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Classical model of the electron and the definition of electromagnetic field momentum
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The classical model of the electron in a vacuum is discussed in terms of a simple pro-
cedure for its assembly. The description of the assembly in two different inertial frames

clarifies the traditional Lorentz-transformation difficulties of the model and confirms the

appropriateness of the standard definition of the electromagnetic momentum density

g =(1/4mc)EX 8. Recent suggestions for alternative definitions of electromagnetic

momentum are seen to destroy the conceptual simplicity of classical electrodynamics as
revealed in the example.

The proper definition of the linear momentum in
the electromagnetic field provides one of the recur-
ring problems in physics. It appears most fre-
quently in studies of the classical electron model in
a vacuum. ' After more than a half century of use
of the standard electromagnetic momentum density

g =(1/4nc)EXB, several prominent textbook writ-
ers have called for a change. I believe this change
is an error. In this paper the assembly of the clas-
sical electron is discussed in a simple example
which clarifies the traditional Lorentz-transforma-
tion difficulties of the classical electron model and
which again confirms the standard definition of
the electromagnetic momentum density as the
correct choice for classical electromagnetic theory.

The classical model of the electron consists of a
spherically symmetric distribution of electric
charge; for simplicity in this discussion, we will

specialize the distribution to a thin spherical shell
of radius a, total charge e, and mechanical mass

m. The naive discussions of the classical model of
the electron consider the mechanical and elec-
tromagnetic aspects of the model while completely
ignoring the additional nonelectromagnetic forces,
the Poincare stresses, which stabilize the model.
We are interested in clarifying the Lorentz-trans-
formation difficulties of this naive view and hence
will define our system to include only the mechani-
cal and electromagnetic aspects; the nonelec-
tromagnetic stabilizing forces are accordingly
external to our system.

In the unprimed inertial frame S in which the
spherical shell is at rest, the system, consisting of
the shell mass and its electromagnetic fields, has a
total energy

Utot = m~h+ Uem =mc'+«2a

consisting of the mechanical rest energy U
=mc and the electromagnetic energy

2

U = rE+8
Sm 2a

(2)

P,'~ =(1/4 )srfcd'x'(E'X B ')

= —,VyU, /c (4)

where U,~ =e /2a is the electrostatic energy in (2).
Now if we expected the energy U, and the
momentum P, in the electromagnetic field to be a
Lorentz four-vector, then we would anticipate

in the electrostatic field. The mass of the sphere is
at rest and there is no magnetic field, B=O, so
that the momentum vanishes Ptot P~~h+Pg~ 0.

We now wish to examine this same system from
a second primed inertial frame S' moving with
velocity —V= —i V relative to S so that the shell
moves with velocity +V relative to S'. If we
use the traditional definition p =myv with
y=(1 —u /c )

'~ for the momentum associated
with the mechanical mass and the usual definition

g =(1/4src)EX B for the density of momentum of
the electromagnetic field, then here the total
momentum of our system in S' is

+s

tot mech+ em

=myV+(I/4trc) f d x'(E'XB') .

The evaluation of the integral for the electromag-
netic momentum is carried out in the Appendix
and yields
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from a Lorentz transformation between S and S'

P,
' =VyU, /c

Clearly the discrepancy in the factor of —, between

the expressions of Eqs. (4) and (5) frustrates this
expectation. Why is that —, there? What is in-

valved? Should we redefine the density of elec-
tromagnetic field momentum so as to remove the
factor of —,?

The problem of the factor of —, appearing in Eq.
(4) is an old one. It has been approached from a
number of points of view, but apparently never
from the assembly of the classical electron which

is for me the simplest and clearest. Accordingly, a

simple example of the assembly of a charged

spherical shell as seen in two different inertial

frames is outlined below.
The assembly of the classical model of the elec-

tron is imagined in terms of a thin spherical shell

of total mechanical mass m and charge e sent

rushing inwards from spatial infinity with the ini-

tial kinetic energy mc (y„—1) at spatial infinity

equal to the final electrostatic potential energy

U, =e /2a. Since the shell is perfectly spherical-

ly symmetric, there is no radiation loss and all the

initial kinetic energy at spatial infinity is converted

into electrostatic potential energy when the shell

comes momentarily to rest at radius a. Just at this

instant when the spherical shell comes to rest, the

stabilizing forces are applied. These forces prevent

the reexpansion of the shell. The external forces

are applied simultaneously at zero velocity and

hence transfer neither energy nor momentum to
the spherical shell. We have thus assembled our

classical electron as a thin-shell charge of energy

U«, ——mc +e /2a

and vanishing momentum P«t ——O.

