
PHYSICAL REVIE%' D VOLUME 25, NUMBER 12 15 JUNE 1982

Topological obstructions to gauge-independent descriptions of broken symmetry
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When a gauge group G is broken to a subgroup H(p) by a Higgs scalar p, a fermion

field l( will split into irreducible representations of H(p). The construction of fields

l('(p, l() that are linear in g, express the splitting gauge independently, and transform ir-

reducibly with respect to H(P) is considered. It is found that in some cases the construc-

tion is possible while in others there are topological obstructions. Connections with the

notion of complementarity are discussed.

I. INTRODUCTION

Included in the theorist's creed is the belief that
the physical content of gauge thtxiries can be ex-

pressed gauge invariantly. Gauge-dependent state-
ments are suspect. For example, the vacuum ex-
pectation value of the Higgs scalar field is assumed
to be nonzero in some gauges, but it can be shown
to vanish in others. ' As a result, its usefulness
as an order parameter distinguishing the Higgs and
confining regions has been questioned. The physi-
cal picture associated with the Higgs mechanism is
certainly gauge dependent. Thus a gauge-
independent or "symmetric" description of the

Higgs mechanism that does not rely on a particu-
lar gauge fixing has been advocated and dis-
cussed. In addition, there is a notion of com-
plementary. This states that in certain cir-
cumstances the Higgs and confining regions are ac-
tually smoothly connected.

For a simple example, consider a theory with

gauge group G =SU(2) broken to H = 1 by a doub-
let Higgs scalar. Let there also be a fermion doub-
let f After symm. etry breaking, radiative correc-
tions give the two components of P different mass.
On the other hand, one might argue that gauge in-

variance is never really broken, ' the components
of f are related by gauge transformations, and thus

they cannot have different masses. This apparent
contradiction is resolved with the observation that
the separation of l( into two components is gauge
independent. In this case, it is actually gauge in-
variant. The fields P g and iP ops are gauge in-

variant and linear in P. For the usual choice of
the vacuum expectation value of P, they reduce to
the upper and lower components of P. The ques-
tion is: Can these constructions be generalized to
more complicated models including cases with

H+I?
Frohlich, Morchio, and Strocchi have discussed

this and related issues. They have shown that it is
always possible to give a gauge-independent
decomposition of the fermion representation space
into subspaces associated with irreducible represen-
tations of H. The decomposition is effected by
certain projection operators. However, the fields
constructed with the projection operators have
fewer physical degrees of freedom than is indicated

by the number of components, and they do not
transform irreducibly with respect to H. Thus it is
reasonable to attempt a slightly more ambitious
program.

Let QJ (j =1, . . .,d) be the components of a fer-
mion field that carries a d-dimensional representa-
tion of G. We will attempt to associate with f sets
of fields 1('(p, g) that depend on the scalar field
and are linear in l(. The fields are labeled by i and
the components by j,

QJ(p, p) with j=l, . . .,d; and gd;=d .

These fields should decompose P in a gauge-
independent way: (a) p' and p should not mix
under any gauge transformation if i+j; (b) each l('
should transform irreducibly with respect to H(p},
the stability group of (().

Fields with these properties can be used in con-
structing an explicit gauge-independent link be-
tween different gauge-dependent descriptions of the
theory. They have an important role in describing
the Higgs mechanism "symmetrically" and in es-
tablishing a smooth connection between the Higgs
and confinement regions (when such exists).

While the construction of Ref. 3 is always possi-
ble, this more ambitious one is not. Thus, it may
differentiate models on the basis of some physical
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property. %e have not been able to clearly identify
this property. But the preceding paragraph sug-
gests that complementary is involved. (Other indi-
cations to this effect will be noted as they arise).
An imperfect understanding of spontaneous sym-
metry breaking and confinement has prevented us
from giving the correspondence between physical
and mathematical results that would be ideal.

Let us state the problem again. Consider as
given a gauge group 6, a fermion field i)'i, a Higgs
scalar P, an orbit 4& of iIi by 6 and thus an unbro-
ken group H(P} for P E4. Problem: Can fields P'
with properties (a) and (b) be constructed?
Answer: Sometimes yes, and sometimes no.

