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A new formulation, leading to agreeable simplifications, is given, in Sec. II, for con-

structing axially symmetric, multicharged monopoles through nonlinear superpositions.

The ansatz introduced for this end is related to a modification of Yang's R gauge, which

we call the "spherical" R gauge. This aspect of Sec. II is taken up in the Appendix. In

Sec. III, we generalize our formalism to give a parallel construction for a particular

hierarchy of instanton configurations which have the above-mentioned monopoles as stat-

ic limits obtained through rescaling. Harrison-Neugebauer-type transformations are

adapted to the case of finite action through a technique (conveniently termed the "de
Sitter trick, " though we are concerned here with flat Euclidean space) found useful previ-

ously. This is recapitulated in Sec. III. The action and a crucial regularity constraint are

studied in Sec. IV. Possible further developments are indicated in the concluding re-

marks.

I. INTRODUCTION

The title of this paper may appear somewhat

surprising. The transformations of Harrison' and
Neugebauer are associated with static axial sym

metry, whereas instantons must be time dependent
to avoid a trivial divergence of the action. In flat
space, such transformations have so far been ap-
plied to construct axially symmetric, static mono-

pole solutions. They may have finite energy and

magnetic charge, but the infinite domain [—ao, ao j
of the Minkowski or the Euclidean time t must
trivially lead to infinite action in both contexts.
We solve this problem by formulating our ansatz
(see Sec. III) in terms of coordinates such that the
Euclidean coordinates (t,r, 8,tp) are replaced by
(~,p, 8,tp), where ~ is periodic, with a period 2m for
our normalization. We then adapt the above-
mentioned transformations to an ansatz where only

p and 8 appear. For this "~-static" case one can of
course have finite actions if one can avoid other
types of singularities. This is achieved. One can
then transform back to the coordinates (t,r, 8,y).
In terms of the Euclidean time t our self-dual,
finite-action solutions satisfying all the required re-
gularity constraints will be neither static nor
periodic. Considering always fiat space, the coor-
dinates (~,p) serve as a technical device to incor-
porate in the intermediate steps some of the simpli-
city of static solutions.

The next question one might ask is, assuming
that such a construction is possible, what can be its
interest, particularly in view of the fact that we
have already the general Atiyah-Drinfeld-Hitchin-
Manin ' construction for all instanton solutions.
The answer lies in the many interesting special
properties of the restricted classes of instanton
solutions selected out by our technique. The sim-

plest class thus obtained has already been explored
in some detail in our previous papers. ' " It leads
to what we have called a "summable chain" of in-

stantons. Such a chain in a very simple scaling
limit gives the singly charged-Prasad-Sommerfield
(PS) monopole, the t dependence disappearing in
this limit. [Throughout this paper by "monopole"
we will mean static, self-dual Euclidean SU(2)
gauge fields, the gauge potential component A, re-

placing the Higgs scalar 4.] It was shown that
one can construct for this class totally explicitly
compact Green's functions (even including the ex-

plicit inversion of a notorious matrix arising for a
scalar field in the adjoint representation' ) and
quantum fluctuation determinants where the final
space-time integral can be evaluated analytically. "
This last fact permitted us to evaluate explicitly,
and for arbitrary index, the corrections to the so-
called "dilute-gas approximation. " We have also
shown recently how the same technique can fur-
nish complex self-dual solutions with real, finite
action which give, in an analogous limit, Manton s
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complex monopoles. ' In this paper we extend our
technique to construct higher-order "chains" which
have as static, infinite-action limits multicharged
monopoles obtained through nonlinear superposi-
tions. In particular we follow throughout very
closely the formalism of Forgacs, Horvath, and
Palla, referred to as FHP hereafter. Our study
remains incomplete in several respects. We hope
to obtain more results in subsequent papers.

Thus we find a particular hierarchy in the space
of instanton solutions, the "n-chain" having a
monopole of magnetic charge n as the static limit.
This is of interest in both ways —for studying in-

stantons and also for studying monopoles. On one

hand, it selects out special classes of instantons

with, it is hoped, eventually exploitable special

properties. On the other hand, taking a very sim-

ple limit in known results for instantons, one ob-

tains immediately the corresponding results for
monopoles without practically any labor at all.
This was illustrated for the "1-chain"' "else-

where.
steps, though it involves some repetitions. In Sec.
II (and the Appendix) we reconstruct the static
FHP monopoles in a somewhat different gauge.
This serves a double purpose. Firstly it introduces
some very agreeable simplifications in the con-
struction of the monopoles The s.implification at
the level of monopole of charge 1 is indeed spectacu

lar. The new features of our gauge are thus first
displayed in an already familiar context. The most
important property is exhibited in Sec. III, where

our gauge is shown to permit a generalization for
an analogous treatment of instantons. Other points
of interest will be found in the final remarks.

II. NONLINEAR SUPERPOSITION OF MONOPOLES
IN THE "SPHERICAL" R GAUGE

For the flat Euclidean metric

ds =dt +dr +r (d8 + sin 8dqP)

and the SU(2} gauge group, we take the ansatz, im-

plying axial symmetry,

f&f (V f)'—+(V f}'=0,

fig 2(V P) (V—f)=0,

(2.3)

(2.4}

where (since By=0 for our space of solutions)

V —= B„,—B,P.
(2.5)

Z =B, + z Be(sin8Be)
r sin8

=d ——B
2

1' (2 6)

5 being the complete I.aplacian. Setting

e=f+iP, e=f iP—
the Eq. (2.3) and (2.4} can be condensed into

2 (e+e)Ee—( V e) =0 .

