad-
dle points in the functional integral. Note that the
energy of the bounce with the correct period Ph' is
simply the energy for which the probability of es-

cape is largest, i.e., it maximizes the product of the
Boltzmann factor, exp( PE), times the tunn—eling

P&
Here IV=—J dt [x(t)] =2 f dx[2[V(x) E]]'—
and r'=dr(E)ldE. (det'+ indicates the deter-
minant with zero modes removed. See Appendix
A for its evaluation. )

This shows how the instability of the metastable
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probability

exp ——I dx [2[V(x ) —E]J
'~

Xl

I =(2/fi)Im~, (2.11)

which reduces to the familiar relation I =(2/fi)
&ImE, when T~O. For T& To, one finds'

The critical temperature To po——' ——fuoo/2' is the
temperature above which thermal excitation over
the top of the barrier is the dominant decay
mechanism. The fact that the periodic bounce x(t)
becomes static above this temperature reflects the
fact that this is a classical process.

Finally, one may ask how to relate the ima-

ginary part of the free energy to the actual decay
rate I . This requires a further %KB calculation.
For temperatures T & To, one finds'

equations under all variations of the metric that
vanish on BM. To find an action with these pro-
perties, we add a surface term to the action, giv-

ing

+ I K(+h)' d'x+C .
1

(3.3)

hab is the induced metric on the boundary, the

+ ( —) being taken depending on whether the
boundary is spacelike (timelike). K is the trace of
the second fundamental form. C is a term which
depends only on the metric h,b. It could be ab-
sorbed into the measure in the functional integral.
However, for spacetimes which admit a single
asymptotically flat region, so that BM is a timelike
tube at infinity, C can be written as

(2.12) C= E (h)' d x.—1

8~6
(3.4)

which reduces to the classical result I =(co/2~)
&& exp( —pVo) as T~ ao. [These formulas are
correct outside a narrow transition region where
T To ——O(h —~ ). They are also correct in mul-

tidimensional systems. See Ref. 18 for further de-

tails. ]
Once a tunneling process has occurred to a new

classically allowed region, the subsequent evolution
will be governed by classical mechanics until a new

equilibrium state is neared. ' For further discus-
sion of this point see Sec. VI.

III. PERTURBATION THEORY,
ZERO TEMPERATURE, AND STABILITY

The action from which me begin our construc-
tion of quantum gravity is the Einstein-Hilbert ac-
tion. This is defined for a Lorentzian metric g,b

on a manifold M as

EADM
——I (ht k hk;t)d S'., —

where h,b is the metric induced on a spacelike hy-

persurface X which has a boundary at infinity
which is a large S . In vacuum gravitation,

E~DM )0."' This result holds even if X has a
complicated topology resulting from the presence
of black holes. If we couple matter with an
energy-momentum tensor T,b to the gravitational
field, the Einstein equations become

(3.5)

K is the second fundamental form of BM embed-

ded in flat space. With this choice, the action for
Minkowski spacetime is zero.

In classical general relativity, one can ask about
the stability of flat spacetime. One would expect
that stability would be guaranteed by the positivity
of the energy. The total energy of an asymptoti-
cally flat spacetime is the Arnowitt-Deser-Misner
(ADM) mass. ' This is

I= I R( —g)'~d x.1

16~G M
(3.1)

1

Rab 2 Rgab =87TGTab (3.6)

R,b
——0. (3.2)

However, in a functional integral, we wish to have

an action which reproduces the vacuum Einstein

R is the Ricci scalar of the metric g,b. In cases of
interest, M mill have some boundary BM, typically
a boundary at infinity. If we consider variations of
the metric in M whose normal derivatives vanish

on BM, then extrema of I yield the vacuum Ein-
stein equations

If the energy-momentum density of matter is non-

negative in all frames, i.e., if T )
~

'r'
~

for any
orthonormal tetrad, then EADM &0."' Further-
more, if EADM ——0 then the spacetime is Min-
kowski space. This indicates that Minkowski

space is classically stable in the presence of fixed
matter sources, since there is nothing into which it
could decay.

We wish to explore the structure of quantum
gravity rather than classical gravity at both zero
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and nonzero temperature. In order to do this we
follow the methods outlined in Sec. II.

We wish to construct a functional integral repre-
sentation for the partition function of quantum
gravity. A formal construction is not much more
difficult here than in the better known case of an
Abelian or non-Abelian gauge theory. ' For zero
temperature we recover the vacuum-to-vacuum
amplitude discussed by Faddeev and Popov and
others. We shall therefore give a brief outline of
the construction.

Start with the canonical variables ': h;J(x ),
the components of the three metric, and the canon-
ically conjugate momenta m;.i(x) {i,j,k,
=1,2, 3). The canonical commutation relations are

[n;t(x ),hkt(x')] = i5t(k—5t)t5(x, x') .

We work within an unphysical Hilbert space
spanned by all h;J(x ). Physical states must be in-

variant under gauge (general coordinate) transfor-

mations. This requires that they be annihilated by
four constraints

A; =—2m;J.J,t
(3.7)

Now we follow the steps of Sec. II, and derive a
function integral for

(A semicolon denotes the covariant derivative with
respect to the metric h,j.) One can construct a
projection operator A that projects out the physical
subspace as

A—= f &N, (x)exp i fdxNb(x)A (x)

(3.8)

The Hamiltonian is simply

H= f d x~i Pi, P—i= (I) d S'(h(„, h~t) .—

(3.9)

Z= tr(Ae ~ )= lim tr(Ae '
) (e=P/N)

r
~ ~

= f &N, (x,t)&n;J(x, t)&h~(x, t)exp f dt fd x(N, A +in;zh ) Pi— (3.10)

(3.11)

where the integration is over metrics h;~(x, t) and N, ( x, t) which are strictly periodic in Euclidean time t:
h,j(x,0)=htt(x, P). The integration over ir(J, which only appears quadratically, can now be done explicitly.
ly. This can then be written in the standard, Euclidean form of the functional integral for gravity, first de-
rived by Faddeev and Popov (N, has been rewritten in terms of go, ):

Z= f&[g,b(x)] exp[ —I(g)+gauge-fixing terms),

where the Euclidean action is given by

J[g]= f Zg'"d'x

f I)'It 'i d x+C .
Sag

(3.12)

Below, we shall specify the form of the gauge-
fixing terms.

The functional integral is evaluated by integrat-
ing over all metrics which are positive definite and
obey appropriate boundary conditions. We are in-
terested in two types of boundary condition which
correspond to the zero-temperature vacuum and to
the canonical ensemble at temperature T=1/P.

The boundary conditions appropriate to the va-
cuum are termed asymptotically Euclidean (AE).
An AE metric is one in which the metric ap-
proaches the flat metric on R outside some com-
pact set. For the action to be finite, the metric

I

must then look like

ds = 1+—
2 5,bdx'dx +0(r ),

r
(3.13)

ds =dr + 1+—5,&dx'dxj
r 2

+terms which fall off faster

(i,j =1,2, 3} . (3.14)

where r is a four-dimensional radial coordinate and
a a function of the coordinates, but independent of
r. The boundary at infinity is topologically S .

The boundary conditions for the canonical en-
semble at temperature T=P ' are termed asymp-
totically flat (AF}. An AF metric is one in
which the metric approaches the flat metric on
R )&S' outside some compact set. Finite action
requires the metric to be asymptotically



25 INSTABILITY OF FLAT SPACE AT FINITE TEMPERATURE. . . 339

Here r is a three-dimensional radial coordinate.
a can be a function of the coordinates, but is in-

dependent of r; ~ is a coordinate which is periodic
with period P. The boundary of infinity is topo-
logically S )&S'. This case will be discussed in de-
tail in Secs. IV and V.

