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Dirac positive-energy wave equation with para-Bose internal variables
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Dirac's new infinite-component positive-energy relativistic wave equation is generalized by introducing para-Bose
internal dynamical variables. Electromagnetic interaction of Dirac's particle is studied and the origin of the
difficulty in the original formulation identified. It is seen to be evaded by our generalization, a special case of which
for para-Bose variables of order 2 is discussed elsewhere. Our equation also describes a spinless positive-energy
unique-mass particle in the absence of external fields. We outline the new Dirac theory in 1+ 1 and 2+ 1

dimensions.

I. INTRODUCTION

In the conventional treatment of relativistic
wave equations we are used to the appearance of
positive- and negative-energy solutions in a sym-
metric way. For finite-component manifestly
covariant relativistic wave equations however con-
structed, this is a consequence of invariance un-
der the complex Lorentz group, one of whose
elements is the strong spacetime reflection.
Dirac"' has proposed a new relativistic wave
equation, hereafter called the Dirac equation,
which is not symmetrical between positive and
negative energies. This equation describes a
spinless particle of unique nonzero mass with
positive-definite energy; and there exists a con-
served four-vector current with a positive-defi-
nite density. An important but unwelcome feature
of this new equation is that the conserved particle
current cannot interact minimally with an exter-
nal electromagnetic field because the replacement
P —m„=p„-eA„ leads to algebraic inconsisten-
cies.

Attempts have been made to generalize the Di-
rac equation. Kapuscik' has formulated a general
class of wave equations from which he derives
the Dirac equation as a special case. Biedenharn
et a/. ' have generalized the Dirac equation to des-
cribe particles of mass m and spin s, where s
can take on any of the values of 0, —,', 1, . . . .
These generalizations also allow only positive-
energy solutions, and have a conserved current
with positive density. As for the Dirac equation,
equall. y so for the generalized equations of Bieden-
harn eE al. , a minimal electromagnetic interaction
cannot be consistently introduced.

The novel feature of the Dirac equation is that,
in addition to a spacetime coordinate subject to
the usual action of the I'oincare group, there are
also internal degrees of freedom involving two
harmonic oscillators. Biedenharn et al. ' attemp-
ted an interpretation of such additional dynamical
variables as arising from a system of two sub-

particles interacting with each other through har-
monic forces. One may also seek an interpreta-
tion of the Dirac equation or its generalization as
an extended particle with a Gaussian type of dis-

tributionon.

An attempt to construct a multilocal field theory
to describe extended partic. les was made by Yuk-
awa quite some time ago. ' In the last few years,
interest in the Yukawa type of multilocal field
theory has been revived in connection with quark
confinement. In particular, a multilocal field
theory describing subparticles such as quarks in-
teracting with each other harmonically has been
discussed extensively. "' An important motivation
for constructing a multilocal field theory is to
have a divergence-free quantum field theory.

In the formulation by Dirac" (or by Biedenharn
et al. ' ') the internal degrees of freedom involve
two independent sets of bosonie variables. In this
paper, we present and study a generalization of
the Dirac equation obtained by replacing the bo-
son variables by paraboson variables. We shall
refer to the resulting equation as the generalized
Dirac equation. Since both Bose and para-Bose
oscillators for 2 degrees of freedom lead to an
SO(3, 2) structure, many features of the Dirac
equation might carry over to the generalized case.
In fact, we will see that our generalized Dirac
equation with para-Bose internal degrees of free-
dom is also a relativistically invariant wave
equation describing a particle with fixed mass,
zero spin, and positive energy. Furthermore, in
this case minimal coupling to an external elec-
tromagnetic field becomes possible. This possi-
bility was realized for a special ease of the para-
Bose variables of order 2 in a recent paper. '

In Sec. II we study the algebraic structure of the
para-Bose system for 2 degrees of freedom. A
class of representations for this system is also
presented. In Sec. III we prove the relativistic
invariance of the general. ized Dirac equation. For
the para-Bose representations used in this paper,
we show that the generalized Dirac equation des-
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cribes spin-zero particles alone. The problem of
introducing minimal external electromagnetic in-
teraction is examined in Sec. IV. It is found that
owing to the algebraic structure of the para-Bose
system no algebraic incons istenc ies ar ise. Some
concluding remarks are given in Sec. V. In Ap-
pendix A, we demonstrate the emergence of an
SO(4, 2) U(1) algebra for para-Bose variables on
2 degrees of freedom, using Green's ansatz. " In
Appendix B we describe briefly the structure of
the Dirac equation and its generalization in 1+1
and 2+ 1 spacetime dimensions.