(2.7}

(2.8}

Thus in the Ernst equation the b is replaced by 5
in our case. . The effect of this will soon become
evident. (The consequences of axial-symmetry re-

strictions in the standard and our R gauge are
briefly recapitulated in the Appendix. One may
compare the two formulations at different stages. )

We have a so-called "Higgs vacuum" solution

where f,=B„f,fe B—af, and so on and f(r, 8) and

g(r, 8) do not depend on the azimuthal angle y.
(One can replace A, by a Higgs scalar along with
t-+ —it. We use the term monopole in this sense. )

The self-duality constraints

F~=(r sin8) 'Fee,

E,e (sin——8) 'Ee„,

( sin8) 'F,~=F„e,

where

S„„=By„B„—a„+t[~„,a„]
lead to

A, = f, os f„ tri

2 f 2

r 0'2

2

f=e', /=0
when

CT3
A =, A, =AH=At=o

2
'

(2.9)

4e o2

f 2

( sin8) A~ = +fe ~3 6 ol
2 2

(2.1)
Thus spherical symmetry is not broken in this seed
solution from which the iteration will start. This
should be compared to the solution (the simplest
nontrivial one possible for Ernst equation)
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f=e', /=0 (2.10)

used as a starting point by FHP, which leads to
a complicated form already for the monopole of
charge 1, For charge 1 we will obtain a remark-
able simplification, as will be st.

One may note that the inversion

f~—
T

(2.11)

in (2.8} reduces it to the standard Ernst equation.
But we will not start from (2.10) modified in this
way (z=r cos8~ cos8/r). Nor does f=e'~',
/=0 give a vacuum in the standard formalism.
Thus though there is a correspondence [through
(2.11)]between the solutions of the two formal-
isms, the properties of the solutions thus related
can be very different. In practice one chooses
directly the most convenient one for each case, as
is evident on comparing (2.9) and (2.10).

We now state briefiy the symmetries and
transformations of (2.8} to be used in our construc-
tion of monopoles from (2.9). They should always
be compared to the parallel formalism of FHP.5's

Ehler's transformation remains intact,

Using (2.13) one obtains

ie'8
IM) ———M2+

4rsin8 '

lei8
IM2 ———M) +

4~sin8 '

le
~ —i8

IX)———1V)—
4rsin8 '

l8
~ —i8

IN2 ———X2-
4r sin8

We define (see Fig. 1)

(2.18)

l-~i 8
8 M, = M—, (N, N—) —. (N M—, },

4r sin8

l'e"
8 Mz ———Mz(Nz —Ni) — . (Ni —Mz),

4r sin8
(2.17)

le
~ —i8

a,N, =—N, (M, —M, )+
4r sin8

le
~ —i8

8+Nz —N——z(Mz —Mi)+ . (Mi —Nz) .
4r sin8

ae+ib
d —lCE'

(2.12)

R (c)=r +c 2rcco—s8,

R(c) sinro=r sin8, (2.19)

where one may set (ad bc) =1. Th—e
Nangebauer-Kramer (NK} mapping I is now modi-
fied to

sin8

and
R(c) cosro=r cos8 —c .

(2.13)

1 4s
r f

We define

l8—:— 8„+—Bsr
(2.14)

1 1
M, = a,e, M, = a,e, (2.15)

1Ni= 8 e, Nz= 8 e. (2.16)

Equation (2.8) now leads to FIG. 1. Geometrical relationships of Eq. (2.19).
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[More precisely to =to(c).]
For a real c, ~ has an evident geometrical mean-

ing but we will include the possibility of complexi-
fication. Harrison's transformation' ' is modified
for our case as follows. The pseudopotential satis-
ies

t)+q =(M, M—, )q+e'" '(M, —M, q ),
(2.20)

8 q=(Ni N2)q—+e '" '(Ni Nzq —) .

For

f=e", /=0,
1

Mi ——M2 ——X) ——N2 ———.
(2.25}

Note that they are all real for our choice of con-
ventions. Also that now

2Tr(A, ) =4(Mi+Nz)(Mz+Ni ) =1 .

Injecting (2.25) in (2.20) one obtains using (2.19)

Thus instead of just co (Ref. 13), we have the
difference (co —8).

We define

i(co—8)

and

(2.21)

q= tanhI —,(R(c)—E)J .

Thus again the initial differences compensate to
give the same solution (with a change of sign) as
for the FHP formalism. ' Let us however contin-
ue. To generate the monopole of unit charge we
choose

(2.22}p+q
1+pq

Thus q is formally the same as for FHP' but a
difference is implicit in the definition ofp. For ex

ample, for c =0, our p = 1, and hence

E=O and c=O,

so that

rq= tanh
2

(2.27)

q= —1, for any qQ —1. (2.23)

(For q~ —1, limiting forms are to be used. } Thus
the appearance of the difference (to 8) c—an simpli-

fy certain situations. This will indeed be the case.
It is instructive to write down at once the effect

of the transformation'

where H is the Harrison transformation. We ob-
tain, finally,

1 ie'"
BMi ———q

—M2+
q 4r sin8

1
BM2 ————

1
BN = ——

1

q

ie'
qMi+

1 lele

q 4r sinO

(2.24)

le
—IN

BN2 ———q qN2-
4r sin8

One can verify directly that the set (BMi, BMz,
BNi, BNz) also satisfies the Eq. (2.17). (The set
HMi etc. can immediately be obtained since
H =IB.) Thus apart from certain constant relative
phase factors we have formally essentially the same
transformation as FHP." Let us however explore
their content by starting from (2.9).

Now for our case q = —1, simply [sm (2.23}].
Combining (2.27), (2.24), (2.15), and (2.7} one ob-
tains finally

sinhr

r

g= cos8 .

This should be compared to the FHP result'7

e=F '(r sin8+iP),

where

(2.28}

rF= . +r coshz cothr —z sinhz,
sinhr

P=z coshz

rsinhzcothz (z—=r cos8) . (2.29)

ex
sinhr

'

0'3
A, =—g, , A, =O,

2

(2.30)

03
A~ ———e, A =—e sin8 + cos8

2 ' ~ 2 2

(2.31)

Before passing on to multicharged monopoles let
us briefiy note the following points. Injecting
(2.28) into (2.1) one obtains, defining g through
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where

1——cothr
dr

I
r

A gauge transformation

the interchange r~z. But now instead of an H
transformation, the simpler I transformation (2.13)
leads to (2.31)from (2.36).