This functional integral construction of quantum
gravity is poorly understood. Are we to integrate
over all manifolds or perhaps only those topologi-
cally equivalent to flat space? How can one render
the functional integral well defined when R can be
arbitrarily large? These and other questions are
the subject of much recent research and specula-
tion. At the moment the only feasible way to
treat the functional integral is by saddle-point
methods. This is adequate for a treatment of the
small perturbations about Minkowski space and for
a semiclassical analysis of vacuum stability.

The saddle-point evaluation starts by construct-
ing stationary points of the action, namely, solu-
tions of the Euclidean Einstein equations. Expan-
sions about these saddle points are performed by
writing

(saddle point),
gab gab +Nab ' (3.15)

Treating gab as a quantum field and g,'b' "~'"" as
a c-number background field will generate the usu-
al perturbation expansion, which can be expressed
in terms of Feynman diagrams. The saddle-point
metric g,b (normally assumed to be a nonsingular
geodesically complete four-manifold) is colloquially
termed a gravitational instanton. Different instan-
tons will have various physical interpretations.
But first we must find all gravitational instantons
consistent with our AE boundary conditions. The
positive-action theorem, first proved by Schoen and
Yau, ' states that for any AE metric with R =0,
the action I is non-negative and I=0 if and only if
g,b is flat. However the action for any AE instan-
ton must be zero. This follows from the fact that
any AE instanton will be a solution of R,b ——0.
Such a metric will always admit a uniform dilata-
tion g,b~kg, I„which will map the old solution
into a new solution. However such a dilatation
will map the action I—+A,I. But such a dilatation
could be produced by a coordinate transformation
x'~M', which must leave the action invariant.
Thus, the action for any AE instanton can only be
zero. The positive-action theorem then guarantees
that such a metric is fiat. For zero temperature we
need only examine the perturbations about flat
space. Since the action is not positive definite for
metrics that do not satisfy R =0, there is cause for

concern that these perturbations might be unstable.
Let us, therefore, examine the pertubations about

an arbitrary saddle-point metric, g,b. It is useful
at this stage to specify the gauge that we will em-

ploy. It is simplest to consider the covariant
Lorentz gauge

(gab
~

gaby) Xb (3.16)

where X is some specified function of the coordi-
nates. (V, is the covariant derivative with respect
to the background metric g,b. ) We then employ
the 't Hooft averaging procedure. The net result is
an effective action that contains the field gab and a
set of anticommuting Faddeev-Popov vector fields

This effective action is rather complicated. To
simplify it, we introduce the following decomposi-
tions

TT 1 w
Nab =lab + 4 gab%

+(V gb+Vbg gbV—P) (3.17)

p,b is the transverse tracefree (V,p'bTT=O,

g p,b 0) p——art of p,», p is the trace part; and gb
is the longitudinal tracefree part. The two vector
fields jb and Tlb are then decomposed according to
the Hodge-de Rham decomposition

c H
Ib ~b++ tb+ Ib

kb =Vb 0+kb +4b

(3.18)

[
~ yTTGabcdyTT]

G[ ——,0 Pl

16m.G
[2X b(1()X (FP)]

[Yb(g', )1"'(Cf'g f)],

(3.19a)

(3.19b)

(3.19c)

(3.19d)

i)b, g are the coexact parts of i) and g and are
hence divergence free i)b,g. are the harmonic
parts of i) and g. The number of square-integrable
harmonic vectors is equal to the dimensionality of
the first cohomology group H'(M, R ) on the mani-
fold associated with metric g,b. Since we are al-
most always dealing with simply connected mani-
folds, we will ignore the harmonic sector in what
follows.

We now expand the effective action in terms of
P and i). There are no terms linear in P since the
vacuum Einstein equations are satisfied. The qua-
dratic terms are
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16mG
[X,»(X)X' (FX)],

1 [I.,(q,') r'»(C~q'I)],

(3.19e)

(3.19f)

where

Ga~g = gacgbd 0—2Racbg ~

Xo»(g) =(V, V»+V»V, —
2 go» (-j)g,

F= ——, H,

Yo»(rl, )=V~('9 5»)+V, (F1~5'o),

Gy ———5yO .

(3.20)

V (ya» ga»y) X» (3.21)

rather than the Lorentz gauge, we would discover
that the operator F vanishes identically. Since all
physical observables are gauge invariant, they must
be independent of F and so we cannot be troubled

These quadratic terms determine the propagators
of the fields in the theory. Further terms can be
obtained by expanding the effective action to
higher order and would include the vertices of the
theory Th.e metric perturbation P,» has ten de-

grees of freedom, of which five correspond to a
spin-2 piece (P,» ), three to a spin-1 piece (g ), and
two to spin-0 pieces (p, hatt). The Faddeev-Popov
terms contain a spin-1 piece (g» ), and a spin-0
piece (X). If we consider perturbations about fiat
space (g,» =r),») then the operators G, F, and C
are all manifestly positive definite. However, the
term PFP in the effective action is negative defin-
ite. This is the perturbation-theory remnant of the
fact that certain conformal transformations can be
made on a given metric such as to make the
Euclidean action arbitrarily negative. Thus we

might think that Z, which is proportional to
[det(F)] ', contains a factor of i' ' "' and that
the perturbations about flat space are unstable.
However, this negative-metric piece is not signifi-
cant. First, a detailed examination of the propaga-
tor shows that this spin-zero piece does not couple
to the conserved energy-momentum tensor of other
fields. Thus it cannot represent a physical instabil-
ity of the system. Second, a more sophisticated
analysis, which is performed in a family of covari-
ant gauges, shows that the analog of operator F is
a gauge-dependent operator, in contrast to the
operators 6 and C which are explicitly gauge in-
dependent. In fact, if we choose to work in the
gauge

by such terms. Third, even if we were to ignore the
above arguments and proceed to calculate physical
observables in perturbation theory we would find
an explicit cancellation of detF. This is because a
factor of detF occurs three times in the evaluation
of Z. Two factors of (detF) '~ arise from the in-
tegrations over P and P, and a factor of detF
comes from integrating the Faddeev-Popov ghosts.

In curved space, the situation is slightly dif-
ferent. If the operator F is positive definite then
the terms (3.19c) and (3.19e) are also positive defin-
ite, when R,b ——0 as is the case for a classical solu-
tion. Suppose that a normalizable eigenfunction of
F is P„with eigenvalue A,„. Then

f Q„FP„g'~ d x= f (V,P„)(V'P„)g'~ d x

+ f $„(V,Q„)dX'

=X„f y„'g'"d'x . (3.22)

Since P„must vanish on the boundary BM of the
manifold M, it follows that A,„g0 for all square-
integrable eigenfunctions.

The operator C acts on divergence-free vectors.
Suppose that it has an eigenfunction g, with eigen-
value A,„. Then an identity due to Yano and
Nagano

V, ——, Va b+Vb a V' +V

+PUg, 2$Rg»g —]g'~ d x=0 (3.23)

shows that C is positive semidefinite, the zeros
being associated only with KiBing vectors. How-
ever, deformations constructed from Killing vec-
tors are not included in functional integrals as this
would overcount field configurations. This is be-
cause a Killing vector refers to a continuous sym-
metry of a background metric and maps a space
into the identical space. Therefore (3.19d) and
(3.19f) are positive for R,» =0.