(of t'a, 0)
I Oj (0 —gj

(0 -'l (-" 0ly2= —pi=
~

y = —p
0j

All the y are real and obey

by~ yv)=2'~~ goo= —1

The fifth matrix is given by

f -icr,
r, = roy,r,r.= ips&2-=1 0

II. THE PARA-BOSE SYSTEM WITH 2 DEGREES
OF FREEDOM

In terms of "position" and "momentum" vari-
ables q„, p„, r=1, 2, the commutation relations
defining two independent boson oscillators are

Such variables constitute the internal degrees of
freedom in the Dirac equation. For convenience,
let us denote by $ the column vector

The three matrices y, , j=1,2, 3, are Hermitian,
while yo and y, are anti-Hermitian. Because of
the transposition property

we find that the "vector" and "tensor" matrices
P y, P[y, y„] are ten independent symmetric real
matrices, while the "scalar, " "axial vector, " and
"pseudosealar" matrices P, Py„Py,y„are six
independent antisymmetric real ones.

It is an immediate consequence of the Bose re-
lations (3) that, if we construct the ten indepen-
dent symmetric bilinears in $ in this way,

(2) S„„=,'~'Il[r„, r„]&, V„= ,'&'er-„-~, (10)

Then Eq. (1) appears as

[$„$]=iP„, a, b=1, . . . , 4,

0 0 1 0

0 0 0 1

-1000
0-100

For some purposes it is more convenient to use
the non-Hermitian annihilation and creation op-
erators in place of the Hermitian q's and P's:

1a~=~ (q, iP, ), s—=1,2.

Then the Bose relations (1) take the form

[a„a~~]=6„,, [a„,a,] =[at, a~] =0.
It is convenient to make a special choice of the

y matrices at this point. We take

then (i) S „and V„are Hermitian, (ii) on com-
mutation with $ we have

[S,„,(]=4[r„,r.]&, [v„h]=
2 r„(,

and (iii) among themselves the S„„and V„repro-
duce the commutation relations of the I.ie algebra
of SO(3, 2):

[s,„,v, ] =i(g„,v„q„,v. ),

[v„,v„]= is„„.
(12)

We recall here the following well-known further
features of this construction based on the Bose
structure (3): (i) if the commutation relations (3)
are realized irreducibly on a Hilbert space X„
then on exponentiation the 8 „and V generate a
unitary SO(3, 2) representation [more correctly an
Sp(2, 2) representation] on 3Co, in which an element
g in SO(3, 2) is represented by a unitary operator
U(g); (ii) this SO(3, 2) representation, which is
characteristic of the fact that we started with
Bose operators, is the direct sum of two irreduc-
ible unitary representations, each of which is a
"remarkable" representation"; (iii) on restriction
to the Lorentz subgroup SO(3, 1) generated by the
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S„„,we get a unitary representation Ae SO(3, 1}- U(A} acting on R,; (iv) this SO(3, 1) representa-
tion, again characteristic of the underlying Bose"
structure, is the direct sum of the two Majorana
representations thus each of the two irreducible
SO(3, 2) representations on K, remains irreducible
on restriction to SO(3, 1); (v) because of Eqs. (11),
under the unitary transformations U(g}, U(A), the
$ are transformed linearly

U(g)]U(g) '=S(g)-'~,

U(A)[U(A) '=S(A) '[,
where S(g) is a real 4 x 4 irreducible nonunitary
representation of SO(3, 2) while S(A) is the 4x 4
reducible nonunitary spinor representation of
SO(3, 1) that occurs in the old Dirac equation; (vi)
the following additional relations obtain

(13)

U(A)V„U(A) '=A" V„,

U(A)S„„U(A) '= A „A „S...
s(A)-'y„s(A) = A„"y„.