(3) A complex Ehler's transformation, where in
(2.12) along with (2.9) we set

Aq~ UAq U '+i (B~U)U

where

(2.32) —ia= —b=c=ld= (2.38)

~fo3/2 —t ~2/2 —~ 2 2U=e e e

leads to the familiar form

(2.33)

0' 'r 0r
~,=x„=x,—

2 2

lA=(e"—1)—r )&—
r 2

(2.34)

c.e.,

A„=O, As ———(e —1}
2

Aq z os
sin8 2

&„,&e,&+ being spherical projections of o. The
Cartesian components are denoted by A and

is another way of generating the complex vacuum
(2.36). Then of course we use I again. Thus (2)
and (3) are not really distinct here. But if such
techniques can be made to work for more interest-
ing cases a generalization of (2) could be particu-
larly interesting since neither of its two steps in-
volves any integration. That is why we have
displayed it separately. In this paper we will how-
ever continue with the H (or B) transformations
which avoids integration, after the first easy step,
through a composition theorem.

The composition theorem for H transformations
can be shown to be preserued, formally intact, for
our case. Namely, when applying two successive
H-type transformations one does not have to in-

tegrate (2.20) twice but for the second stage one
has as for FHP'9

r = (sin8 comp, sin8 sing, cos8} . (q 1P1 q2P1 }—
(2.39)

where

cosA, = —cothr,

sink, =(l siillir)
(2.35)

We have found that one can generate this "1-
monopole" from the same vacuum (2.9) in three

ways.

{1)The first is the B=IH transformation which
we have just used, modified for our chosen gauge.

(2) A complex gauge transformation of (2.9) by

-incr&/2U=e

where

Pl +ql
(1+p;q; }

and (pi, q2) and (pz, q2) are solutions for the same
M's and N's of (2.20) but differing in the choice of
parameters such as c and E in (2.26}. Hence
proceeding in a fashion strictly parallel to that of
FHP we obtain thus composing two successive H
transformations

leads to

f'= {sinhr} ', P'=i cothr,

1.e.,

03 )0]
A, =—cothr +(i sinhr }

2 2

) O'Z

A„=(i sinhr) ', Ae ——0, A =0.

(2.36}

(2.37)

H) H~

(Mg', Ng' ') ~ (Ml' N(' ) ~ (Mg, &, )

the following results.
We define

Qi ={qipi —q2P2} Q2=(qlp2 q2Pl »

Ql =(qlP1 q2P2 } Q2 ={'qlP2 'q2P1 } '

(2.40)

(2.41)

This is a complex vacuum and is again related to
one used by FHP' in a similar context through Then,
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1

Qi

Qi
M2 ——

Qz

Qi (0) (pi' —pz') ie"
Qz Qz 4r sin8

Qz („e(ez(pi' —pz'} ie"
4r sin8

(2.42}

Ql Ql (Oi (11'Vz Pl P2 }2 2

1 — 1 +
Qz Qz pipzQ2

~ —i8—le

4r sin8

Q2 (o) (P i P2 } —le

Q, P,PzQi 4r sin8
2—

One can go on to the generalization to n-step using
the same determinantal structure as FHP and
study the regularity constraints by constructing

2Tr(Ai )=4(M(+&z)(Mz+l(l () . (2.43)

III. HARRISON-TYPE TRANSFORMATIONS
FOR INSTANTONS: MULTICHARGED

MONOPOLES AS SCALING LIMITS

We will use a technique which led us elsewhere
to "summable chains" of instantons which have
the singly charged Prasad-Sommerfield monopole
as a limit'0" and to complex, self-dual solutions
with finite, real actions which have Manton's com-
plex monopoles as limiting configurations. '

Since there are now no essentially new features we

prefer to pass on directly to the generalization of
the next section, where the transformations are
adapted to the construction of finite action self-
dual solutions. The results for the monopoles can
then anyhow be recovered through a very simple
scaling limit.

A final comment should however be added.
From charge 2 onward there is no spectacular sim-
plification comparable to (2.28) in our gauge. The
simplification there is an agreeable but not an
essential feature. The real utility of our gauge will

be evident in Sec. III.
Something, however, of the simplicity of the ini-

tial stages (due to a spherically symmetric seed
solution and q =—1 at the origin) does filter
through to higher orders. Thus for charge 3
(indeed for all odd charges) there is some simplifi-
cation due to one "center" at the origin. In fact it
might be interesting'to try, in our gauge, to use the
charge-1 solution with generalized parameters
directly as a building block. We will not attempt
such variations in this paper.

Indeed it has also been shown useful in construct-
ing merons, ' non-self-dual complex solutions with
finite complex actionszz and a special class of
SU(3) instantons. It will work again in the con-
text of nonlinear superposition of monopoles. We
recapitulate the basic points once again for the
reader's convenience.

We start with the flat Euclidean metric

dsz=dtz+dr +r (d8 + sin 8d(P ) . (3.1)

The coordinate transformation

(t+ir) = tan v+ip
2

(3.2)

gives

dsz= (coshp+ cos~) [d~ +dp

+ sinh p(d8 + sin8d(p )]

and the domain

—ao & t & ao, 0 & r & Oo

now corresponds to

—m. &~&sr, 0&p& ao .

(3.3)

The conformal factor in (3.2} has singularities.
But in the construction of solutions of the gauge
fields and the calculation of actions an overall con-
formal factor can be ignored. The regularity prop-
erties of the solutions can be checked directly in
the spherical coordinates (3.1) (or, if necessary, fi-
nally in terms of the Cartesian ones). The interest-

ing point is that since v is periodic one can now
construct "~-static" (r-independent) solutions of
finite action. In general such solutions will neither
be static nor periodic in terms of the Euclidean
time t, which will provide us with the correct in-
terpretation. [Changing the conformal factors in
(3.3} to simply (coshp) one gets a De Sitter space
of constant curvature. In this paper we will be
concerned with the fiat space (3.1}and use (3.2) as
a technical device for constructing solutions. ]

Another property will be of central interest for
us. Rescaling,

'r =l('r, p =Ap (3.5)

and making A,—+ ao,

4ds2

A,
2

=ds' =d~' +dp' +p' (d8 + sin 8dqP),

(3 6)
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where now where now

—oo (8g ao, 0CP g oo .