The situation is rather different for the operator
G. One cannot prove that it is positive definite,
and indeed, in Sec. V, where we discuss finite-
temperature instantons, we will encounter-a space
in which 6 has both zero and negative eigen-
values. ' The zero modes are associated with
transformations between distinct solutions of the
Einstein equations with the same action. There is
one such mode for each degree of freedom of the
instanton, and these modes will be handled by the
collective-coordinate method. The negative eigen-
values of 6 do have physical significance and will
lead to the instability of hot flat space.
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We therefore see that flat space at zero tempera-
ture is stable quantum mechanically as well as
classically. Of course we can only verify this for
small perturbations about flat space, but it seems
unlikely, in view of the positive-action theorem,
that nonperturbative instabilities could arise. How-
ever, one must note that quantum gravity is prob-
ably nonrenormalizable beyond the one-loop level,
and that any statement regarding quantum gravity
to all orders in perturbation theory is dangerous.

IV. FINITE- TEMPERATURE
PERTURBATION THEORY

We shall now investigate quantum gravity at fin-
ite temperature. We wish to describe the proper-
ties of a system placed in an arbitrarily large spa-
tial volume which is kept at some fixed tempera-
ture T= 1/p. The equilibrium state of such a sys-
tem will be described by the canonical partition
function

Z=e&~= Tre-&H 4.1
physical degrees of freedom

for which we derived a functional integral repre-
sentation in the previous section [Eq. (3.11)]. This
system describes the purest vacuum of all; in the
absence of matter only fluctuations of the metric
field are present. It is these that we must sum

over in the functional integral, integrating over all

asymptotically flat, Euclidean four-metrics, which
are periodic in Euclidean time with period P:
g,b(r, x)=g,b(r+p, x).

Once again we only know how to treat this
problem in the semiclassical approximation. To
this end we must first find all saddle points of the
classical action, i.e., periodic Euclidean finite-
action solutions of Einstein s equations, and ex-

pand about each one. There is one trivial periodic
solution, namely, flat space. The metric g,b(x)
=5,b is clearly periodic and has zero action. The
contribution of this saddle point to W, to lowest
order in perturbation theory, will simply be the
free energy of an ideal gas of gravitons at tempera-
ture T. In higher orders the interaction free energy
of the gravitons will appear and will produce an
(Jeans) instability. In the following section we
shall consider the contribution of other (instanton)
saddle points.

Perturbation theory about flat space at finite
temperature proceeds much the same way as at
zero temperature, the only difference being that the
fields g,b(x) are periodic in t with period p. Thus

Otherwise the zero-temperature Feynman rules are
unchanged. Note that if fermionic matter fields
are included in the theory, they must be antiperiod-
ic in t, and therefore their frequencies are quan-
tized in units of co„=(2n+ l)m/p. On the other
hand Faddeev-Popov ghosts, although fermionic,
serve to represent a bosonic determinant and thus
must be periodic.

The free energy is given by the sum of all vacu-
um graphs, evaluated with finite-temperature pro-
pagators. To lowest order

Z=eI'~
—1/2=[d t( )]T,physical degrees of freedom ' (4.2)

Cl is the appropriate second-order differential
operator. At zero temperature, P is (quartically)
divergent; however the temperature-dependent part
of P is ultraviolet finite. The calculation is
straightforward, yielding the standard result for
the free energy of a relativistic gas of massless par-
ticles with two (helicity) degrees of freedom

~o(T) m T4 2 d'k
, ln(1 —e-t") .

(2m )

(4.3)

One can also readily calculate higher-order [in
(16m.G)'~2] corrections to the free energy, arising
from the self-interactions of the gas of gravitons.
These will be given by vacuum Feynman graphs
that contain cubic (or higher-order) vertices. There
are two sources of trouble that appear in this per-
turbative expansion. First, since pure gravity is
unrenormalizable, the ultraviolet divergences will
be uncontrollable. We have nothing to say about
this problem. However, in addition we expect in-
frared instabilities to show up once we allow for
graviton-graviton interactions. As discussed above,
a homogeneous matter distribution develops a
(Jeans) instability for time-dependent fluctuations
of wavelength bigger than 1/kJ, where kJ
=(4trGp)'~ (V, = 1). We expect such an instabili-

ty to appear in our gas of gravitons at finite tem-
perature since it does contain "matter", namely,
the thermally excited gravitation modes them-
selves. These carry energy and thus are a source

the Euclidean frequencies po are quantized in units
of 2n.n/P=co„and integrals over Po are rePlaced

by discrete sums

I dpo~
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for the gravitational field, leading to the Jeans in-

stability.
How does this instability appear in the partition

function? The standard analysis of the Jeans insta-
bility, as performed in the Introduction, considers
time de-pendent fluctuations of a homogeneous
medium. The Jeans wave number kJ is the max-
imum wave number for which the frequency of
these fluctuations is still real. One can interpret
this result by saying that due to the antiscreening
effects of gravity in a relativistic gas of density p
(velocity of sound= 1), the graviton acquires an
imaginary "mass, " mz ———4mGp. This is the ana-

log of the usual plasmon. In our Euclidean cal-
culation, however, we are interested in the static
equilibrium properties of the system, in particular
in the response of the gravitational field to spatial,
time-independent fluctuations of the medium.
Here too we expect gravitational antiscreening,
which will produce an instability; however the stat-
ic graviton "mass" need not have the Jeans value.
This too is familiar from the analogous case of a
plasma. There one finds zero-momentum excita-
tions of the photon have a mass equal to m, i/~3.
On the other hand, the inverse screening length of
the plasma, which governs the long-range correla-
tions of the charge density p(x ), is given by
m ) ———g T namely

(p(x)p(0)) — e
JX J~oa

If we calculate the electric screening of a plasma
by evaluating Euclidean functional integrals for a
charged gas at finite temperature, it is the latter
mass that is generated. To evaluate the plasmon
frequency one must analytically continue the re-

sulting phonon propagator back to Minkowski
space.

We shall now present a very simple argument
that the graviton mass which appears in Euclidean
propagators is in fact twice the Jeans value, name-

ly,

ms ———16m Gp( T),
where p is the thermal density of gravitons
(p=m T /15). In fact the above result holds for

any kind of massless "matter. "
We wish to consider the static correlation of the

gravitational field with itself in the presence of a
thermal gas of massless particles. Imagine placing
a very small test mass M into the system at the
origin. At large distances we can use the weak-
field (Newtonian) approximation, whence the gravi-
tation potential P, defined by gas ———I+2/, satis-
fies

V$=—4mGM5 .(x)+4m.G5p(P, T) . (4.5)

5p(P, T) =p(P, T) p(O, T—) is the change in the en-

ergy density of the thermal gas at temperature T
due to the gravitation potential (I). We can evalu-

ate the energy density far away from the origin,
where P can be regarded as small and uniform, by
applying the equivalence principle. Thus the ener-

gy density of the gas at x is the same as if the
temperature were T[1+P(x)] and there was no
gravitational field [since if T is the temperature of
the heat bath at infinity, at x all energies are red-
shifted by an amount 1+/(x )]. Therefore,

d'k
p(P, T)=N

(2~)3 exp[Pk/(1+/)] —1

=( I+/)'p(T) . (4.6)

(N=number of degrees of freedom of the massless
particles. ) Therefore far away from the source,
where P « 1, we have

[—V —16vrGp(T)]$( x ) =4~GM53( x ) . (4.7)

Thus for static weak fields the graviton acts as if it
had an imaginary mass given by Eq. (4.4).