The above description of the assembly of the
classical electron is given from the point of view of
an observer in the frame S in which the total
momentum of the electron is zero. Let us view the
same assembly process from the primed frame S'
moving with velocity —V= —iV relative to the in-

itial frame S. When the massive charged shell has

infinite radius, the electric and magnetic fields E,
B ' vanish, and all the particle energy and momen-

tum is that associated with mechanical mass. Now
the behavior of noninteracting mechanical mass is
well known in special relativity, and the energy
and momentum transform as a Lorentz four-
vector. Hence, initially the system momentum,
which is all mechariical momentum, is given by

tot =P mech(t'~ —oo )=VYU, o, /

As time passes the electromagnetic fields increase
from their initial zero values and part of the
mechanical momentum is converted into elec-
tromagnetic momentum. However, since there are
no external forces on the system for times less than
some t,', the total momentum is conserved and

tot P mech+ Pem

=VyU.../c', t'(ts., (6)

b,P'= —,VyU, /c

But this is precisely the discrepancy associated
4

with the factor of —,. The total system momentum

P,",,
' "' after all the external stabilizing forces have

been applied has been changed in the S' frame
from the value in Eq. (6) over to

PIot'"' ——VYU,o, /c + —,VYU, /c

=Vym+ —,VyU, /c

corresponding to the momentum of the mechanical
mass m and exactly the electromagnetic momen-
tum (4) involving the integral over the traditional
field momentum density

the proper Lorentz transformation properties still
hold. The crucial change comes when the external
stabilizing forces are applied beginning at t' =t ~.
In the frame S these stabilizing forces are applied
simultaneously; consequently the net external force
on the system vanishes and there is no change in
the momentum of the system. Contrastingly in the
S' frame the external stabilizing forces are applied
at different times to different parts of the spherical
shell. Thus starting with the application of the
first force and until the moment in the S' frame
when all the external forces have been applied,
there is a net external force on the shell, and hence
net momentum is transferred to the shell. The to-
tal momentum of the shell is thus increased from
the value

2P io~
=VYU«i/c

which held before the external forces were applied.
The change in momentum b P ' of the charge shell

as seen in the S' frame is equal to the net impluse
I ' delivered by the external stabilizing forces as
seen in the S' frame. The net impulse I ' can be
computed as in the Appendix with the value for
bP'= I' given by
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g =(1/4~c)E'XB'.

The factor of —, in the electromagnetic momentum

is by no means extraneous; it is needed crucially to
maintain the validity of the force-momentum bal-
ance in the S' frame.

A physical particle or system will in general in-
volve contributions to the total momentum from
both the electromagnetic fields and other sources.
In our example the mechanical momentum of the
shell at spatial infinity is converted into elec-
tromagnetic momentum as the shell rushes inward.
As Poincare pointed out in 1906 only the total en-

ergy and momentum can be expected to satisfy co-
variant behavior when transformed between dif-
ferent inertial frames.

Various authors have taken a view which is op-
posite to that expressed here and have suggested

4
that the factor of —, above is an embarrassment

which should be removed. One method for remov-

ing the factor involves redefining the electromag-
netic momentum of the system so that it is not the
integral of the density

g =(1/4mc)EX 8
as used above, but rather is

P, =(y/4nc) I d x. [E&(B+v EE+v BB

ing forces play a crucial role and the attempts to
circumvent the role played by these forces by rede-
fining the electromagnetic momentum density only
destroy the conceptual simplicity of the traditional
view of classical electrodynamics.

The typing of the manuscript for this article was
supported by The City University of New York
PSC-BHE Research Award Program, Grant No.
13430.

APPENDIX

1. Electromagnetic momentum for a spherical
charge shell

The fields E ' and B ' needed in the integrand of
Eq. (4) are easily found by Lorentz transformation6
from the electrostatic fields in the S frame. Also
if we change the variables of integration from x',
y', z' at fixed time t' over to x, y, z at t', and use
the spherical symmetry of the fields in S to replace
E& +E, by —,E, then we have

P,' =(1/4irc) I d x(E')&B')

=(i/4irc) I (d x/y)(Vy /c)(E& +E, )

, v(E +8 )]—, = —,VyU, /c (Al)
where

y=(1 —U /c

and v is the velocity of the inertial frame relative
to some preferred inertial frame.