(One can now substitute r'=t', p'=r', since we
have usual spherical coordinates. ) Rescaling simul-

taneously the gauge potentials as1, 1
Ag ———A A' =—A

V —= Bp, . Bg, for By=0
sl

A=BP + 2 Be(sin8Be)
sinh2p sin8

(3.12)

(3.13)

Ag ——Ag, Aq ——A~
(3.7) = rL —2 cothpBp, (3.14)

in the limit, the ~-independent solutions reduce to
really static fiat space solutions (t' now being the
Euclidean time).

In this paper we will construct self-dual finite
action, axially symmetric solutions A&(p, 8).
Through (3.2) they will be interpreted as time-
dependent (t-dependent) instantons. Through (3.5}
and (3.7) they will lead us to static monopoles of
Sec. II.

At each step the results to follow should be
compared with the corresponding ones of Sec. II.
There will be great formal similarity. But the sig-
nificance of the content will be quite different. (In
many cases ive will use the same symbol as in the

previous section for simplicity This. should not
cause any confusion. }

Now the ansatz is [with f=f(p, 8),
g=f(p, 8), fp= Bg,etc. ]

fp o'3 gp o'i

f 3 f 2

e=f+iP, e=f if, —

one has

(3.15)

, (e+e—)be=(V e) (3.16)

Ehler's transformation remains formally as be-

fore; i.e.,

ae+ib
d ice—

or, setting (ad bc)=1, —

(3.17)

f'+i g' ——=c f+i |b+—
C

The mapping I of (2.13) is now

(3.18)

6 being the complete "Laplacian" used extensively
for complex solutions, ' where we have set Be=0
on the space or our solutions. Defining

p
0'2

P

Ao2
8 2

(3 8)

sin8

(sinhp}f
'

Sp i4e

f (sinhp)f
' (3.19)

(sin8) 'Ae = +fe os it'e oi

The self-duality constraints for

F„„=B„A„B„A„+ifA„—,A„],

4e
(sinhp) f

We define

.Vp—l—

namely,

F,p (sinh p sin8) 'F——ee,

F~—(sin8) 'Fep, —

(sin8) 'F,e =Fpe,

reduce to

f~f—( &f)'+(fg)'=0,

fbQ —2(V P V f)=0,

(3.9)

(3.10)

(3.11)

1 iB+=—Bp+ . Bg
2 si

1 1
Mi —— B+e, Mz —— B+e,

1 1Xi=Be, N2 — Be. —
2f

We define also

(3.20)
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sin8X+—:—,B~ ln
sin

1 coshp+i cot8
4 sinhp

(3.22)

one obtains (2.19) with g =8 (c) and p =r after re-
scaling.

We define

cosy—: = (coshc sinhp=an=
Bp

This turns out to be the correct generalization of
the factors [+ie +' /—(4r sin8)] of Sec. II. [Note
that giving

—sinhc coshp cos8)/(sinhg) (3.29)

8,+—Bg ln
l sin8
r r

e+i8
=+l

r sin8
sinhp 88

The content of (3.16}can now be expressed as the
following four first-order equations.

8 M) ———M)(N) —Nz)+(M) Ng)X+—,

8 M2 ———M2(N2 N))+(M—2 N, }X—

"r} N, = —N)(M) —Mz}+(N) —Mz)X

d+Ng —Nz(M——2 —M) )+(N2 —M) }X

The transformation (3.19}gives

IM) ———M2+X+,

IM2 ———M)+X+,
IN) ———N)+X

IN2 ———N2+X

(3.23)

(3.24)

We have next to suitably generalize R(c) and
e"~ @ appearing in (2.19) and (2.20), respectively.
The necessary results have already been obtained
elsewhere. We recapitulate the results essential
for our present purpose.

We define g through

cosh' = coshc coshp

= sinhc sin8/sinhrl . (3.30)

y—+(co—8) . (3.31)

The equations for the pseudopotential q now be-
comes

8+q=(M2 —M~)q+e' (M2 M&q ), —

8 q =(N) N2)q—+e'r(N, N, q2—), (3.32)

where 8+ are given now by (3.20). Setting again

let

p

p+q
1+pq

(3.33)

(3.34)

Note that again for

c=O, p=1

and (for qQ —1)

q= —1.

(3.35)

It can be verified that in the above-mentioned limit
(3.28),

—sinhc sinhp cos8,

where c is a constant parameter which may be
complex. This gives [with rl—:g(c)]

sinh2rl = (sinhc coshp —coshc sinhp cos8}

+ sinh psin 8

(3.25)

(3.26)

Corresponding to (2.24) one has now

BM~ ———q
—M2+e ~X+
1 iy

q

1
BM2 ————qM ~ +e'"X+

(3.36)

= (coshc sinhp —sinhc coshp cos8) BN) ————1 1—N, + 'X

+ sinh csin 8.
In the limit A,~O after rescaling

(p,c,g)~(Ap, kc, A,g),

(3.27)

(3.28)

BN2 ———q qN2+e '~X
L

Applying the I of (3.19) one obtains
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HM1 IS——M 1
——+M

1 + X+/+0

q(1+pq) q(p —1)

(p+q} p+q
(3.37)

A~ ri~——~'d, (inA),

where

(3.44)

It has been shown elsewhere' that using (3.2)
and a gauge transformation (3.43) can be given the
standard 't Hooft form for integer a, namely,

Similarly HM2, HN~, and HN2 are easily written
down. For the vacuum to be used as the starting
point we take

f=e~, /=0, (3.38)

a
M) ——M2 ——N) ——N2 ———. (3.39)

where a is a constant. In (2.5) we normalized a
scaling factor of r in f. Here the constant a will

play a crucial role. This will soon become evident.
From (3.38) one obtains

csc km/aA=1+ Z, 2 2
k 1 (t—cotkn. /a) +r

(3.45)

sec2k1r/a

p (t —tanker/a) +r (3.46)

This is our "summable chain" of instantons whose
many attractive properties have been studied. ' '"
Evidently, from (3 45) or (3.46},one has an action

A direct correspondence to the conformally extend-
ed form can also be achieved by choosing a gauge
where

Injecting this in (3.32) one obtains using (3.30) S=81r (a —1), (3.47)

q = tanht —,[a11(c)—p] I,
where P is a constant of integration.