According to this argument the graviton should
develop an imaginary mass when it couples to ther-
mally excited matter of any kind. We shall illus-
trate how this emerges in perturbation theory in
the simple case of gravitons coupled to massless
fermions. We wish to calculate the propagator
of the graviton field h,b ——g,b

—5,b to one-loop
order. The full propagator may be expressed in
terms of the one-particle irreducible self-energy,

flub„g(~n k)

G~s,g(co„,k)=[(ro„+k )5,(,5b)d+Ii, b,g(co„,k)] '+gauge terms, (4.8)

which in turn is given by the one-loop Feynman diagram in Fig. 6. The vertex is given by the energy-
momentum tensor of a massless fermion. At T=0 gauge invariance, plus Euclidean invariance, implies that
k II,b,d(k) =0, and this in turn requires that at T=0, II,b,~(0)=0. However at finite temperature the en-

ergy k0 is quantized, and there is no such constraint on the longitudinal self-energy IIDOOO. In fact, one can
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easily show that if we first set ko ——0, and then examine Ii,b,~(O, k) as k~O that only IIOO os(O, k) can be
nonvanishing. To evaluate this term we simply evaluate the contribution of the diagram exhibited in Fig. 6
to II (0,0):

II0000(0,0)= —16mG 3
—QTr yopp

—yopp-dp 1 1 1

(2~)' P „
(4.9)

where we recall that the fermion energy po take
values of (2n+1)ir/P=co„. This can be calculated
by standard contour techniques and yields the re-
sult

I

a contribution to the free energy of

dkg f trln[1+II(k)/k ],
2 „(2ir) (4.13)

Il,b,d(0)=5, 5b 5, 5d ( —„GT—) . (4.10)

This shows indeed that the longitudinal graviton

boo develops a one-loop "mass" due to thermal
fluctuations, of magnitude

m = ——, m GT =—16mGpf,Z ~4 3 4 (4.11)

in accord with our expectation (recall that the den-

sity of a massless fermi gas is pf =,» ir T ).
The same effect will be produced even if there

are no explicit matter fields present. According to
our previous argument the one-loop contrib'ution of
thermal gravitons to Iioo 00(0) will produce a
"mass" of

mg 167TGpg
~ 5

K GT (4.12)

The fact that the graviton acquires an imaginary
"mass" at finite temperature means that flat space
is unstable. Flat space, which was an absolute
minimum of our classical action (with, of course,
AE boundary conditions), becomes merely a saddle
point of the effective action once we take into ac-
count the interactions of the thermal gravitons.
(This is illustrated in Fig. 7.) The mechanism for
instability is clear, large-scale density fluctuations
of the gas of gravitons tend to grow owing to the
attractive (antiscreening) gravitational forces.
Presumably, these eventually collapse to form
black holes. Indeed if we were to calculate the
higher-order contributions to the free energy, we
would encounter the increasing infrared-divergent
"ring" diagrams of Fig. 8. The sum of these yields

which is complex [since 110000(0)&0].
This Jeans instability of hot flat space suffices to

call into question the ability to treat hot gravity by
semiclassical methods. In fact unless there is some
stabilizing mechanism in the theory it is question-
able whether there exist any fixed-temperature
equilibrium states. If someone provides an indefin-
ite amount of energy in order to keep the walls of
our container at a finite temperature, it might be
that gravitational collapse continues to occur until
the resulting black hole engulfs the walls them-
selves.

Nevertheless we shall continue to employ the
semiclassical approximation in the following sec-
tion, where we investigate the contribution of in-
stanton saddle points. This is not only because of
the interest in elucidating the significance of the
Euclidean Schwarzschild solution (the instanton),
but also since the instability generated by this
mechanism is totally different from the Jeans in-

High Frequency
F luc tuat ion s

FIG. 6. The diagram which gives a contribution to
the polarization tensor.

Lour Frequency Fluctuatiens

FIG. 7. The effective one-loop potential surface close
to flat space-time at nonzero temperature. The potential
increases for short-wavelength fluctuations but decreases
for long-wavelength fluctuations.
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stability. It corresponds, not to long-wavelength
fluctuations about flat space, but to the spontane-
ous nucleation of black holes. Furthermore, the
radius of these black holes is smaller than the
Jeans length by a factor of T/mt (mp ——Planck
mass). Thus one could imagine enclosing the sys-
tem in a finite volume of size less than the Jeans
length, which would eliminate all but the black-
hole nucleation instability.

V. GRAVITATIONAL INSTANTONS

FIG. 8. The ring diagrams that contribute to the im-
aginary part of F.

In the previous section, we discussed a particular
AF gravitational instanton, namely, flat space,
with the topology of R XS'. However, unlike the
AE, zero-temperature case, flat space is not the
unique instanton; there exist other periodic solu-

tions of the Euclidean equations of motion. A
familiar instanton is the Euclidean section of the
Schwarzschild solution, which is a special case of
the Kerr instanton. In Boyer-Lindquist coordi-
nates (t, r, 8,$) this metric takes the form

ds =(r aco—s 8) +d8 + 2 2 2 (h(dt+a sin 8dp) + sin 8[(r a)dp —adt] )—,
r 2 1

r —a coso
(5.l)

where period p, it is clear that a must be fixed to equal

g =r —2GMr —a (5.2) K =2&T ~ (5.5)

and

(g2M2+a 2)1/2

2GM[GM+(g2M2+a 2)1/2]
(5.3)

a0=
2gM[gM+(G2M2+a2)1/2]

(5.4)

Furthermore, 0=0,m define symmetry axes with
rotations about them generated by the Killing vec-
tor (l/Bp. For these axes to be nonsingular, 1I1

must be an angular variable with period 2m.

Since our fields must be periodic in t, with

This describes a two-parameter family of solutions.
In addition to the translational degrees of freedom,
there is a rotation parameter a and a mass parame-
ter M. This metric is positive definite as long as
the radial coordinate r is restricted to the region
GM+(G M +a )'/ &r & ao. The region
r & GM+(G M +a )'/ is not part of the space
that we are interested in. The locus r =GM
+(G M +a )'/ will be a conical singularity un-

less we identify the point (t, r, 8,$) with the point
(t+2ma ', r, 8, P+2aQa '), where

2
(5.6)

It has been widely conjectured that the Kerr in-
stanton is the unique AF instanton other than flat
space. In any case it is the only one we shall
consider.

The above form for the action looks very much
like the contribution of a particle, or soliton, of
mass M/2. Does the instanton represent the con-
tribution of black holes to the partition functions

Also 0 must equal the chemical potential associat-
ed with the angular momentum. The instanton is
also characterized by its topological properties.
Consider the two-surface r =GM+(G M +a )'/,
which is the fixed point of the orbit of the Killing
vector 8/Bt. Such a fixed-point set is sometimes
called a "bolt." One can use the G-index
theorems to find the Euler character and Hirze-
bruch signature of the manifold. This bolt has
zero self-intersection number and an Euler number
of two; thus they equal two and zero, respectively.
Finally the action of the instanton is
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We do not believe so. Recall that M is not a fixed
mass, but rather determined in terms of 0 and T
by Eqs. (5.3)—(5.5). If we consider the Schwarzs-
child case, where a =0=0, and thus ~=2~T
=1/4GM, the action is given by

p2 leapI=
16mG 16mT2

' (5.7)

which is unlike the contribution of any fixed-mass
particle to the partition function. In fact we shall

argue that the instanton is not a soliton, but rather
provides a mechanism for the nucleation of black
holes.