The problem involves an intricate interplay of
algebraic topology, representation theory, and the
global structures of G, 4 and space-time. Since a
general solution does not seem to be possible,
several examples will be discussed. Simple exam-
ples that illustrate the ranges of issues, methods,
and results have been selected. The methods are
topological. No doubt, many of the results can be
obtained using algebraic methods. This has not
been done here. Such a study is likely to give ad-
ditional insights.

Section II gives some preliminary discussion and
a complete statement of the problem. Section III
discusses general methods of attack. Section IV
contains the examples.

In a particular way, this paper addresses the
general question: Can all structures in a given
gauge be expressed gauge independently~ %e will
see that there are difficulties.

Iiuir& l~ ~ ~ ~ id j Ng N) =5)~ (2.3)

When g is rotated to

0'=gF '0

then

—1
Pi gwigF wjgj .

(2.5)

(2.6)

There are many orthornormal bases and no na-
tural way to choose among them. An arbitrary
choice is made. It should be noted that while U(d)
acts transitively on the orthonormal bases, 6 does
not in general.

The theory also contains a scalar field P. The
representation g, of 6 carried by the scalar field
may be reducible. The action of 6 on iIi deter-
mines the orbits of P by this action of G. At any
point in the discussion, it will be assumed that P is
restricted to a particular specified orbit 4. This is
a gauge-invariant statement. It is roughly analo-
gous to the assertion that P gets a certain vacuum
expectation value. In either case, it is a mathemat-
ical statement. Only a study of the dynamics can
determine whether or not it is a reasonable approx-
imation to the physical situation.

The stability group H(P) of a vector P will be
defined in the usual way as the subgroup of 6 that
fixes (I):

(The subscripts label the vectors in the basis, not
the components thereof. } A vector is then referred
to this basis. For instance,

(2A)

II. PRELIMINARY DISCUSSIGN
H(4)= I g« I g. '(g)P=P I ~ (2.7)

Begin with a connected gauge group 6. The fer-
mions are assumed to carry an irreducible repre-
sentation of dimension d. The field g is a vector
in a d-dimensional complex vector space %. The
representation gz is a homomorphism from 6 into
the unitary transformations of 4:

gF.. G~U(d) .

If two vectors lie on the same orbit, then they have
conjugate stability groups. Introduce the set of
subgroups conjugate to H:

A = I g 'Hg, g &6 I . (2.&)

Now consider the action of H(p) on +. In gen-
eral, the representation of H(iI)) carried by 4 will
be reducible. Thus, 4 can be decomposed into mu-
tually orthogonal subspaces,

Thus G acts by

(g, u)EGX+- g&- '(g)u . (2.2)

+= &i(p)+ &2(p)+ .

with dimensions that add up to d,

(2.9)

In %', there is the usual inner product written
u tu for u, u E%'. The action of U preserves this.
In physics problems, it is convenient and cus-
tomary to introduce a basis of orthornomal vectors
in 4'.

d =dy+dp+ (2.10)

Each ordered decomposition is an element of the
complex flag manifold Fl(d;d „d2,...):D. —

Each V~(P) carries an irreducible representation
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of H(P). If all of these representations are dif-
ferent, then the decomposition of (2.9) is unique.
However, if V; and Vz carry the same representa-
tion of H, then there is no unique way to decom-
pose the space V;+ VJ into V; and VJ. An arbi-
trary choice must be made.

As P moves about in 4, H(P) moves about in

M, and the V;(P) move about in 4. Specifically, if tp'(P) =g~ '(g)w'(Pp) . (2.19)

In this case, it is natural to choose basis vectors
that depend upon P in such a way that w'(P) is a
basis vector for V, (P). To do this, start again at

Select (in an arbitrary way) from each V~(gp) a
normalized vector w'(Pp). Then using (2.11) again,
define

0=g, '(g)4p (2.11)
Since H =1, this is unambiguous. It follows that

then

and

H(P) =g 'H (Qp)g (2.12)

w'(g, '(g)p) =gF (g)w'(p) .

Now refer g to the basis w'(P):

g'(P, g) =tp' (P)g .