Now choosing P=O, c =0,

q = tanh —,ap

(3 40)

(3.41}

slnhcxp

a sl

1(i= cos8 .
(3.42)

The same gauge transformations as (2.33) leads to

o'p
A, —Xp 2

Ap
——0,

Ae ———(e —1)x
2

og
(sin8) 'A~ =(er —1)—

2
where

op=0 p ~

P=—(sin8 cosq&, sin8 sing, cos8), etc .

(3.43)

and now

and q = —1, since y=O. Applying the 8 of (3.36)
to (3.39), using (3.41) one obtains finally

which can very easily Q obtained directly from
(3A3}. It has also been shown that regularity con-
ditions as p~ ao selects out the integer values of a
(which can be taken to the positive without loss of
generality) though the action density is nonsingular
and integrable for arbitrary a. We will come
back to this aspect later on.

The following remarkable point must be noted.
8'e have generalized the Harrison-Neugebauer
transformation in such a way that in one single step
we haue generated from the Uacuum (3.38) ari in-
stanton configuration of arbitrary index We pa. y
the price of having no free parameters. But on the
other hand there is no restriction on the index
whatsoever. This situation should be compared to
stepwise increase of index associated with certain
other classes of Backlund-type transformations.
In our formalism the stepwise aspect will be
present but it will have a very different signifi-
cance. The scaling limit (3.5}, (3.6), and (3.7) with
A, =a and a~ 00 leads from (3.42} and (3.43} to
(2.28) and (2.34), respectively. Thus we obtain the
charge-1 monopole in the infinite-action static lim-
it. Iteration of our transformations will be shown
to enable us to move up the sequence of these lim-
iting configurations, namely, those of nonlinearly
superposed monopoles. Before coming to iteration
let us note one more point. Corresponding to the
complex vacuum (2.36) we have here

a sinhp
e =

sinhap
f'= . , 1ti'=iacothap .

sinhap
' (3.48)

X~= (cothp —a cothap) . This can again be generated either by a complex
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gauge transformation by
—Igo,nU=e (3.49)

where

cosg= —cothap, sing=(i sinhap)

or by a complex Ehler's transformation with an
evident choice of parameters providing

mations (and hence finally any number) algebrai-
cally after one first integration such. as (3.40). This
is the central result which makes the entire
machinary work in practice. Our, by now familiar,
scaling limit leads to (2.39), formally identical.

We now consider in some detail the effect of two
successive H transformations on the vacuum (3.38).
As in (2.41) we define

f'+if'= —a e~—1

e~+1 (3.50)
Ql =(q)pi —q2P2} Q2 =('qlP2 q2P1 }

(3.54)

We now come to the problem of iteration. The
key property to be used here involving

where now

p~
——e, p2

——e (3.55)
1 l sin8p=e'r, X+=—(ip+ . (}g ln .
4 ~ sin Sill

corresponding to parameters c~ and c2, respectively
in (3.29), (3.30) and, for the same a,

1 coshp~i cot8
4 sinhp

ql ——tanhI —,[art(c() —pl] I,
qz ——tanh j —,[art(cz) —Pz] I,

(3.56)

where y is defined by (3.29) and (3.30), is

(}+~=p +-'(p —1)X+ ~ (3.51)
where 11 is given by (3.25). We define similarly

Qi
—= (q(p) —qzpz) Q2=(qlp2 q2p 1 } ~

Using this one can derive, following the procedure
of FHP, s their version of Cosgrove's composition
theorem for our case. In fact the equations to be
solved and the resulting solution are found to be
formally identical, though the significances of the
symbols involved are different for our case. Let us
recapitulate the content of this theorem.

Let (pl, q1 ) and (pz, qz) be two solutions of (3.32)
with the same M;,N; (i = 1,2) but with different
choices of parameters (for example two distinct
sets c(,pl and cz,pz in (3.40). Corresponding to
(pl, ql ) one has a H transformation [defined by
(3.36) and (3.37)], Hl say, which leads to (M;,N,

'
)

starting from (M~, N~). Let q' be solution of (3.32)
with (M,N } and e'r=e '=pz. The composition
theorem states that one does not have to integrate
directly (3.32} with (M,",N ) but simply write

(3.57)

(3.58)

Qz Q2 (p) P 1 P2
2 2

2= — 2—
Ql Qi pipzQi

It can be shown that the general result upon com-
posing two successive H transformations starting
from the set M~' ', N~' ' is

2 2
Q2 Ql (p) P 1 P2

2 2
Ql Q2 M(o) 'q1q2 pi P2

2 2
Ql Ql (p) qlqz Pl P2

Ni —— Ni + t
Q, Qz p(pzQ2

(q(P2 —qzP1)

q 1 (q)p i qzpz}—(3.52)
In our case

(0) (0) (0) (0)M) ——M2 ——N) ——X) ——
4 (3.59)

where

q;=—A'+4
1+p;q;

One also has

(qlP2 —qzPi }q'=
ql(qiP1 —qzP2}

p2+q
&+p2q

(3.53)

Now one can compose two successive H transfor- (3.60)

and pl, pz, ql, qz are given by (3.55) and (3.56).
Instead of systematically describing all possibilities
of the choice of the parameters and their conse-
quences we state directly the results that leads in
the scaling limit to the charge-2 monopole of
FHP' adapted, of course, to the gauge of Sec. II.