There are also, however, other configurations
which are arbitrarily close to solutions of the vacu-

um Einstein equations. These will be needed when

we actually calculate the instanton contributions to
Z. These configurations are in a distinct topologi-

cal class to the Kerr solution. We will discuss in
detail the sector which has Euler character 7=4
and zero angular momentum. Part of the 7=2'
sector is discussed by Gibbons and Perry, and the
region where the rotation is not zero can be ob-
tained by analytic continuation of the solutions of
Hauser and Ernst, Kinnersley et al., ' and
Kramer and Neugebauer. These are all very
complicated but qualitatively similar to the case
discussed below. We discuss the metric

ds =Vdt +V '[e (dp +dz )+p dP ] .

(5.8)

p, P,z form a cylindrical polar coordinate system, P
being identified with period ~. The solution is
considered to be static and axially symmetric about
the p=O axis. Hence V and k are functions of p
and z only:

r ) +r )
—2GM r2+r2' —2GM

V=
r)+r)' +26M r2+r2' +2GM

r„'r~'+(z —z„GM)(z—z~+GM—)+p r„''r' +(z —z„+GM)(z z~ GM)+—p-k= —, ln
r„'r~+(z —z„GM)(z —z—~ GM)+p— r„''r~'+(z —z„+GM)(z —z~ GM}+p—

(5.9)

r„' =p +(z —z„—GM)

r„'' =p +(z—z„+GM)

(5.10)

(5.1 1)

The Killing vector r)/dt has fixed points at
p=O, z~ —GM &z &z~+GM; and p=O,
z2 —GM &z &z2+GM. These fixed points appear
to be rods in the p-z plane. However, they are in
fact two-surfaces in a four-manifold. For these
surfaces to be free of conical singularities, t must
be identified with period 8mGM exactly as in the
Kerr case. As p, z tend to infinity, V~1 and
k~O and thus the metric becomes flat. The
periodicity in t means that this metric has AF
boundary conditions with a temperature of
T=(8mGM) ' This .metric n. ow has R,b

——0
everywhere except where p=O, z~+GM &z
&z2 —GM, assuming that M=z& —z~+2GM & 0.
This is the locus corresponding to the gap between
the rods in the p-z one. There is a conical singu-

larity here which cannot be eliminated by any iden-

tification of coordinates compatible with these al-

ready performed. However, a conical singularity
has the effect of introducing a 5 function into the

Ricci curvature scalar. Consequently, the contri-
bution to the action from such a singularity is fin-
ite. In this case, the action turns out to be

2 GM
(M+2GM )

(5.12}

This is the action we would expect for two "bolts, "
each of mass M together with a Coulomb interac-
tion between the two masses. In this sense instan-
tons behave as particles; they have normal long-
range gravitational interactions. This indicates
that we should not expect to be able to find any
stationary axisymmetric solutions. But if the
masses are separated by arbitrarily large distances,
we get arbitrarily close to solutions of the vacuum
Einstein equations. In the leading semiclassical ap-
proximation we must sum over all these configura-
tions.

We shall consider only the Schwarzschild instan-

ton, with 0=a =0. To evaluate its contribution to
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gab 2g acbdy grab (5.13)

where P' are transverse, tracefree, and normaliz-
able. A variant of this problem has been treated
by Regge and Wheeler. They investigated the
Lorentz version of this problem with X=O. Their
methods were refined by subsequent workers, Vish-
veshwara, Zerilli, Press and Teukolsky,
Stewart, and Chandrasekhar. A, =O corresponds

Z we must integrate over the Gaussian fluctuations
about the background Schwarzschild metric. In
particular we shall study the stability of such fluc-
tuations using the methods developed in Secs. II
and III.

The operators I" and C are positive definite.
They can be treated by standard methods. The
operator 6 is rather more complex. To determine
its eigenvalues we study the solutions of

to a small perturbation of the black hole that
remains a classical solution. These authors
searched for runaway solutions of the form
exp( —icot) )&(function of spatial variables with co

complex). They demonstrated that Imp) =0 for all

solutions of (5.13) and concluded that black holes
were classically stable objects.

We, on the other hand, are interested in solu-
tions to (5.13), where g,b is the Euclidean
Schwarzschild solution and k is not necessarily
zero. Positive (negative) values of A, will corres-

pond to stable (unstable) Gaussian fluctuations
about our instanton.

This equation can be separated in (t, r, 8,$) coor-
dinates, and is exhibited in Appendix B. We then
follow the approach of Regge and Wheeler and
divide the space of eigenfunctions into even and

odd parity:

Hp(r) H)(r)

(sym) H2(r )

Ep(r)Bg
Z', (r)a

(even)

(sym) (sym) r [G)(r)+G2(r)]Bg

(sym) (sym) (sym)

It. (r)ag

E2(r )Bt)

r G2(r)(B+g —cot8Bg)

r [G)(r) sin 8+Gz(r)(Bg + sin8cos88g)]

exp(ip)t)Yt (8,$),

(5.14)

0 0

0 0

—hp(r)
a

sine
—h)(r)

a
sino

hp(r) sin88g

h)(r) sin8Bg
(odd)4.b

(sym) (sym) h2(r) . BgB&— Bt) , h (r) —. 8& + cos8Bg—sln8Bg
1 cose 1 2 2

sin0 sin 0 sine

(sym) (sym)

)& exp(icot)YI~(8, $) .

(sym) —h2(r) (sin8BgBg —cos8Bg)

(5.15)

Substitution of these forms into (5.13), together
with the conditions of tracefree and transversality
applied to gab, lead to sets of coupled ordinary dif-
ferential equations in r. By applying Sturm-
Liouville techniques, it is possible to show that for
even perturbations with l & 2, and for odd pertur-
bations with l & 1, that any eigenvalue A, must be
positive. The argument fails for l =0 or j. pertur-
bations. If i=0 and p)&0, then l&0. If l=1 and
co=0, then we find three zero modes which are

P b=VaVbg (5.16)

sin8cosg
P"= (r GM ) sin8 sinP—

cos8
(5.17)

At first sight these zero modes look like gauge
transformations. However, the vectors ga"'= Vag"
are nonnormalizable. Thus, these modes do not
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correspond to nonsingular gauge transformations
and must be included in the functional integral.
They simply represent translations in the x, y, and
z directions of the origin of the Schwarzschild in-

stanton. They are dealt with by the standard
collective-coordinate method.

For /=0, we are forced to resort to numerical
methods. Write the perturbations as

ab 2m
~

——diag 1—
r

he(r), 1 — h~(r), k(r), k(r)csc 8 exp( iso—t) .
2m 2 (5.18)

Since P' is tracefree,

hp+hi+2k =0 .