(2.20)

(2.21)

V;(p)=gF '(g)V(pp) . (2.13)

In fact, let us use these expressions to define H(P)
and V~(P). Choose a point PpE4. Determine its
stability group H (Pp). Determine the decomposi-
tion

Under a gauge transformation by g EG

0'=g. '(g)4and0'=g~ '(g)0

so

p'(0', p') =~'"(O'W'=~'(0)4=4'(4 4) .

(2.22)

V= V)(gp)+ V2(gp)+. . . (2.14)

(including any arbitrary choices that must be
made). Then, to obtain H(P), and V;(P), find a g
that satisfies (2.11) and use (2.12) and (2.13).
There is no ambiguity here even though there are
many g's that solve (2.11). All g's that satisfy
(2.11) "differ" by an element of H(gp) that fixes

Pp in (2.1 1) and H (Pp) in (2.12) and V;(Pp) in
(2.13). Thus, there are continuous maps,

H:@~A, i.e. , P—+H(P),

V:c D, i.e. , p IV, (p), V2(p), . . . I.

(2.15)

(2.16)

(For comparison, the projectors of Ref. 3 are pro-
jectors onto the V;.)

The case of no "broken symmetry" corresponds
to

H(P)=G, (2.17)

and the possibility of completely "broken symme-
try" is associated with

H(P)=1 . (2.18)

As has already been mentioned, it is useful to in-

troduce a basis in 4'. (Basis will always mean
orthonormal basis). When H =G, this is done in
the manner already discussed. In particular, there
is no natural basis since all subspaces are mixed up
by the action of H. An arbitrary choice is made.

When H (P) =.1, each V;(P) is one dimensional.

(2.23)

This should be contrasted with (2.4) —(2.6) which
refer to the case H =6 and are. now rewritten:

tp;(P) =w;,

g;(P, f)=w; g,
(P P )=gw'gr (g)ulcc~(P, g) .

(2.24)

(2.25)

(2.26)

qi= V~(P)= V~ with d~ ——d (2.27)

and all the P; mix. They carry the d-dimensional

representation of H(P) and G. When H(P)=1,
the decomposition of 4 is

q = V, (p)+ . + Vd(p)

with d, =d, = - . =1 (2.28)

and the P' do not mix. They each carry the one-
dimensional trivial representation of H(P) and G.

The task is now clear: Search for a generaliza-
tion of these trivial results to cases where H is a
proper subgroup of G. The natural thing to do is
to search for a P-dependent basis in 4 such that
the first d~ vectors are a basis for V&(P), the next
d2 are a basis for Vz($), etc. Label such a basis
with two indices tpj'(P). The superscript indicates
the subspace, and the subscript runs 1 to d;. So

tpJ(P), j= 1,. . .,d;

is a basis for V;(P).

(2.29)

In summary, when H(P) =G, the decomposition of
4 is
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gZ '(g)W'(P) =XWk(g, '(g)t}})Tk&
k

(2.30)

Examine the transformation properties of the
w's. Elementary orthogonality and completeness
arguments show that

It is important to note that under arbitrary gauge
transformations, fields with different values of i do
not mix. Thus, the separation of fields into these
groups is gauge independent.

In the case that h EH(P),

and 0,'(4', 0')=g ~'O,k 'it'k(4 4)
k

(2.42)

with

W'(g, '(g)p) =gg~ '(g)Wk(p)Tkj
k

T/„=ujk (p}gF(g)m,'(g, '(g)p)

(2.31)

(2.32)

This shows that for each i the gj(P, g) carry a d;-
dimensional irreducible representation of H (P).

For comparison, note that the projection opera-
tors of Ref. 3 can be constructed from the w's:

and

~kj ~k (gs (g)0)gF (g)j(4) . (2.33)

This shows that the selection of iU's is gauge in-

variant in the sense that vectors with different
values of i do not mix under arbitrary gauge
transform ations.

In the case that ji EH(p), these specialize to

and

gZ '(h)Wj(P) =g WL(P) TO.kj
k

(2.34)

with

Wj(g, '(h)p)=~j($)=pgp '(ji)~k(4)~Okj
k

(2.35)

and

TDkj =Wk ((( )gi'(h)Wj'(P)

Tokj '=iok (P)gP '(h)mj(P) .