(14a}

In the Dirac equation, the "wave function" g(x) is
a vector in Xo for each x.

The para-Bose system for 2 degrees of free-
dom can now be defined: it is a set of four Her-
mitian operators $ which obey the trilinear com-
mutation relations (11), where the bilinear S„„
and V„are formed from g by Eqs. (10) again. The
trivial solution corresponds to setting all f, equal
to zero. The Bose solution corresponds to obey-
ing Eq. (3), of which Eqs. (11) will then be con-
sequences. A nontrivial para-Bose system obeys
Eqs. (11) but not Eq. (3). Such a system may be
reducible or irreducible. Green's ansatz pro-
vides us with reducible nontrivial para-Bose sys-
tems. " Unlike Eq. (3), Eqs. (11)possess infinitely
many inequivalent solutions, some of which are
described in the sequel.

For a nontrivial para-Bose system, defined on
a Hilbert space X, say, we may note several im-
portant properties. There will be some SO(3, 2)
unitary representation generated by S „and V„,
and a related SO(3, 1) unitary representation gen-
erated by S„„,acting on K,. We may denote the
corresponding operators by U(g) and U(A), with
the understanding that the nature of these group
representations certainly depends on the specific
para-Bose system chosen. All this happens be-
cause from Eqs. (10) and (11), we can derive Eqs.
(12) as consequences. The system of Eqs. (13)
and (14) remains valid in the para-Bose case,
with no changes in the 4 x 4 matrices S(g), S(A).
Since in a nontrivial para-Bose system the com-
mutator [g„$~] is an operator and not a c number,
we can use the six antisymmetric matrices P, P y„
and Py, y„ to set up corresponding bilinears:

S=—$ Pg4

5'P y, $,

A„= 4
5'Py, y„h.

In terms of q and P we have

S=:([~„P,]+[ „g.l}, P =:'([~„—P.] - [ ., P.l},

A. =
4 ([~., ~,]+[p„p.]), A, =

4 ([~„P,]+[~„P,J},

A. = 4(42, ~i]-[Pi,P2]}, A. =
4 ([~i,Pi]-[~.,P,]}.

(16)
Like S„„and V, the operators S, I', andA are
all Hermitian. For the Bose solution we see im-
mediately that P and A„vanish and S=2. (As we
will see later, it is exactly the vanishing of P and
A that leads to the inconsistency in the Dirac
equation when interaction with an external elec-
tromagnetic field is introduced through minimal
coupling. } It can easily be shown that A and P
transform as a five-component vector and S as a
scalar under the SO(3, 2) transformations U(g)
generated by S „, V„. Furthermore if we assume
that the para-Bose operators are given by Green's
ansatz, "we find that S„„, V„A„, and P form an
SO(4, 2) algebra with S generating an invariant
Abelian transformation. This is shown in Appen-
dix A.

The above description of the para-Bose ring was
in terms of the Hermitian q's and p's, and more-
over gave prominence to the SO(3, 1) subgroup of
the naturally occurring SO(3, 2) structure. We
now transcribe the description to deal with the
more familiar oscillator operators a, a~, and ex-
pose the SO(3)SSO(2) subgroup of SO(3, 2) to fa-
cilitate construction of a class of irreducible non-
trivial. para-Bose representations. Let us arrange
the a's and a~'s into the col.umn vector

a,

a2

-a1

The Bose relations (3), (5) would take the form

(16)

If we use a new set of y' matrices defined as

0 =ZP3 &I. = —Pro'j. ~ (19)
&2 = Pl+2 ~ &3 = Pl.P3 ~

then the symmetric bilinears S„„and V„appear as
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follows:

The defining trilinear para-Bose commutation
relations (11) then read in familiar form:

(20)

(26)

From its assumed uniqueness and the commuta-
tion relations (21a) we have

single spin-zero particle only if the vacuum is
unique. The general irreducibl. e para-Bose rep-
resentations will be presented elsewhere. Let us
define the vacuum ~0& as follows:

a, ~0) =0, s=1, 2.