Since it is transverse, it follows that

(5.19)

k all tend to zero at infinity monotonically. This
is in agreement with the naive expectation that the
lowest eigenvalue corresponds to the smoothest"
eigenfunction. Defining the normalization as

r —2GM h)+ h, +2(2GM r)—
p 2 p 2

g i/2d4x (5.22)

z ho ——0, (5.20) we discover that

N =112P(GM) (5.23)
where prime—:d/dr. The radial equations now be-
come

4~' —22GM~+24G'M'
r r (r 3GM)—

hi ———A,hi . (5.21)
r (r 3GM)—

This equation has regular singular points at
r =0, r =2GM, and r =36M and an irregular
singular point at r = ao. Its solutions are not expli-
citly known. Near r =26M, h -(r 2GM), o. —
=0, —1. For large r, h —exp(+

~

A,
~

' r). The
solutions for large r are acceptable only for an ap-
propriate choice of sign, and at r =26M, only if
o =0. The technique for finding eigenfunctions of
this type is to integrate out from r =2GM for trial
values of A,. Only one value of A, was found to be
consistent by this procedure, namely, A,=—0.19
(GM) . If we start with ho(2GM) =h ~(26M)
=—k(2GM)+1, then we discover that ho, h&, and

I

(Schwarzschild)
gab =gab +~Y'ab (5.24)

This space is spherically symmetric, periodic, and
static, but it is not a solution of the vacuum Ein-
stein equations. To investigate further, we notice
that since

Henceforth, we will deal with the normalized
eigenfunction P~ ~N

We have therefore discovered an unstable mode
for small fluctuations about the Schwarzschild in-

stanton. This instanton is therefore not a strict
minimum of the action, but rather a saddle point.
Its role in the thermodynamics of hot gravity is
similar to that of the configuration x =a in our toy
model (see Fig. 3). It behooves us to investigate
what happens when we roll off the top of the bar-
rier. We therefore consider the effect of an infini-
tesimal perturbation of this type. It generates the
metric

2GM
g,b ——diag 1—

r '+E '
y

ek ek
(5.25)

' 1/2
ekp=r 1+ (5.26)

it is convenient to define a new circumferential ra-
dial coordinate p so that spheres p=const have
area A =4mp:

I

Thus, the area of the fixed point of 8/Bt, a two-
sphere, which used to have area A =16~G M now
has area A =16aG M +0.94eG. Note that this
surface remains nonsingular without any change in
the periodicity of t. Since the "mass" of such a
two-sphere is defined to be m =(A /16nG)', this.
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mass of the "bolt" of the new configuration is

(5.27)M+0 00.94'(GM)

Another measure of mass is the total mass at infin-

ity. This is determined by the trace of the second
fundamental form on the boundary at infinity.
This is determined by the boundary contribution to
the action, and this mass remains unchanged. Ac-
cordingly we may think of the transformation as
producing a spherically symmetric cloud of materi-
al outside the "bolt." This matter will have posi-
tive or negative energy density depending on
whether e is positive or negative. The action how-

ever, will decrease because although the boundary
term remains constant, there is a contribution from
the volume term:

I=4mGM2 .0 000—94/. (GM)V . (5.28)

Following the discussion of the toy model in
Sec. II, we shall interpret the Schwarzschild instan-
ton as indicating a finite probability for black
holes, of mass M =P/SnG, to nu. cleate. The rate
of nucleation will be calculated below. The un-

stable mode will correspond to the subsequent ex-
pansion (or collapse) of the black hole as it absorbs
(or emits) thermal radiation.

One might be puzzled as to whether we should
include such instantons at all in the functional in-

tegral. After all they are topologically distinct
from fiat space (Euler character 2 instead of zero),
and perhaps there exists an infinite barrier that
prevents such configurations from developing.
This objection is clearly fallacious since the instan-
ton action is finite, thus the nucleation rate is
nonzero. However we can also show that by singu-
lar distortions of the metric (which however never
cause the action to diverge), one can "continuous-
ly" deform the instanton into flat space. To do
this we take the Schwarzschild metric and identify
the Euclidean time with period P. However, we
now take the mass at infinity m to be arbitrary
rather than M =P/SmG. The resultant space will

have a conical singularity at r =26m. The action
is

I= —,mP+2Gm 2n. —
4mG

=mP —4n.Gm (5.29)

The action is extremal when m =P/S~G, as expect-
ed. This configuration allows for a continuous
variation from zero action at m =0, Aat space, to a

This is both transverse and tracefree. However,
the norm of this mode E is given by

~2 I gaby gl/2d4& (5.31)

and is divergent. It is therefore not included in the
perturbation expansion about the Schwarzschild in-
stanton.

The nonnormalizable mode may be regarded as a
process whereby mass is directly moved in from in-

finity to the bolt. This is in contrast to the nor-
malizable mode which corresponds to moving mass
from a finite distance. An attempt to picture this
is presented in Fig. 9.

Before proceeding to evaluate the contribution of
these instantons to the partition functions we must

IVE MODE

METRIC

LOW
FREQUENC

FLUCTUATIONS

FIG. 9. The one-loop effective potential including the
instanton contribution. (A) is flat spacetime. Decrease
in the action from (A) represents the Jeans instability.
The saddle point at (B) represents the Schwarzschild in-
stanton. The continuous line representing a decrease of
the action is the negative mode. The dashed line is the
non-normalizable negative mode.

maximum at m =P/SnG.
As m increases further, the action decreases

without bound. This illustrates the well-known
fact that in relativity a topology change can be ac-
complished continuously without generating a con-
figuration with infinite action. This deformation
cannot be achieved in perturbation theory. To gen-
erate such a perturbation, we would need to con-
sider the tensor

a
(g.b)

8pl

= diag ——, ,0,0 . (5.30)
2 2E'

(r 2GM )—
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Z'"'V d4
16+ n —4 45

(5.32)

This term is proportional to the Euler character of
the manifold M on which g,b is defined. For flat
space it vanishes, but is nonzero for the instanton.
To deal with this one must introduce a regulator
mass )(4 (which we presume should be taken of ord-
er the Planck mass mp). This (M dependence will

appear in the contribution of the instanton to the
partition function. These remarks apply to all
theories of gravity, including supergravity, except
for a particular version of N =8 supergravity
where this counterterm vanishes on shell. 5'

We shall now evaluate (approximately} the con-
tribution to the partition function from the Gaus-
sian Auctuations about each topological sector.
This can be done using the standard techniques of
g-function regularization. The flat space contri-
bution is, as before,

Z' '= expo

45p
(5.33)

i.e., the contribution from thermal gravitons in a
box of volume V at temperature T= 1/P. The
contribution from the Schwarzschild instanton is

deal with a renormalization problem that does not
occur in the flat-space calculation. It turns out
that in curved space there is an ultraviolet diver-

gence that occurs even at the one-loop level, which
requires a separate counterterm. In a dimensional
regularization scheme its contribution to the action
is, on shell, (i.e., when g,b is a solution of
Einstein's equations),

Z" '= —exp( —4irGM ) exp
45p

3/2

X ( P)212/45 Vp (5.34)

The factor of i /2 occurs from the one normaliz-
able negative mode; the first exponential contains
the classical action of the Schwarzschild instanton.
The second exponential arises from the thermal
(= quantum) fluctuations about the instanton. At
first sight, it might seem surprising that this term
is identical to the flat-space result. However we
note that the ultraviolet-finite part of (1/V) lnZ"'
in the infinite-volume limit can only depend on T,
since the factor of GM that appears in the back-
ground metric is itself inversely proportional to T.
Therefore, (1/V) lnZ" ' must, on dimensional

grounds, be proportional to T . The constant of
proportionality can be determined to be ir /45 in
the high-temperature limit. The factor (((4P)2'2/ 5

arises from the anomalous scaling behavior associ-
ated with the counterterm (5.32). The final term,
proportional to the spatial volume V, occurs from
the integration over the translational degrees of
freedom of the instanton. The uncalculated finite
part of the determinant, which is a temperature-
independent constant, has been absorbed into the
definition of (M. Written this way it looks like the
single-particle partition function for an object of
mass M at a temperature P ' in a box of volume
V. However, since P=8mGM, the final factors can
be rewritten as (V/64ir G ), which is indepen-
dent of M. Similarly, we can estimate the contri-
bution from the N-instanton sector, neglecting the
classical interaction between the instantons, as