(2.36)

(2.37)

P'(P, P)=w' (P)f.
A gauge transformation gives

fj'(P', P') =wz (f, '(g)$)gJ: '(g)g

=X~i (PW~k,'
k

(2.38)

(2.39)

(2.40}

This shows explicitly that for each i the Ttkj give
a representation of H(P) carried by the wj(P).

For the case H =6, there is only one d-

dimensional subspace. So the basis appearing in

(2.24) should now be written wj'. For the case
H =1, there are d one-dimensional subspaces. The
basis vectors of (2.19) should now be written
w'i (P). Specialization of (2.30)—(2.37} to these ex-

treme cases clarifies the earlier discussion.
The fermion field P can be refered to the basis

wz of+:

P'(P)=g wj(P)wj (P) .
J

Objects such as P'f carry a d-dimensional repre-
sentation of G and thus a d-dimensional reducible
representation of H(P). Although this may be all
that is really needed, the gj are in some ways a
more convenient and natural construction.

The remainder of this paper discusses when the
w's can and cannot be constructed. As mentioned,
this may be related to complementarity. When the
iU's can be constructed, the fz establish a direct,
gauge-independent connection between the fields
usually used in the regions of broken and unbroken

symmetry. This suggests complementarity. When
the w's cannot be constructed, the connection be-

tween the descriptions is less direct (such as
through the P'P which can always be construct-
ed}. A more pronounced physical difference be-
tween the two regions is indicated.

III. GENERAL CONSIDERATIONS

4=6/H . (3.1)

In this section, the construction of the w's will
be discussed. General techniques will be presented.
These will be applied to the examples in the next
section.

Henceforth, a d;-dimensional orthonormal basis
will be refered to as a d; frame. The subspace it
spans is a d; plane. A d; frame determines a
unique d; plane in %. It is central to this work
that a d; plane does not determine a unique d;
frame. There are many d; frames associated with
a given d; plane. The frames are related to each
other by U(d;) transformations.

Also, recall the structure of an orbit 4. The
group 6 acts transitively on 4 with stability sub-

group H. Thus

=g ~J'k '6'(4»4) .
k

(2.41)
This coset space is topologically nontrivial in gen-
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W=GF ——G/I . (3.4)

For the sake of this problem, it can be assumed,
with no loss of generality, that

I flH=1 . (3.5)

[If the right-hand side of (3.5) were not 1, every-
thing could be divided by it. This would give a
new and equivalent problem for which (3.5) would
be true. ] With (3.5) the inverse image in 6 of a
point in 4 can intersect with the inverse image in
6 of a point in GF at most one point.

Associated with a given PE@ there are many

g EG and many frames in 8'. The object is to
choose one of these frames. But due to (3.5), this

eral. Our problem is not really to find w (P)'s
(which can always be done), but rather to find
w(P)'s that are continuous in P as it ranges over

While in principle it may be possible to deal
with operators that are not continuous in P, it
would be awkward. A point on the orbit at which
to place the discontinuity would have to be chosen.
This is certainly not gauge invariant and thus
violates the spirit of the approach.

The simplest possibility is method I. To obtain
the w's, choose a point Po and choose the frames
wj'(Po). Frames at P can then be obtained by an
action of 6 that carries $0 to P. However, there
are in general many elements of G that carry Po to

They differ be elements of H. The vectors they
give at P will agree if any only if

wj'($0) =gF '(h)wj'(Po) for h GH(go) . (3.2)

Since for each i, the wz(go) carry an irreducible
representation H(go), (3.2) is satisfied only for the
one-dimensional trivial representations of H(go).
Thus, with this method, one can generate

wi(4)=A '(g)wi(ko) (0=gs '«)6)
for the subspaces V; that carry a trivial representa-

tion of H. The resulting g'i are gauge-invariant ob-

jects. When H =1, all V; carry a trivial represen-
tation of H The met.hod completely solves this
problem. (This is just a rewording of the discus-
sion in Sec. II.) When H+1, it gives only the
gauge-invariant combinations. Finally, note that
H =1 is a case where complimentary applies and
also all the mJ' exist.