[a„,—,'{a,', a }]=6 a„,
[a„, —,'{a„a„}]=0,

[a'„,—,'{a'„a„}]= —6 a,'

[a'„, -', {a'„a'„}]= O,

[a„,—,'{a~„at}]=5„,a~+ 6 at,

[a~, —,'{a„a„}]=—6„,a„—6 a, .

(21a)

(21b)

a,at
]

0& = c„, ) 0&, (26)

(5,„c„„—6 c,„)~0& =0, no sum on u,

which implies

(26)

where e„, are numbers. Furthermore, since

(2'I)
we have

p~ + ~ ~~ = ~ ~ 01 t fT

My Spy i V& = ——,
' a eo&aT

K= V, = —, (a~a+aratr) .
Here we have used the notation that

a=' '' at=(ata~), c=io ./a X

&a. i

(22)

(23)

Writing the SO(3, 2) generators in the pattern of
Eq. (22) exhibits the structure with respect to the
maximal compact subgroup which is generated by
J and K: both L a.nd M are SO(3) vectors while
they, respectively, raise and lower the eigen-
values of K by unity. The SO(3, 2) commutation
relations (12) can be given equally well in this
form:

[J~~ Jaj =i'JaiJi

[ZJ, L~] =it)„,L, , [J),M~] =it),M, ,
'

[K,LJ] =L), [K,M)] = —M),

[L~,L ] = [M~, M ] = 0,

[LI Ma] = —26~8 —»'~or Jr

(24a)

(24b)

(24c)

while Sand k are Hermitian, L~= M .
Let us now study a class of representations of

the para-Bose ring for 2 degrees of freedom. We
restrict ourselves for the purpose of this paper
to those representations which have a unique
"vacuum" or ground state annihilated by a, and
a„' although the generalized Dirac equation will
be covariant with the use of any para-Bose rep-
resentation. As we will see in the next section,
the generalized Dirac equation will describe a

In fact, the four Eqs. (21b) are consequences of
the two Eqs. (2la). We rearrange S „and V into
the foll.owing combinations:

4 = —t ~ S = —(ato a+aroratr)
par ar 4

c„—g6„„. (29)

Therefore, uniqueness of the vacuum implies ex-
istence of a (real nonnegative) q such that

a„a,' ~0&„=q5„,~0)„. (30)

One computes the norm of the vector

Ie& =-,' (a',a', —a',a', ) ~0&„

to obtain

(C iC» =2„(Oia,a, iC) =q(q-l).

(32)

(33)

Since q cannot be negative it follows that if gW 0,
it must not be less than unity. The case g= 1 cor-
responds to the ordinary Bose solution since in
this case ~C) itself vanishes. We have described
earlier in this section the SO(3, 2) algebra gen-
erated by the Bose ring with 2 degrees of free-
dom; it has been studied by us elsewhere in con-
nection with Majorana's infinite component rela-
tivistic equation. " The integer values of p are
associated with the realization of para-Bose sys-
tems in terms of Green's ansatz' discussed in
Appendix A. Odd integer values of q lead to "re-
markab]. e" representations. "

In the general case it can be shown that

J,. io)„=0, Kio&„=-,' qio&„. (34)

From the vacuum we can construct states which
are simultaneous eigenstates of J„S', and K. In-
deed let us define

Here we have labeled the vacuum state by p, which
may be called the para-Bose order. The case p
= 0 is the trivial solution in which all a& and a&

vanish. (Incidentally this possibility is excluded
for the Bose ring. ) Adapting a method given by
Greenberg and Messiah, "we may show that in all
other representations we must have
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~

jmn&„=, ~, —,
' (a„a,p'" (a~~)'/ —' [at, a2]" ~0&„,

/mn j-m

N) )

(2j) I I (n+ r!+2j —2) I I

(n+2j+1)!!(rI+n —3)I!n!I

(2j+ 1) I I (g —2)1

(2j —1)I !(n + g + 2j —1)I I

(n+ 1)!!(r!+n —3)I!n I I

(2j) I I (r! —2)!