This redefinition, I believe, is an error. The usu-
al ideas of force, energy, and momentum hold to-
gether properly with the traditional definition and
not with the use of the density function given in
Eq. (9) which eliminates the factor of —,. The ex-

ample given above is one illustration of this; if the
laws of physics are to hold for all inertial frames
in this open system in which nonelectromagnetic
external forces are applied, then the electromagnet-
ic field momentum should not transform as a

4Lorentz four-vector and the factor of —, is a con-
sistent reflection of this fact. My opinion is that
these other authors err in taking seriously as a
model for a point charged particle the electromag-
netic energy and momentum behavior of the classi-
cal model of the electron despite the nonelec-
tromagnetic forces required for the classical
model s stability. The nonelectromagnetic stabiliz-

where U, =e /2a is the electrostatic energy in
Eq. (2).

2. Net impulse of the external forces

The external forces applied at time to in the S
frame are exactly such as to balance the electro-
static forces of the sphere on itself:

f"-~«r)= f". (t, r)&(t to), — —(A2)

Thus it follows that

f", =(0,(e/4tra )5(r a)er/2a2) . —(A3)

where f" stands for the force density and 6(t to)—
is the unit step function. The electromagnetic
force density f", (t, r ) can be obtained from the
symmetric electromagnetic stress-energy-
momentum tensor f", = —B„O",", where 8"," in-
volves simply the electrostatic field

E=H(r —a)er lr
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The force density at a space-time point is a
Lorentz four-vector which in the S' frame has
three-components

I gl
extx =yfextx~ fexty =fexty ~

ft
extz extg

(A4)

Now using the Lorentz invariance of the space-
time volume element dt'd x'=dt d x, the Lorentz
transformations for the coordinates, and the ex-
pressions (A2), (A3) and (A4), the integral for
I '(t,' ) becomes

By symmetry it is clear that the net impulse I '

has a component only in the x direction parallel to
the relative velocities of the frames. Thus the
resultant impluse I '(t,' ) delivered by the external
forces to the shell as measured in the S' frame is

t=t+ /y —Vx/c2
I'(t,')= i —f d'x f dt yg(t

X5(r —a )e x/8ma (A6)

e P

I '(t,')=i f dt' f dix'f,'„,„(t',r') .

(A5)
I

If the time t,' is sufficiently large that all the exter-
nal forces have been applied, then the integration
becomes

00 77 2'' t =t+ /y —vr cos8/c ~

I '(t,')= iy f— r dr f d9sin8 f dP f
Va cos8 e= —iya d 0 sin82~ —— cosO

8=0 C sma4

dt 5(r —a)cos8e /8na

= —,Vye /2ac (A7)

as required for Eq. (7).
Note added. My analysis above was written with

two aims; first to provide a simple model for the
formation of the classical electron model which I
believe sharply clarifies the famous factor of —,,
and second to suggest that the example illustrates
the validity of the traditional definition for
momentum in the classical electromagnetic field
and the inappropriateness of the new definition
which is creeping into the advanced-textbook litera-
ture.

My views are not shared by Professor F.
Rohrlich. His rebuttal to my discussion appears in
the following paper.

It should be noted immediately that neither Pro-
fessor Rohrlich nor I now disputes the accuracy of
the other's calculations; at least I believe this is so.
I do differ with Professor Rohrlich on two asser-
tions of his reply (following paper ) and with his
conclusion on the definition of electromagnetic
momentum providing greatest conceptual clarity.

In the abstract to his article Professer Rohrlich
states: "The fundamental question is whether elec-
tromagnetic interactions can be separated from
nonelectromagnetic ones in a Poincare-invariant
way. This question is answered in the affirma-
tive. " For me this is not at all the fundamental
question. By suitable redefinitions in relatively

I

moving frames, any quantity can be made Poincare
covariant, and Professor Rohrlich does this for the
electromagnetic field momentum. I believe the
fundamental question is what definitions are physi-
cally natural and conceptually useful. This differ-
ence in perspective may be one ground for the
disagreement between Professor Rohrlich and me.

In the body of the article Professor Rohrlich
writes: "It must be emphasized that the separation
(7) of the momentum into an electromagnetic and
nonelectromagnetic part is not an observable
separation but serves the convenience of the theory.
It corresponds to the separation of the observed
mass into an electromagnetic and nonelectromag-
netic part. " In my view this comment is appropri-
ate for a system, such as a point charge, which
cannot be regarded as composed of constituent
pieces, but it is completely inappropriate for com-
posite systems, such as colliding point charges.
My strong impression is that Professor Rohrlich is
always writing with the former example in mind
and never from the more general perspective, and
on this account he arrives at a conclusion different
from my own.