Method II begins again by choosing frames at
Let W be the set of frames obtainixl from

those by any action of G. let l($0) be the stability

group of the frames chosen at Po. Then I is in-

variant in G, and the coset space is a group

r:4—+G (3.7)

such that

p(r(P))=P . (3.8)

This is the problem of finding a section of the
principal bundle (3.6). The section exists if and

only if the bundel is trivial. In general it is not,
and this method will fail. However, there are cases
where it works. It can be checked before more
complicated methods are applied.

Two very simple cases where it must work are
H = 1 or H =G. When H = 1, both p and r are
the identity map on G. Equivalently, (2.19) gives
the solution. When H =G, 4 is a single point.
The original arbitrary choice of frame at $0 gives
r.

The previous method requires that the G that
carries the frame for V, from Po to P is the same
as the g that does the job for V2, etc. In method
III, there is a different g; for each V~. Let H;($0)
be the subgroup of H($0) that fixes V~(go) point-
wise. A separate problem is obtained for each sub-

space. Equation (3.6) becomes

p;: 6/Hg~P,

(3.7) becomes

r;: P +6/Hi, —

and r; must satisfy

p;(r;(P))=P .

(3.9)

(3.10)

(3.11)

If any V; carries a faithful representation of H,
then H; =1, and this is the same as the previous
method. Also for a trivial subspace H;=1, p; be-

comes the identity map on 4, so r; is easily con-
structed. This is equivalent to (3.3).

Since H; acts as the identity on V;, it is invari-
ant in H. Thus, (3.9) is a principal bundle. Again
this bundle is not always trivial; so this more gen-
eral will not always work.

Now consider the most general attack, method
IV. Drop the requirement that the frames at P
come from those at Po by any action of G. The set
F of all d frames in 4 can be identified with U(d).
H determines a partition of d according to (2.10).

is equivalent to the choice of a g. Now from (3.1),
a projection map

p: G —+4 (3 6)

is obtained that associates to each element of G its
coset in 4. Thus the problem is to find a continu-
ous map
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Each frame determines a decomposition of 4': the
first d i vectors span V&, the next d2 span V2, etc.
Given a decomposition of 4 according to (2.9), one
finds a 1 frame by assembling a d i frame in Vi, a
d2 frame in V2, etc. All other d frames that will

give this decomposition can be obtained by an ac-
tion of U(di)XU(d2)X . U(d;) acts on V;.
A principal bundle with projection P and fiber
U(di)XU(d2)X ' is obtained,

P:E—+B. (3.12)

R: 4—+E

such that

(3.13)

According to (2.16) there is a map V associating
with each P a decomposition. The goal is to asso-
ciate with each P an appropriate d frame. The d
frame is appropriate if it projects in (3.12) to the
decomposition associated with P. Thus, the
mathematical problem is to lift the map V of (2.16)
to a map

two-dimensional fermion representation then splits
into two trivial one-dimensional representations.
The general discussion of Sec. III shows that
w i (P) and w i (P) can always be found.

~1(0) 0 &~1(0) i+24

Then

P', =P P and P, =i/ o2$.

are each G and H invariants.

(4.1)

(4.2)

B. U(2) with doublet Higgs barons
and doublet fermions

This is essentially "SU(2)XU(1)" Weinberg-
Salam theory. ' Although very much like A, it is
included to show that the existence of the w's is
not restricted to cases wherein the resulting g's are
invariants as in (4.2).

Now H =U(1), and for

&(&(P))=V(P) (3.14) 00~ (i» (4.3)

In some cases this is possible and in some it is not.
The examples will illustrate this in more detail.

If the u's exist, then local fields can be con-
structed,

QJ(g, f,x)=gj(P(x),g(x))=icj' (P(x))f(x) . (3.15)

The only further generalization that is possible is
to relax the condition that m be local. At the clas-
sical level, this can be treated, and an interesting
mathematical structure results. Monopoles and in-

stantons enter the picture. However, quantization

will be very difficult. Thus we have chosen not to
discuss this possibility further here.

This section has been an overview of the formal
aspects of the problem. It is difficult to state
(much less prove) general theorems due to the large
number of cases that must be considered. Instead
the structure of the problem was given. In the
next section, some examples will be analyzed.
These will illustrate a range of techinques and re-
sults.