(2j)l!(n+q+2j —1) I I

(n+ 2j)I!(g+n —2) I I (n —1)I I

(2j+1)I I (q —2)1

(2j —1)!I (n+g+2j —1) I I

(n+ 2j+ 1)I I (g+n —2) I I (n —1)I I

(2j) I I (n —2) I

(35)

where the + means even and —means odd. Then we can show that these are normalized eigenstates of
&„2', K with eigenvalues m, j(j+1), and (j +n+g, 2), respectively. Here j takes the values 0, —,', 1, . . .
and independently n takes the values 0, 1,2, . . . . Of course m runs over j,j —1, . . . , —j+1,—j. These
states ~jmn)„span a Hilbert space X, carrying an irreducible para-Bose representation with a unique vac-
uum and characterized by q & i. The representation is completely specified by giving the action of a& and
at& on these basis states. These equations are

a, ~gmn& a,„„~g--,'m--,'n&+P, „„~g+,m --,'n-l&,
a,

~
jmn) =y/„„~j——,

'
m + —,

'
n) + p& „„~j + —,

'
m + ~ n —1),

a ~ ~
jmn) =

/ ~/2, ~/2 „~j + 2 m + ~ n) + P~ ~/2, /2 „„~j —~ m + 2 n + 1),
I 1 1 j. 1

aa limn&='y/, j/2 &/2n!2+rm —~ n)+py x/a -i/2n x!2 rm —m+1),

(m+j}~.~ / ~ /"
~

y
J-1/2 m+&/2 n j

(x
P = (m+j )( 2j 1)~

~*'

(+1/2 ggy1/2rt-1 j

(n+2j +1)(j-m)
2j+1

(n+ rI+2j —1)(j—m)
2j

n(m+j+1)
2j+1

n(m+j+1)
2j +2

I

(r!+n+2j —1)(j -m) '/'

2j+1

(n+2j+1)(j —m)
2j

(m+ j+1)(g+n —2)
2j+1

(m+j+1)(q+n -2) '/'

2j+2

(36)

III. THE GENERALIZED DIRAC EQUATION

The equation is given by

(y„e~+m)]y g) =0, (37)

with g any solution of the para-Bose algebra
(other than the Bose solution) in some Hilbert
space 3C,. Here g has only one "component, "
that is, g(x) is a scalar function of x with values
in X,. %e have a one-component wave function

obeying four partial differential equations.
Let us first study the relativistic invariance

of this equation. For this we specify that under
the inhomogeneous Lorentz transformation

(33)

the wave function P(x) changes according to

q g ) = U(A)y(x) .
Here U(A) is that unitary Lorentz group represen-
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tation in $C, that, according to the previous sec-
tion, is generated by the bilinear 8„„in (. With
the help of Eqs. (13), (14b), (38), and (39), we
see that if g(x) obeys the generalized Dirac equa-
tion, then so will g'(x'):

action is introduced by simply replacing 8 by
m„= & —ieA.„, when Eq. (37) becomes

(y, m'+ m) $y(x) = 0 (45)

(y 8'"+m)gy'(x') =(y„A„"8"+m)t'U(A)y(x)

= [S(A)yy(A)-'e" +m] U(A)S(A)(y(x)

= S(A) U(A)(y„e" +m) gy(x) = 0. (4O)

Therefore, like the Dirac equation, our general-
ization of it is also relativistically invariant: the
replacement of the internal Bose variables by
para-Bose variables in no way spoils this prop-
erty. The only difference is that the specific
Lorentz group representation U(A) by which g
transforms depends on the para-Bose solution
used.

Next let us consider the plane-wave solutions

y(x) = e~'"u(P}, u(P) e R, .

Assuming P is timelike, in the rest frame we
have

(iP'p, +mq, )u = 0, (iP'p, +mq, )u = 0,
(-iP'q, +mp, )u=0, (—P'q, +mP, )u=0.