The reality conditions are assured by choosing
(p~ denoting the complex conjugate of p)

—1 e —1pi =p2 ~ qi =q2
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In particular we set (note the role of a)
le

c1—— and P1 ——0,
2a

(3.61)
a tanhz—2 2z

z'+ (1r/2)'
(3.66}

lS
c2 ——— and P2 i——m .

2a
(3.62)

2TrA =4(M1+N2)(M2+N1 )

They assure (3.60}. To study the regularity proper-
ties of the solutions thus obtained we have first to
look at

The factor a is absorbed by the rescaling of the
left-hand side. Thus we obtain the corresponding
gauge-invariant expression of FHP29 with 1r/2 for
their constant (their a).

Let us now examine the situation for cos8=0.
In particular we select the interior of the ring given

by

=4
~
M1+N2

~

'=h', (3.63) sinhp = tan
2a

(3.67)

say, as one reaches typical danger zones such as
8~0 and 8—+m/2. [The total action will eventual-

ly be obtained from the asymptotic form of (3.63)
as p~ Oo.] As 8~0, carefully developing every

thing up to order 8 and taking ratios of limiting
forms one obtains

lim h =a tanhap-2= 2 2 sinh2p
8-+0 a (cosh2p —cos1r/a)

This will permit a study of the behavior at the ori-
gin and it turns out that the ring (3.67) is the
correct generalization of FHP's crucial domain
s =(x +y )'~ =1r/2. (We change their p to s for
evident reasons. ) Going in the other sense one of
course finds immediately on rescaling as in (3.65)
and making a~ 00 that (3.67) reduces to

r

s= — r=s for 8=—
2 2

(3.68}

Anticipating results to follow we state here that a
will eventually be restricted to integer values & 2
and that for a=2 one has a pure gauge solution.
We verify at this stage that there is no singularity
on the z axis (8=0) and for a=2 the right hand
side is zero. Also rescaling

For our case, after careful calculations one obtains
defining ( for

sinhp & tan(n /2a)

r tp= ~
'T=

a ' a
when

A~ ~ad~

(p=r, p'=t; p=p, l2'=r),

(3.65)
coshp & [cos(m./2a)] '}

cos7}p= cos cos11p

when

~ 2 ~ 2 7T 2sin g0
——sin —cos sinh p2a 2a

(3.69)

one should obtain as a~ Oo the static monopole
case. Indeed p=r/a and a—+ Do gives for the
right-hand side of (3.64) (since r =z for 8=0)

= —sinh p+ sin cosh p2a

that for 8=m./2

(3.70)

2sin (2m. /2a }cosaqp [sinrtp cosa%)p —(1/a) cos7}p slna7)p]

sin2}p [sin 2}p—sin (1r/2a) sin asap]
(3.71)

For a=2 the right-hand size again vanishes. Again, setting

r sp= —=—for 8=-
a a 2

and letting a~ Do,

[( /2)2 —$2]1/2
sing0 —+

a a

(3.72)

(3.73)
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say. Hence

h
2

2(n./2) cos5(5 cos5 —sin5) —1
5[5 —(n./2) sin 5]

2

(3.74)

We thus again recover the gauge-invariant expression of FHP. As in (3.74), singularities can indeed be
verified to be absent in (3.71) both as

p~O and as sinhp~ tan 2'
As gc~O, developing in powers of rto the factors go are seen to cancel out in the ratio given by the first
term in the brackets of (3.71). This corresponds to the ring sinhp= tann/2a. As p~O, rto~m/2a and
cosago in the numerator of (3.71) cancels the zero of the denominator.

More generally one has in an arbitrary region

~'=14QiQ~
I

' a(Qi'+Q~')+4(e" e'—" )[Qi(e"+e'" )X+ Q~—(e "+e '")X ] (3.75)

where

Q&
——e'rtanh —,art~ —e'r coth —,ay~

and

Qz e' r'——t anh , aq —e'rc—oth , ay ~—

and g and y involve

(3.76)

I

case. For the 1-step case we already have the re-
sult (3.47).

IV. THE ACTION AND REGULARITY AS p~ ao

The total action is

l 7TC=
2(x

(3.77)

in (3.25) and (3.29), respectively. This choice of c
has already been shown to eliminate singularities
for 8=0 (or similarly for 8=m. ) and 8=m /2. In
this paper we will not attempt to recast |'t ~ of
(3.75) into alternative more explicit forms. We just
state that having assured the situation for 8=0
and 8=m/2, one can verify that singularities do
arise elsewhere. The simple properties of the hy-
perbolic functions of p and the nonzero values of
sin8 and cos8 elsewhere assure this. Another in-

teresting region for us is that of p—+ oo. In the fol-
lowing section we will study this and the resulting
form will permit us to calculate the action.

The general case of composing n successive
transformations will be considered in a following

paper. We state here that the procedure remains
closely parallel to that of FHP. 5 The determinan-
tal structure remains formally identical. The only
apparent difference, as for the 2-step case con-
sidered, consists in the replacement of a factor
(4s) ' [their (4p) '] by X+ for M» Mq and by
for N&, Nz. There will be no difficulty in writing
down, formally, the general case. To appreciate
the difference of content hidden by the formal
analogy one has first to calculate the action. This
we proceed to do in the next section for the 2-step

(p,v=t, r, &,q&) . (4.1)

In terms of the coordinates (r,p, 8,q); for our self-
dual solutions depending on (p, 8), S can be shown
to reduce to

fp +fpS=2n f sin8d8 sinh pB
p P g2

where

f2
=4(M)+Nz)(Mp+N) )

=h

P—+ac

(4 2)

(4.3)

provided there is no singula'rity inside the asymp-
totic surface of integration. [In deducing (4.2) and
in the asymptotic developments to follow we use
techniques introduced for the case of complex solu-
tions. ' ] Let us consider the case (3.75), for which
we have shown that the finite region contains no
singularities. We now have to develop h up to or-
der e & as p—+ ao. We note that, using (3.25), as

P~ OO

S=f" dt f"
dr

21K

X f d8 f der sin8( —, TrE&„F"")
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e"=e '(I+f2 e &)+O(e ~)

where

e '= coshc —sinhc cos8
and

sinhc sine
coshc —sinhc cose

(4.4)

(4 5)

(4.6)

and
r

1 cothp+i cot8
4 sinhp

=——,(1+i2cot8e t'+Ze t') +O(e ~) .