IV. EXAMPLES

e"O
H(pp) —

0 1, 0&0&2ir (4.4)

4 splits into two one-dimensional subspaces. V&

carries a trivial representation of H, and V2 carries
a charge-one representation. Since H+1, a choice
for the w's at ((}0 cannot be transported to P unam-

biguously. Following Sec. III, the next thing to do
is check the structure of the bundle (3.6). In this
case

4 =U(2) /U(1) =S (4.5)

and (3.6) becomes

U(2) —+S (4.6)

A section of this bundle can be obtained by select-
ing from each coset the element with determinant
one. The bundle is trivial. This section suggests a
choice for the w(P)'s. They should be obtained by
transporting with an SU(2) action. Thus (4.1) and
(4.2) are obtained again. But there is a difference.
While g& is still invariant, gi(P, g) carries a
charge-one representation of H(P).

A. SU(2) with doublet Higgs bosons
and doublet fermions

The gauge group is G =SU(2). Take for Po any
nonzero vector. The only SU(2) transformation
that fixes Po is the identity. Thus H =1. The

C. SU(2) with three triplets of Higgs bosons
and a doublet fermion7

Assume that the orbit @ is characterized by the
scalars being linearly independent. Then
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H=Zi ——
I 1,—1) .

Also

G =SU(2) =S

(4.7)

(4.8)

and

4=G/H =SO(3)=RP

The bundle becomes

SU(2)~RP

(4.9)

(4.10)

with fiber Z2. If it were trivial, then it would be
true that

SU(2) =RPs xZi (4.11)

+=U(2) =U(1)xSU(2) =S'xS'. (4.12)

(The second homeomorphism is not a group iso-
morphism. ) The fiber is

U(1)XU(1)=S' XS',
and the base is

(4.13)

topologically. In particular SU(2) would be discon-
nected. Since SU(2) is connected, (4.9) is nontrivial
and there is no section. Method III does not im-

prove the situation since the fermion subspaces
carry faithful representations of H.

Consider method IV. For this case,"

there is a cellular decomposition of RP in which
the two-cell is RP .' Thus if V lifts to S' XS,
then this RP lifts to S . Since RP is of lower di-
mension than S, a map RP ~S will miss some
point on S . Since S with one point removed is
contractible, any map RP ~S is homotopically
trivial. So the map RP ~S ~S will also be
homotopically trivial. Thus if V lifts to S'xSs,
then V restricted to the two-cell of RP must be
homotopically trivial. However, a look at V re-
veals that this is nontrivial.

So for this case, w's and i)'j's cannot be construct-
ed. It is also true that, in this case, complementar-
ity does not hold.

D. SU(2) with three triplets of Higgs bosons
and a triplet of fermions

Both the scalars and the fermions are invariant
under the Zi center of SU(2). Thus, the gauge
group can be taken to be SO(3). Assume again
that 4 is characterized by the linear independence
of the scalars. Then, with no further loss of gen-
erality, assume that the scalars are orthogonal.

Now SO(3) is completely broken, so method I
will produce three gauge-invariant g's. Clearly,
they are the projections of 1( onto the three scalar
directions.

D =U(2)/[U(1) XU(1)]=S' . (4.14)

Equation (4.14) follows from the fact that in this
simple case a decomposition is determined by a
single direction in C . Thus

E. SU(2) with a triplet of Higgs bosons
and a doublet of fermions.

D =CP (4.15)
Assume that $0 is in the "3"direction. Then

P: S'XS' S' (4.16)

with fiber (4.13). The object is to lift the map

Then a look at CP reveals that it is homeomorph-
ic to S . Thus the bundle (3.12) is

H=U(1)=e ', 0&9&2m. . (4.20)

The two-dimensional fermion representation splits
into two nontrivial one-dimensional representati-
uons of H with opposite charges.

The bundle (3.6) is

V. RP ~S (4.17) SU(2) —+.S (4.21)

to

R: RP3~S')&S (4.18)

so that (3.14) is satisfied.
It will now be shown that this cannot be done.