(41}

These equations imply (P')'=m', so we must have
P'= + m. At this point we restrict the analysis to
the class of para-Bose representations given in
Sec. II, having a unique vacuum state. For the
negative-energy case, P = —m, Eqs. (42) require

atu=a~u=o,j. 2 (43)

and clearly no such vector u exists in X,. For P'
=m, Eqs. (42) become

a,u=a,u =0, (44)

IV. MINIMAL ELECTROMAGNETIC INTERACTION

We now study the problem of minimal coupling
to an external electromagnetic field. The inter-

with the unique (up to a factor) solution u = ~0)„.
The eigenvalue of J' gives us the (nonorbital)

angular momentum. From Eq. (34) we have for
the vacuum state j =O. Since we must interpret
angular momentum in the rest frame as the spin,
we see that our generalized Dirac equation des-
cribes a spin-zero particle with mass m and posi-
tive energy, just as does the Dirac equation,
provided we consider para-Bose representations
with unique vacuum. It may be easily checked
that our generalized Dirac equation has no space-
like or lightlike solutions. "

r, iC(x) = O,

r, = (y m~ +m),~$„, a = 1, . . . , 4.
(46)

It was stated by Dirac that his equation becomes
inconsistent in the presence of such coupling.
This fact has been explicitly proved by Bieden-
harn et al. ' by a series of elegant calculations
which differ somewhat from the following analysis.

The consistency of Eqs. (46} requires that

[r., r, ]iC(x) = O. (47}

[r„r,] =[(y,m" +m) „&„(y„n"+m)„g,]

ab ab ~

$8
X,~= y„y~„F—„fg„$], (48)

r., = -,'((y„~~+m)„, (y „~"+m)„f[~„~„].

Both terms X,b and F„are skew symmetric in a
and b, and so each may be expanded in terms of
the six independent skew-symmetric matrices P,
Py„and Py, y~ with unique (operator) coefficients:

&.,=8P., + &(Pr.)., +& "(Pr,r,)...
1., = [8;,P„+ai,,(Py, )„+e,,' (Pr.r,)„][(„&,].

(49)

It is somewhat tedious but straightforward to com-
pute these coefficients; they are

8 = —ieJ" ~"S
PV&

ggvPaFie
2 pa ~

gX ie~XP, vP+ yPV pP

~„=—(m' —m'}P,„,
I',„=(~'+m')(Pr, )„+2m(Pr r„w"),„,
&,",= 2m~'(Py, )„+[m'm'+ w'n

+ (m' —m')g"'](Py, y, )„.

(50a)

(50b}

Since P, Py„and Py,y~ are linearly independent,
the consistency conditions (47) reduce to the fol-
lowing system of equations on g:

In what follows we will show that this consistency
condition l.eads to constraint equations which imply
for the Dirac equation either E,„=O or /=0; but
for the generalized Dirac equation no such con-
sequences are implied. The commutator in Eq.
(47) may be decomposed into two parts:
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(ieF'"S„„+(w' —m')P, ~[)„$,]jP = 0,

(iec"""'F„„V,+(2m' py, +[v"v'+w'v" +(m' —v')g+]Py, )[k„k~])g= o.

(51a)

(51b)

(51c)

It is easy to show that (45) implies

(52)(mPy. + Py,y„v")„[$., 5„]P= o

On using Eq. (52) in Eqs. (51), and also introduc-
ing the "antisymmetric bilinear" S, P, A„as de-
fined in Eq. (15), the consistency requirements on

g take the compact form

[ieF~"S „+8( v' —m2)S](=0,

[iee"""F„„S„+8(v' —m')P]g = 0,

(53a)

(53b)

=(a 8~ -m')A"(=0.

These are indeed satisfied since the allowed so-
lutions of Eq. (37) lie on the mass shell. In par-
ticular, for the Dirac equation with Bose variables
when S=& while P and A„vanish, we just obtain
the Klein-Gordon equation for g; this was of
course obtained by Dirac.

With an external field but with Bose internal
variables, i.e. , for Dirac's equation, Eqs. (53)
become

[ieF""S,„+4(v'- m')]y = 0,
iee"""F S g = 0gV pic

iee"""'F V /=0.