N

Z (N) exp( 4~GNM2} exp (pP)212N/25l Vm V

2 45p 64m G
(5.35)

Here we have assumed that there exists a negative mode associated with each bolt, thus giving a factor of
i The fir.st exponential is the classical action of the N-instanton configuration, and the second the thermal
graviton term. The final term results from the collective-coordinate integration. Since each instanton is in-

distinguishable this produces the familiar factor of ( I/N!)(V/64nG/ ) The .above tr.eatment is the stan-
dard dilute-gas approximation, which should be valid for widely separated instantons. If we now sum over
all sectors,

Z g Z(N)
N=0

we obtain
P

Vir iZ= exp exp
45P

V
(pP) ' / exp( —4mGM )

64 3G 3/2

(5.36)

(5.37)
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(5.38)

where

0.19 1.74
cop = —A, =

(GM)'

'2

(5.39)

Therefore the vacuum decay rate (per unit volume)
1s

This calculation is analogous to the toy model of
Sec. II. There are some differences however. In
the case of potential theory we saw that for large
temperatures the decay of the metastable vacuum
was given by the static saddle point at the top of
the barrier, and at low temperatures quantum tun-
neling also occurs. In our case there is only the
former mechanism at all temperatures, and the
height of the barrier is proportional to /= 1/T.
Even with these differences in mind we see no al-
ternative to the conclusion that the instanton
represents thermal nucleation of Schwarzschild
metrics —black holes, with a nucleation rate per
unit volume given by I, where

~oP I'
I = Im

V

1M-—
GM

(6.1)

On the other hand, if it were much cooler than the
surrounding medium, it would accrete at a rate
of

is not quite classical, but may be consistently com-
puted semiclassically. The necessary ingredients
are simply the two effects of absorption of thermal
radiation into the hole, plus the emission of ther-
mal radiation due to the Hawking process. The
Schwarzschild instanton describes the nucleation of
a black hole of critical mass M=1/8+GT, for
which these two effects are in unstable equilibrium.
Subsequent fluctuations will, with equal probabili-

ty, cause the black hole either to grow indefinitely
or to evaporate. The reason for this instability is
that the black hole has negative specific heat. Far
from the unstable equilibrium one can estimate the
rates at which the black hole grows or shrinks.

Suppose that the black hole is much hotter than
the surrounding matter. Then, if we were only to
consider gravitons, the hole will lose mass at a rate
of

P)212/45 ~ P ~
(5 40)

64~'
M-To (GM) (6 2)

VI. INTERPRETATION
AND CONCLUSIONS

In a typical low-temperature quantum decay
problem, one may regard the Euclidean bounce
solution (instanton} as describing the quantum tun-
neling from one classically allowed region to
another. After the tunneling process, the system is
in a highly excited state above the true vacuum.
Therefore its subsequent evolution is essentially
classical. The appropriate initial data are deter-
mined by the field of the Euclidean instanton at
the moment it reaches its classical turning point,
that is, when the momenta conjugate to the field
vanish. Alternatively, if the temperature is suffi-
ciently high so that the relevant instanton describes
a process of thermal activation to the top of the
barrier (as opposed to tunneling), then the only
difference is that the subsequent classical evolution
may be either toward the true vacuum or back to
the original metastable state. '

In the case of the black-hole nucleation, the si-
tuation is slightly different since the instability is
absent classically, but only arises due to the pres-
ence of thermal (=quantum) fluctuation. There-
fore the evolution following black-hole nucleation

m
I (T}=0.87T(p/T) 3 exp

64m

mp
2

16~T2

where
(6.3)

1 233 78=—„(212N2 ——,N3g2 —13N)+ 4N ilz+No) ~

(6.4}

Tp being the temperature at the walls of the box.
It is amusing to apply our results on finite-

temperature instabilities to the standard model of
the early universe.

The global expansion in a standard Friedmann-
Robertson-Walker model is known to affect the
Jeans instability drastically. Instead of exponen-
tially growing large-scale fluctuations, linear per-
turbations can grow at most as a power of t. The
actual spectrum of irregularities one finds at late
times is extremely sensitive to assumed initial con-
ditions. In addition to these linearized perturba-
tions, one may try to estimate the probability of
direct nucleation of black holes. The nucleation
rate for pure gravity is given by Eq. (5.40). It may
easily be extended to a general theory containing
any number of matter fields. One finds for mass-
less fields
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N, is the number of spin-s fields.
Suppose that the universe is given by a

Robertson-Walker line element with k=0,

d s = d—t2+R (t)(dx +dy +dz ), (6.5)

(6.6)

The temperature of the universe T(t) is related to
the scale factor R (t) by

T(t)R(t)=T(t2)R(tp) . (6.7)

Assuming the universe to be radiation dominated
(as it surely must be when any significant nuclea-
tion takes place), then

R (t) G i/4t 1/2 (6.g)

Hence

T(t) G
—i/4t —i/2

Thus

(6.9)

then the number of black holes that have been nu-

cleated in the period from time t& to time t2 per
unit comoving volume at time t will be

t2N- f R'(t)I'(T(t)}dt .
R (tz)

toG ' —MoT(t)-
~Oto

(6.13)

N-10 ' + exp( —10 ) cm (6.14)

assuming p-mp.
This illustrates the incredible improbability of

this phenomenon at any reasonable temperature.
Note added in proof. We understand that B. Al-

len has confirmed some of the numerical work
quoted in Sec. V.

which is constant. Since the blackbody back-
ground temperature is cooling like t '~, there will
necessarily come a time when the hole will be
hotter than its background, and it will evaporate.
(This conclusion also holds in a matter-dominated
era. )

From this, we see that any black hole we might
observe must have an evaporation time scale longer
than 1 Hubble time. This corresponds to an initial
mass of around 10' g, which would be nucleated
at around t-10 sec. The number of such black
holes per unit comoving volume now is

t2N- f dtt'+ / exp
t 3

2

0.87JM mp
X

64'

m t
G(8—1)/4

16m

(6.10)
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As ti —+0, this integral will only converge if
0& —4. This estimate is presumably invalid for
temperatures greater than the Planck temperature,
and so for times ti less than the Planck time.
However, it illustrates that the rate of black-hole
production is sensitive to 8. It is impossible to es-
timate absolute rates without some knowledge of p,
although it is widely supposed that p-mp.
Presumably, this indicates that this process is quite
important in the very early universe.