The map P of (4.16) can be considered in two
stages,

with fiber U(1). This is the Hopf fibration and is

a nontrivial principal bundle. ' There is no sec-
tion. Since each fermion subspace carries a faith-

ful representation of H, method III will not work
either.

Consider again method IV. The structure is the
same as in C except that now

S'XS —+S ~S (4.19) 4=S (4.22)

Thus if V lifts to S')&S, then it lifts to S . Now Since
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~(S,U(2)) =a 2(U(2)) =rri(S'XS ) H=SO(3) . (4.29)

=n.2(S')+m2(S ) =0 (4.23)

F. SU(2) with a triplet of Higgs bosons
and a triplet of fermions

As in D, the gauge group can be taken to be
SO(3). In this case, it is convenient to consider
structures over the reals rather than the complexes.

Pc and 4 are as in E and

H=SO(2) .
4 splits to V~ and V2. V~ carries a trivial repre-
sentation of H. V2 carries the defining two-

dimensional representation. Thus it is easy to ob-

tain

(4.25)

ir'ji=k 0 ~ (4.26)

The others cannot be constructed. To show this,
go directly to method IV. For this case, F is O(3).
D is RP . 4 is S . Since

n.p(SO(3) )=0, (4.27}

V will lift only if it is homotopically trivial. V as-
signs to each P ES a decomposition in D. With
RP viewed as lines through the origin in R, V as-

signs to P the line along which it lies. Thus V is
the double cover

S -+RP (4.28)

A look at the homotopy sequence confirms intui-
tion. This is homotopically nontrivial.

Thus the itj; cannot be found. This example
shows that the problem with the previous examples
was not that the fermions were in the doublet rep-
resentation.

G. SO(4) with vector Higgs bosons
and vector fermions

This example is included to show that there are
nontrivial examples wherein the w's can be con-
structed G= SO(4) .is broken to

all maps S2~U(2) are homotopic to the constant
map. Thus if the map

V.S ~S (4.24)

is homotopic to the identity map, it will not lift.
A direct examination of V shows that it is the
identity map. The construction of the fj cannot
be carried out. This is also a case where com-
plementarity is not expected to hold.

4 splits into V& and Vz. V& carried the one-
dimensional trivial representation. V2 carries the
three-dimensional vector representation of H.

For this case,

@=SO(4)/SO(3) =S (4.30)

It is a famous result that S', S, and S are paral-
lelizable. ' Thus the bundle

SO(4)~S (4.31)

is trivial. The w's can all be constructed. One way
to do it is to use the fact that S can be identified
with the group of unit quaternions. Then

w i P=(gi——,g2, $&,$4),w z ——( Pi, $4,$—„—Pz),
1 2

H= [SU(3)XSU(2) XU(1)]/Z, .

A fundamental fermion splits

5—+(3,1)+(1,2) .

(4.33)

(4.34)

The w's cannot be found.
Let G =SU(3), and break it with a triplet Higgs

boso«o H =SU(2}. Then triplet fermions spht
3~1+2. wi can be found, but w; cannot be.

%hen an adjoint Higgs representation breaks
SU(3) to U(2), triplet fermions split 3—+1+2. The"1"carries a nontrivial representation of U(2).
Not even the associated w ~ can be constructed.

Finally, 5 when a 27 breaks SU(3) to SO(3)XZs,
the triplet fermion does not split: 3~3. Thus, w's

can be constructed.
Rote added. Connections among topological

charges, spacetime topology, and spontaneous sym-
metry breaking have been discussed by C. J. Isham,
Phys. Lett. 102B, 251 (1981);J. Phys. A 14, 2943
(1981}.

w i =($4,pi, —p2, —pi), w3 —(pg fi f4 f3) .

(4.32)

Note that there is an analogous SO(8) example
since SO(8)~SO(8)/SO(7)=S is also trivial. The
Cayley numbers are used in the construction in this
case. It seems to be the lowest-dimensional exam-
ple of a simple, compact group with a "proper"
trivial bundle.

%e have also studied some other cases. These
do not involve any concepts beyond those already
illustrated. Just the results will be given.

The first is a piece of the SU(5} model,
G =SU(5). An adjoint Higgs representation gives'
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