(55a)

(55b)

(55c)

Equations (55b) and (55c) are the constraint equa-
tions found by Biedenharn et al.' One can see that
these constraints are inadmissible by considering
the simple case of a constant external magnetic
field along, say, the third axis. These constraints
imply that P is annihilated by S», V„and V,. How-
ever, V, is positive definite. Therefore, we de-
duce that J"„„itself should vanish: for the Dirac
equation we cannot introduce minimal coupling to
an external electromagnetic field.

For our generalized Dirac equation with non-
trivial para-Bose internal degrees of freedom,
Eqs. (53b) and (53c) do not disappear as F„„-0;
correspondingly when J'" „is nonzero, these are
equations of motion for g, involving the space-
time derivatives of g, and not merely algebraic

[iec"""'F „V + 8ieF"~A —8(n' —m')A "]/ =0
(53c)

In the fie.l.d-free case, i.e. , E„„=O, these con-
ditions reduce to

(8, 8 -m2)sq=(S„» —m2)Py

constraints on P. Hence minimal electromagnetic
coupling is no longer forbidden.

V. CONCLUDING REMARKS

The Dirac equation of 1971, while built on a
fascinating algebraic structure, was seriously
flawed in its inability to consistently interact in
minimal fashion with electromagnetism. This
problem has been solved in this paper via a gen-
eralization in which the Bose internal variables
give way to para-Bose variables generalizing our
earlier work. ' Our equation does not belong to the
general pattern considered by Kapuscik. '

The particular para-Bose representations used
here are distinguished by the existence of a unique
vacuum, and so the generalized Dirac equation
describes spin-zero particles. However, other
para-Bose representations exist, with several in-
dependent vectors being all annihilated by a, and

a, . With their use one expects to describe via the
generalized Dirac equation particles with nonzero
spin, of course again able to consistentl. y'interact
with the Maxwell field. In this manner we wouM
have been able to obtain the higher spin analog of
the Dirac equation without introducing an ever-
increasing number of spacetime derivatives in the
equation (cf. Ref. 4).

The essential complication arising with the use
of para-Bose variables is that simple descriptions
of the internal space 3C, no longer exist; for in-
stance, we cannot assume q, and q, diagonal. For
the same reason, a limiting semiclassical des-
cription, along the lines indicated by Dirac, ' seems
considerably harder for our equation.
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APPENDIX A: PARA-BOSE ALGEBRA

Let us combine the ten SO(3, 2) generators S„„
V„of Eq. (10) into a set S„e= -S», A, B
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[SABl AC] »(gACAB gBCAA) (A2)

Thus Aa transforms as a five-vector under
SO(3, 2), whatever representation of the para-
Bose system is chosen.

Let us consider the cases with integer q which
arise on reduction of Green's construction. We
assume the form

~.=g g.
r

(A3)

=0, 1, 2, 3, 5 by identifying V„with S». Then the
commutation relations (12) are

[S„„S„]= i(g„,s„-g„S„,
gAD CB gBD CA) &

goo =g55 = 1~ gf $
—g22 —g33 1 ~

By making use of the defining para-Bose rela-
tions (11), which in fact give (&1), we can now
show that SAB and AB (where A, =P) obey

With the help of Eq. (A4) we can easily see that
the last commutator here vanishes if all four
superscripts x, s, u, v are distinct. For terms
with one equal pair of superscripts, for example
x=u, slav, we have

[&."~;, &."~",1 =«."&."+&."6&,"&,' (xs)

Similar expressions result for the other three
ways in which just one of the pair (r, s) coincides
with one of the pair (u, v). Taking this set of four
kinds of terms together and invoking the antisym-
metry of M(A) and M(B), we find that these terms
cancel against one another and drop out. For
r=u, s=v, we have

=iP,»$»)q +iPA»$»$o . (A10)