If we look at the discussions provided by Profes-
sor Rohrlich and me, we see immediately that we
are not discussing the same model but rather dif-
ferent ones. I assemble the charged sphere by
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sending a massive charged shell rushing inward
from infinite radius. Before the application of the
external stabilizing forces, the total energy-
momentum I'~t„=I'"„h+I'", is a four-vector
where the mechanica1 and electromagnetic momen-
tum in any Lorentz frame have their natural def-
initions at a single time in that frame. Neither the
mechanical part nor the electromagnetic part is
separately a four-vector. This is just as in the col-
lision between point charges where the total
energy-momentum is a four-vector but we do not
expect mechanical and electromagnetic energy-
momentum to form separate four-vectors. I show
that the ideas of momentum balance fit beautifully
and naturally with the traditional definition of
momentum in the classical electromagnetic field.

In contrast Professor Rohrlich assembles his
sphere quasistatically. Thus, as he states above his
Eq. (8), for him the mechanical momentum Pg is

separated and assumed to be a four-vector by itself.
Thus Professor Rohrlich never discusses any inter-

play between mechanical momentum and elec-
tromagnetic momentum, but rather only the inter-

play between electromagnetic momentum and
nonelectromagnetic forces where the unnaturalness
of his definition of electromagnetic momentum for
composite systems is not fully exposed. I believe
the unnaturalness is easily exposed if we think in
terms of Poynting's theorem.

Classical electromagnetism is a theory of consid-

erable detail and beauty to which Professor
Rohrlich has contributed significantly. In particu-
lar, classical electromagnetism allows the use of
nonelectromagnetic external forces and nonelec-
tromagnetic masses which are connected with the
energy and momentum of the classical electromag-
netic fields through Poynting's theorem' and its
momentum analog" when using the traditional
defintions of energy and momentum. One of the
striking illustrations' of Poynting's theorem in-
volves charged particles passing each other with
arbitrary constant velocities, v; & c. The nonelec-
tromagnetic external forces, which are required to
balance the interparticle Lorentz forces and so
keep the particles moving with constant velocity,
do not satisfy Newton's third law. Rather the
work done by the external forces, the impulse sup-
plied by the external forces, and the angular im-
pulse supplied by the external forces lead exactly as
a relativistic calculation with no approximation in
every Lorentz frame to the appropriate changes of
energy, linear momentum, and angular momentum
in the electromagnetic field when the traditional
definitions are made for the energy, momentum,
and angular momentum in the electromagnetic
field. I believe the conceptual simplicity of the
traditional definitions of classical electrodynamics
is given yet another striking illustration above in

my example of the assembly of the classical model
of the electron.

iDiscussions of the electromagnetic momentum in con-
nection with the classical model of the electron appear
in the following: H. A. Lorentz, The Theory of Elec
trons, 2nd ed. {Dover, New York, 1952), Secs. 24 —28
(this is a republication of the 1915 edition); E. Fermi,
Z. Phys. 24, 340 (1922); W. Wilson, Proc. Phys. Soc.
London A48, 376 {1936);B. Kwal, J. Phys. Radium
10, 103 (1949); F. Rohrlich, Am. J. Phys. 28, 639
(1960); Phys. Today 15, 19 (1962); Am. J. Phys. 34,
987 (1966); 38, 1310 (1970); J. W. Zink, ibid. 34, 211
(1966); 36, 639 {1968);39, 1403 (1971);J. W. Butler,
ibid. 37, 1258 (1969); R. Benumof, ibid. 39, 392
(1971).

2F. Rohrlich, Classical Charged Particles (Addison-
Wesley, Reading, Mass. , 1965), Sec. 6-3; J. D. Jack-
son, Classical Electrodynamics, 2nd ed. (Wiley, New

York, 1975), Sec. 17.5
Apparently the factor of —, was found first by J. J.4

Thomson in 1881. See Rohrlich's account in Chap. 2
of the work listed in Ref. 2.

4See Ref. 2 and the articles by Rohrlich and Butler in
Ref. 1.

5See, for example, F. Rohrlich, Am. J. Phys. 38, 1310
{1970),Eq. (3.24).

6See Jackson in Ref. 2, p. 552, Eq. (11.148).
7See Jackson in Ref. 2, Section 12.10b.
8See Jackson in Ref. 2, pp. 792—796.
9F. Rohrlich, following paper, Phys. Rev. D 25, 3251

(1982).
See Jackson in Ref. 2, pp. 236—237.

'See Jackson in Ref. 2, pp. 237—239.
T. H. Boyer, Am. J. Phys. 39, 257 (1971).