(4.7)

One also obtains, writing pi ——(p2 ) '=p say,

(c=in/2a, but we do not have to use this value
explicitly here. ) Hence for a p 2, if we keep terms
only up to order e &, one can set

1
tanh( —,art)=1 as p~00 .

Hence

pi=(p ) '=I+i2(2 e ~ 2g&*—e

+O(e '~)

(4.9)

(4.10)
p+-'=e +—'r= 1+i2$2e t' 2(2—e &+O(e t'}

(4.8) Putting all these together one obtains (for a ~ 2)

lim h =4[(a/2 —1) e—&[2+2cot8($2+gq*)—(gi +$2' )]I (4.11)

S=2e f sin8d8[4(a/2 —1)[2+2cot8(gz+g2') —(gz +$2' )]J . (4.12)

Now one can verify that

2 2I (2cot8$2 —(2 ) sin8d8= . [cosh(i]0 ——0.
0 sinhc

(4.13)

Hence

S=862(a —2) . (4.14)

For a=2 one has to keep further terms in (4.7).
But this case turns out to be a pure gauge one, as
was already indicated by h =0 for a =2 in (3.64)
and (3.71). For 0 &a &2 the action can be shogun to
be divergent. In fact if we consider negative values
of a one has just to write

~

a
~

for a in (4.14). We
have still a continuous spectrum. %e now show
how integer values of a are selected out by regular-
ity constraints at p~ao. The technique used to
extract this constraint has already been used with
variations in our previous paper. ' ' ' We briefly
indicate the essential points. As p~ ao, keeping
only finite terms, one has the simple result, using
the foregoing development

Mi, N&,M2, %2 all ~ ~ (a —2)+O(e r) (4.15)

and hence

e~ 03
A, ~(a 2) cos~—

2 2

e~ &3
A, ~(u —2}sine

2 2

(4.17)

and As, A~ as before ~0. Hence in order to have
finite A, and A, one must have vanishing A, and

A~ as p~ oo. A finite A, as in (4.16) is not suffi-
cient. The finite part in (4.16) can however be el-
iminated by gauge transforming with

i(a—2)rcr3/2U=e (4.18)

in terms of coordinates which makes the metric it-
self singular in the region in question [see (3.3)].
(For a De Sitter world this would be the cosmolog-
ical horizon. ) To study properly the situation we
can go over to the coordinates (t,r, 8,y). As

p —+ ao, i.e., as t—+0, r—+1 there is no problem in
(3.1). From (3.2) and (4.16) one can show that as
phoo~

A, -+(a—2)o i/2,

Ap~O, Ag —+0, A~~0 .
(4.16)

when

03
(i d, U) U ' = —(a—2) (4.19)

This looks quite all right, but this is the situation So to get finite values for A, and A, as p~ co one
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with a similar result for tr& S. ince r has a period
2n, we see that after the gauge transformation of
(3.8) by U one has single ualu-es potentials only ifa
is an integer [N.ote that U itself is single valued if
a is an euen integer. But this feature arises only
because we are using a 2&(2 matrix representation
(instead of a 3-component column one} of the iso-
vector A. For a column representation U would
involve 3 X3 SO(3) matrices and would be single
valued for all integer a. Hence the real constraint
is already obtained from (4.20).]

Thus finally we obtain a class of regular, finite-
action, self-dual solutions of index

P= =2(a —2), a=3 4, . . . .S
8

(4.21)

Of crucial importance for us is the factor 2 before
(a—2}. It should be compared to (3.47) where the
index was

SP=
8

=(a—1), a=2, 3, . . . . (4.22)

The rule for obtaining the magnetic charge for the
static limit after rescaling turns out to be

P
magnetic charge = lim —.

a—+ao CX

(4.23}

For (4.22) we thus had the charge-1 monopole.
Similarly for (4.21}we obtain the charge-2 mono-
pole. With this idea behind, we will call (3.43) or
(3.44) the "1-chain" and that corresponding to
(3.58} [with (3.61) and (3.62) the "2-chain"].

For the general n-chain, the generalization of
(4.12) leading to

P=n(a n) (a=n+—l,n+2. ) (4.24)

turns out to be quite easily obtainable. A thorough
study of the determinantal structure will be
presented elsewhere.

V. REMARKS

In this paper we have stopped short at a certain
stage. Further study in several directions is need-
ed. The study of the general case ("n-chain"} with
calculation of the action should be straightforward
up to a certain stage. But further exploration of

has consistently to start with the gauge transform
of (3.8) by U. But then another problem arises.

Uo2U '= cos(a —2)ro2+ sin(a —2)nri

(4.20)

the "2-chain" of Secs. III and IV can already
present intriguing features.