We can now estimate the probability of finding a
black hole nucleated by this process. Any black
hole will in fact evaporate in this scenario. Sup-
pose a black hole of mass M is nucleated at t=tp
at a temperature of Tp-G '/

tp
' . A black

hole, at best, can accrete at a rate of

M(t)-M T G -GM t

Thus, its mass M(t) is given by

(6.11)

M(t)- G ' . (6.12)
1+(tpG ' Mp)t/Mptp—

Its temperature T(t) is, as t~ ao,

APPENDIX A: ONE-DIMENSIONAL
DETERMINANTS

ui (r) ui (r)
Mt„(r)= . i . 2(—) (A2)

Note that if u (t) is any solution of (Al), then

ui (r) ui (0)

Furthermore, detMi (r) =uiI (r}ui (r) —ui(r}
X ui (r) =1 since the Wronskian is constant in
time. Consequently, —8, + V(t) on the interval

[O,r] with periodic boundary conditions has an
eigenvector with eigenvalue A, if and only if
tr(Mi (r) —1)=0. This implies that

(A3)

Consider the equation

u(t)+ V(t)u (t)=—Au (t)

on the interval 0 & t &r. Let u i (t) [u i ( t)] be the
solution with initial data ui (0)=1, u i(0)=0
[u i(0)=0, u i(0)= 1]. Form the matrix
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det+[( —B, + V(t) —A, )/( —B, —A, )] Since

det' ( —B,+V")=—(B/BA, )det( —B, +V"—A. )
~ g p

where

cosWA, r (I/WA, ) sinu A, rM (r)= —v A, slnvl, r cosvgr

since both sides of the equation are meromorphic
functions of A, with identical poles and zeros (and
both go to one as A,~ Op with argA, +0). Finally,
we may define the overall normalization on func-
tional determinants so that

det+ [—B, + V(t) —A, ]=tr(M~(r) —1) . (A5)

This agrees with the standard result for a harmon-
ic oscillator,

we need M~(r) correct to O(A, ). This may be easily
computed using the known zero-mode x(t}, and per-
turbing in A,. If the bounce is translated in time so
that x(0)=0, then

up(t) =x(t)/x(0), up(t) =x(t)x(0) f dt'/( x(t'))

and
t

uI„' (t)=up' (t)+A f dt'[up(t)up(t') —up(t)up(t')]

Xu, (t')+O(A, '}.
This yields

tr(M&(r) —1)=A, f dtf dt'(x(t)/x(t')) +O(k ),
so that

=TrI exp[ —P( —,p + —,co x )] ]

e
—Pku/2/( 1 e

—Ishm
)

since tr(Mp(PR )—1)=2(cosPRco —1).
Functional determinants with any other choice

of boundary conditions may also be computed us-

|ng the matrix M~(r). For example, determinants
with antiperiodic and Dirichlet boundary condi-
tions, respectively, are given by

det ( —B, + V(t))=tr(Mt„(r)+ I )

det'+[ —B', + V"(x(t))]=— f dt(x(t))'

X f dt/(x(t))'

= W(E)r'(E),
where

E = V(x(t) )——,(x(t) )',

W(E) =2 f dx [2(V(x)—E)]'

(A7)

and (A6)
detD( —B, + V(t) —A, )=n %[M~('7)] &2 .

Finally, we must compute det'+ [—B, + V"(x(t))].

x2
r'(E) =(B/BE) 2 f dx/[2( V(x) E)]'/—

This verifies equation (2.10).

APPENDIX 8: THE COMPONENTS OF EQ. (5.13) IN THE SCHWARZSCHILD INSTANTON

(B1)

We display the components of —Clg' —2R'"' tl},d ——A,P' in Schwarzschild coordinates [we would like to
thank Roberta Young for checking Eqs. (Bl)—(B10) using CAMAL, an algebra handling program (6= 1)]:

r B r —2m B 1 B 1 B 2(m +r) B cotg B

r 2m Bt — r Br r Bg r sing By2 r2 Br r
+ +— + . + +

2m, pp 4m B,p) 2m(2r —3m), )) 2m .22 2m sin2g

r3(r —2m) (r —2m)2 Bt r(r —2m)3 (r —2m} (r —2m)

r B,p& r —2m B p~ 1 B .p~ 1 B
~p&

2(m r) B-+ +— p +r —2m Bt2 r Br r Bg2 r sing BP r
2m B ~ ~ cotg B p& 2m B pp 2(2m r) B p2 2(2m r) B— —

(r 2m) Bt r —Bg r' Bg r' Bg

2 22r 4mr +4m ~—p& 2(2m —r) pz

r (r —2m) r
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r a r —2ma 1 a 1 a ~02 4(r —m ) a ~02
r —2m at r ar r ag r singag+ +— + +

p2 BT

+ cotg a y02+ 2m a y12 + 2 a apl 2cotg a
y 3+ 4m 1

(1 t2g) y02 gy02
r2 ag (r —2m)2 at r3 ag r2 ag r3 r2

(B3)

r a p3 r —2m a p3 1 a p3 1 a p3 4(r —m) a p3 3cotg a ~03+
r 2m at—2 r ar2 r2 a82 r2sin28 a/2 r2 ay r2 ag

2m a ~,3 2 a ~, 2cot8 a ~02 2m
p g~03

(r —2m) at r sing aP r sing aP r

r a 11 r —2m a 11 1 a 11 1 a 11 2(3m r) —a

+ P"— —P '+ —(2m r) P—' +—(2m r) P' +——(2m r)—r' ag r' at r' ag r' ag r'

2m (2r —3m)(r —2m) 00 16mr —14m 4r 11
—2(r —2m)(r —3m)

2(r 2m—)(r —3m) ~33 . 2g 4(2m r)—
p

2 p 2

r a 12 r —2m a 12 1 a
~ Bt2 ~ Br2 r2 882

+—(2m —r) P +—(2m r)—2 a 22 2 a

r 88 I
2

2(2m —r)+
r

2(r —2m) . 33 4(2m r)—
1 a 12 4(r —2m) a 12 cotg a 12 2m a p2+ . +

r singap r ar
+ r' ag

p23 2 a ~„2cotg a ~» 1
( 1 28)~12

r' ~~ r' 90 r'

r a' » r —2m a 13 1 a 13 1 a 13 4(r —2m) a 13

y —2m at y ar r ag r singap r

3cotg a ~, 2m a~ (2m r) a
~ 2(2 —

)
a p33

r ag r r r ag r2 aP r sing a/
2cotg a, 12 6(2m r)cot8—, 23 4(r —2m), 13 g 13+ 2 2 +r'sin'8 aP r r

r a 22 r 2m a —
22 1 a 22 1 a 22 6r —10m a 22 cotg a

ar r ay r sing ag
+ +— + . + +r2 ar r2 ag

4 a 12 4cotg a 23 2m (2m —r) 00 2(r —3m)» 4m sin 8 33 2cos 8
y3 ag y2 aP r' r4(r —2m) r' r'

$22+ ( 1 cot2g)$22 A/22

a' » r —2m a' » 1 a' » 1 a' » 6r —10ma» 3cotga
r —2m at r ar r2 ag r sin2P aP r ar r2

+ +— + . + +

2 a ~, 2cotg a
~

2 a ~12 2cotg a 22 3( 2g) 8

r ag y aP r singag rsingag r r'
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r t) ~33 r —2m t) ~33 1 i) 33 1 t) 33 6r —10m

r —2m Qt2
+ r gr2 r tig r sing t)(b

+— + . +
r2 "dr

5 COte t) p33 t) ]3 4 Cotg t) 23 2m (2m —r) pp 2(r —3m)
6 2 4 2r2 Bg r3sin2g t)(b r3sin2g &P r sino r sin g(r —2m)

+—[(r —2m)+ r cot g]P = —A(() . (B10)
r sin8 r sin 6I r

These equations are closely reIated to those of Edelstein and Vishveshwara, who considered perturbations
to the Lorentzian Schwarzschild solution, but in a gauge different from ours.
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