The case ~= v, s =u behaves similarly and gives
a factor of 2 since M(B) is antisymmetric. There-
fore the only surviving terms in (A8) are

where the $,
" satisfy the mixed relations

«.", ~:1=0, ", [~.", ~."]= P.,
We immediately see that

[f. 5»] =inP.»+2 Q (."5»
res

Therefore we may write 8», A~, and S as

S..=-', g &"'p[y. , y.]&".

l', = S,»
= -', Q $"'Py ~ ("

r

A. ==' g ]"'Py,y.]',4 5

(A.4)

(A.8)

2M, »(A)M(B») Q [$,"(», f»$A]
res

=2i Q [$' M(A) P M(B)('+ $" M(B)PM(A) $"]
res

=2i(q —1)g $" [M(A)PM(B) —M(B)PM(A)]$".

(A11)

Now the matrix standing between $" and $" is
symmetric, so we can exploit the first Egs. (&4)
to rewrite (All) as

[A„,AB] = 2i(q —1)( [M(A)PM(B) —M(B)PM(A)] $,
(A12)

where the total g of Eg. (&3) appears. By taking
M(t») =(-i/4)py, y, and M(5) =( i/4)py-„we get

A» Q $ py»(5 4 5

r& s
2 4

We have already the attractive set of commuta-
tion relations (Al) and (A2). Let us now find the
commutators among the A~. To simplify the no-
tation we write

A, =M.,(B)g (."~.'.
res

For each B=0, 1, 2, 3, 5, M„(B) is an antisymmet-
ric matrix. We then have

[A„,AB] =
M, (»A) M~( )BQQ[(,"$», $,"$~] . (A8)

res ttav

[A, A„]=—
(q —1)( p[p, y„]$ =i(q —1)S„„,

(A13)
[A„,A5] = (q —1)$ Py„) =i(rl —1)S„».

Thus, the set of 15 Hermitian operators S» and
(rl —1) ~ AB realize the Lie algebra of SO(4, 2).
Since we can also show that 8 commutes with all
of these 15 operators, the entire collection of 16
bilinears in $ generate an SO(4, 2) U(1) represen
tation.

APPENDIX B: DIRAC'S NEW EQUATION
IN (1+1) AND (2+ 1) DIMENSIONS

We have seen that the essential reason why
Dirac's new equation became inconsistent under
minimal interaction by new unsatisfactory con-
straints arising. We traced this to the vanishing
of the several antisymmetric bilinears in the in-
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ternal Bose variable $ in Dirac's theory. The use
of para-Bose internal variables $ resolved this
difficulty.

In this appendix we investigate Dirac's equation
in a spacetime with only one or two spatial dimen-
sions. The equation may be written

(
y" „+m

~

t'r/i = 0 .
Bx )

(Bl)

The demonstration of the relativistic invariance
of the equation follows the arguments given by
Dirac and in this paper.

The interesting fact is that in 1+1 and 2+ 1
dimensions, the Dirac matrices may be chosen as
2x 2 matrices. This simplifies the calculations
enormously since there are three symmetric
matrices and only one antisymmetric matrix. In
the (2+1)-dimensional case the symmetric ma-
trices are Py which are the same apart from
normalization as the matrices P[y„,y~]a""', while
the antisymmetric matrix is P. We may define

V" = 5'Pr'$

These operators have irreducible representations

[(m -m )S+eV B )/=0,
where

(B2)

=
p

e'""(&+~—B„A„). (B4)

This is the same equation as obtained by acting
on the differential equation (Bl) by $ (z"~„—m),
and is, thus, an equation of motion rather than a
constraint. Whether $ is apara-Bose variable or a
Bose variable this leads to a consistent equation of
motion.

For the (1+1)-dimensional case we need to re-
strict p. to the values 0, 1 and replace py' by po"
and use only BqAp —BpAg in (BS) and (B4). In this
case also we have a consistent system.

In both cases it follows that in the absence of
electromagnetic fields the system describes a
particle of mass m, and positive energy [com-
pare Eqs. (42)-(44) in the text].

(labeled 2 to 1) by a parameter q. "'" In all rep-
resentations (apart from the trivial one) q is a
positive (nonzero) number.

The consistency conditions are rather simple in
this case:
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