For the "1-chain" we could show that the "~-
static" form (3.43} is gauge equivalent to the stand-
ard form given by Eqs. (3.44) to (3.46). What
would be the ADHM parametrization of the "2-
chain"? It may not be a simple task to find it out
explicitly. But it would be a quite interesting re-
sult to have. The known results for Green's func-
tions and fluctuation determinants for the ADHM
case can then immediately be utilized with the ad-
ditional welcome possibility of carrying through
further the calculations explicitly and analytically
as for the "l-chain. " The corresponding results
for the monopole limit will then again follow
without effort. (Though for convenience we are
using the terminology "2-chain, " "n-chain, " and so
on, they may turn out in the standard gauge not to
have, unlike the 1-chain, any chainlike aspect at
all. This is however not a serious problem. ) The
standard representation, once found will also possi-
bly lead to periodic forms of multicharged mono-

poles. This was the case for the l-chain.
Another important aspect is the possibility of in-

troducing parameters. The solutions we present
are parameterless (the action or index fixing our a)
as are the monopoles in the static limit. Can this
constraint be relaxed? One possibility is that of ex-

tending our class conformally by generalizing (3.2)

by including parameters. Even if it works, the
scope here is limited. One can make a conjecture
that what has been shown here to be true for
parameterless nonlinear superpositions is also true
for the more general monopole solutions. ' That
is,all static, self-dual monopoles should be obtained
as limits of certain instanton configurations after a
suitable rescaling.

The result should indeed hold. We will attempt
elsewhere to generalize our technique to include
separated monopoles as limits.

Even for the axially symmetric case, at each
iteration we are presumably generating a very par-
ticular sequence of instantons in the successive
Atiyah-Ward classes (see sources quoted in Ref.
31}. It would be desirable to display this more ex-

plicitly. [The simplest case (3.45) of course coin-
cides with 't Hooft's class.] In this context a gen-
eralization, parallel to that given here, of the
Prasad-Rossi formalism might be of interest.
Here one has to generalize, in our fashion, the
Helmholtz rather than the Ernst equation. The re-
quired generalization is already in our Ref. 12.
This would provide a suitable point of departure.
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Here we have chosen the FHP formalism since this
gives directly the gauge potentials with the reality
constraints incorporated in a transparent fashion.

Let us note one final point. The Ernst equation
is of interest both in general relativity (static, axial-

ly symmetric metrics) and for Yang-Mills fields
(axially symmetric monopoles}. Our generalization
(3.16) [reducing to the Ernst equation through (3.5)
and (2.11)] gives instantons for the Yang-Mills
fields. The content of such an equation should
also be examined in the general-relativistic context.

1 . 1~ (xi+ixz), z= (x3 —ix4),v'2 v'2

1 . 1
y = (xi i—xz), z= (x3+ixq) .

v'2 v'2

(A3)

We introduced elsewhere ' a different choice
suitable for generalization to curved spaces with
static spherical symmetry. For flat space, with
which we are concerned here, it reduces to, in
terms of the spherical coordinates (t,r, 8q&),
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APPENDIX: AXIAL SYMMETRY
IN THE STANDARD

AND THE "SPHERICAL" 8 GAUGES

In the R gauge the potentials have the form
(with A&

——B&A, and so on)

8y= tan —e '~, z= —,(r —it}.
2

(We consider the base space to be always real. ) We
will call this the "spherical" choice. We now in-

troduce the constraints of reality and static axial
symmetry in this formulation. We set

0 0
A, =fcot—,(=/cot —e'r,

2
' 2

where f and f are two real functions of r and 8
[f=f(r, 8), f=g(r, 8)J Next we. introduce a
gauge transformation

where

—ieo2/2 iyo3!2U=e e (A6)

0'3 . 0
& 102

(Al)

One obtains for the spherical components of the
transformed field (which we continue to denote by

A~)

CT3 0'~ l 0'2= —i A,„- +g„- + (A2}

r 02

2

fe &z
Ag ——

2

(A7}

where A, is real and g, in general, complex. In
Yang's formulation which we call the standard
one, p and P are defined directly in terms of the
Cartesian coordinates of the flat Euclidean space.
One can choose

I =g,Z, P =P~Z

where

(sin8) A~ = +fe a3 A 01

This is our ansatz (2.1}.
It is known that Manton's static axially sym-

metric ansatz utilized by FHP is related in an
analogous fashion to the choice (A3}. It is interest-
ing to compare this ansatz with (A7} using another
approach. To do this we start with the ansatz,
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0'3 0']
~t=g1

2 +g2
2

r 02

2

4e oz

f 2

0'3 0']
Aq ——hi +h2

(AS)

Z—=B,+(r sin8) 'B8(sin8t}e)

(A12}

This is the solution given by our Eqs. (2.1) to (2.6).
Another set of solutions is

1 1
gi ———cos8f, si—n8—fe

Here g;(r, 8) and h;(r, 8) are also real axially sym-
metric, static functions. We want to solve for
them in terms of f, f, and their derivatives using
the self-duality constraints. These constraints are,
with

1 1
g2

———cos8$„——sin8 fef " r

(r sin8) h, =— sin8 f,+ cos8f—e
1 . 1

T

(A13)

F»„dP„——dP~+—i [A~,A „],
E„=(r sin8) 'Ee

E,e (sin8} ——'Fe, ,

(sin8) 'F,~=E„e .

(A9)

(r sin8) h q ——— sin8 g„+—cos8 fe
~ ] 1 e 1

f " r

where now 6 replaces 6 in (Al 1) giving

f&f—(Vf) +(Vg) =0,
fag —2(V Q).(V f)=0, (A14)

One set of solutions is

f1= y g2=f f
(sin8) hi —— , (sin8) hz ——fe . , atef' f'

(A10)

and one has the Ernst equation for e=(f+if).
Transforming to cylindrical coordinates and tak-

ing account of differences of conventions and nota-
tions one finds now Manton's ansatz.

To relate our ansatz (3.S) to the R gauge one has
to start with, in terms of (r,p) defined by (3.2),

where f and 1( must satisfy

fZf (V f) +(V P) =—0,
f&f 2( V P).(Vf) =—0,

(Al 1)

0
y = tan —e'~, z =

2 (p+i r),
2

gy= tan —e 'e, z= —,(p —ir}.
(A15)

where
More generally for curved spaces with static spher-
ical symmetry the "spherical" choice can be gen-
eralized smoothly. ' For such cases the metric
being no longer diagonal in Cartesian coordinates,
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