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A derivation of the rule that states that* (X)y(X) is the coordinate probability distri-
bution at the space-time point X in quantum mechanics is presented. A coordinate-
measuring experiment involving two light pulses that overlap at a prescribed space-time
point is employed. A classical charged particle would reveal itself by absorbing energy
from each pulse and reemitting a light wave whose energy and direction can be measured.
In order to repeat this experiment a large number of times, the wave function must be
separated into a number of identical copies. Since the (nonrelativistic) Schrodinger equa-

tion conserves

P*(X)PY(X)d>x, this separation is such that repeated measurements will

give coordinates with a distribution proportional to ¥*(xX)¥(X).

I. INTRODUCTION

The mathematics of quantum mechanics is often
connected to physical measurements through the
postulate that ¥*(X)y(X) is the probability distri-
bution for coordinate measurements where ¥(X) is
the wave function at the space-time point with
coordinates that are components of the four-vector
x. This postulate is probably sufficient to deter-
mine, through the analysis of the associated
thought experiments, the probabilities of measuring
other quantities. For example, the momentum pro-
bability distribution is identified by this means in
Sec. 8 of Ref. 1 (herein referred to as I) and in Ref.
2. We shall see here that it is not necessary to pos-
tulate that ¢¥*(X)¥(X) is the coordinate probability
distribution. This fact will be derived from the
mathematics of quantum mechanics with the aid
of a coordinate-measuring thought experiment.

The need for this derivation arose in the work of
Everett® who proposed that this formula for the
probability distribution arises from a Hilbert-space
metric that weights the vectors in that space.
DeWitt* and Hartle,® on the other hand, have gone
further. They attempted to derive the probability
formula from quantum mechanics without the in-
troduction of a metric. They considered the se-
quence of measurements of a given quantity made
on each of N identical systems in identical initial
states. The overall supersystem including all the ¥
systems, the measuring apparatus, and the observer
has a final state (after the measurements) with the
following state ket:
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In this equation, s and |s) are an eigenvalue and
eigenket for one of the N systems belonging to the
operator corresponding to the measurement. The
measuring apparatus that is applied once to each
of these systems reaches a state represented by

| ®(s; - - - sy)) when its sequence of measurement
results was the numbers s; * - - sy. These authors
consider (¥ | ¥) and show that those components
of | W), whose measurement sequences s; * * * sy
are consistent with the statement that they were
selected with probabilities C; C; make almost the
entire contribution as N approaches infinity. Stat-
ed differently, those components of |¥) in Eq.
(1.1) that are not consistent with a selection proba-
bility of CyC, decrease as N ! as the number of
measured systems increases without limit.

There is no restriction on the coefficients C; in
Eq. (1.1) that requires that they vanish for a given
set of sequences. Thus the measuring device state
| ®(s, - - - sy)) can include all possible sequences
without regard to any preferred probability of
selection given by C;C,. The statement that only
a limited set contributes to the norm (¥ |¥) is a
statement about the magnitudes of the products
G G, 0 There is no proof given, however,

that the magnitude of any component in Eq. (1.1)
has any significance. Although it is usually postu-
lated in quantum mechanics that the probability of
occurrence is proportional to the square of the
magnitude of the coefficients, we are not allowed
to use that postulate here because we are attempt-
ing to derive it.

We need, instead, to show that sequences incon-
sistent with a probability given by C*C simply do
not occur in Eq. (1.1). Then all observers (or
measuring devices) will conclude that C*C does,
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25 DERIVATION OF THE PROBABILITY RULE 3231

indeed, give the proper probability. Each com-
ponent corresponds to the observer’s memory
recording a given sequence of measurements, but
his memory does not record the coefficient in an
expansion like Eq. (1.1). This will require us to
find some restriction on | W) itself. This restric-
tion must arise from the requirement that a proper
sequence of measurements has been made. This is
what we shall do in the following pages.

In order to make use of the properties of the
Schrodinger equation to restrict the wave function
corresponding to the state ket in Eq. (1.1), we shall
make repeated identical measurements on one sys-
tem rather than one measurement on each member
of an ensemble of systems. The measurement that
we shall choose to make will be for coordinates,
and we shall use the apparatus described in I. This
apparatus is shown in Fig. 1. We shall use a num-
ber of copies of such devices in order to obtain re-
peated measurements.

More specifically, we will compare two measure-
ments that give a “yes/no” answer to the question
“Is a quantum particle near one of two points?”
We will count only those measurements that give a
yes answer at one of the two points and will ob-
serve that the ratio of the number of yes answers
at the first point to the number of yes answers at
the second approaches the ratio of Y*(X)¥(X) at
the two points.
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FIG. 1. Space-time event coordinate-measuring de-
vice. Two light pulses are emitted so that they overlap
at the point in space and at the time where a charged
particle is to be detected. If the particle absorbs a pho-
ton from each pulse, it can emit a photon that can ac-
tivate one of the detectors surrounding the overlap re-
gion.

It will be necessary for us to include the observer
in the overall wave function. This will be done in
the usual manner of measurement theory as
described by Wigner and London and Bauer and
originally credited to von Neumann.®

We shall see that the requirement that the sys-
tem wave function be normalized properly before
each of the repeated measurements imposes a con-
dition that leads to a final wave function with the
proper characteristics. Each state of the observer
in this final wave function will be identified with a
sequence of measured values that would result if
the probability of the result of a given measure-
ment were proportional to ¥*(X)y(x).

II. A COORDINATE-MEASURING EXPERIMENT

The apparatus for coordinate measurements dis-
cussed in I consisted of two light sources capable
of emitting two sharply defined pulses timed to
coincide at a prescribed point in space at a given
time (see Fig. 1). If we were dealing with a classi-
cal system and a classical charged particle were
present in this region, it might absorb energy from
each pulse and reemit a third electromagnetic
wave. This third wave could then propagate to a
battery of detectors that could determine its energy
and direction. If this detected light wave had the
proper direction to originate in the pulse overlap
region, and if its energy were a proper value to
correspond to the absorption from the two pulses,
then the charged particle must have been present in
the pulse overlap region. We would then assign
the space-time coordinates of a point in the overlap
region to the classical charged particle.

According to quantum mechanics, however, we
do not measure the coordinates of a classical parti-
cle. Instead, the initial wave function for a
charged particle 9; is split into the part in the
overlap region ¢, and the part outside this region
Yp. This photon pulses produce a transition of i,
into a highly excited state extending roughly over
the pulse overlap region and lasting approximately
the time of overlap.! This excited state emits a
photon wave that propagates toward the detectors
where it is absorbed.

If the initial wave function 1; consists entirely
of the component ¥, that lies in the space-time
volume of the pulse overlap region, and if the
detectors coupled with an observer are essentially
100% efficient, then the observer will recognize
the detection and will go into a state such that his
memory records the presence of the wave in the
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pulse overlap region. Such a recording is interpret-
ed by a human brain as the presence of the
charged “particle” in the overlap region. .

If, on the other hand, ¥, vanishes and y; con-
sists only of the part outside the overlap region, a
human brain would interpret the recorded memory
state as one showing no “particle” in the overlap
region.

In general, v; will be a superposition of v, and
Y. Each of the two terms must develop indepen-
dently according to the Schrodinger equation to
produce states of particle detection and particle
nondetection, respectively. Thus the final state of
the entire system including the observer will con-
sist of a sum of two terms, one containing the par-
ticle state into which 9, evolves together with an
observer wave function corresponding to particle
detection, the other containing the state into which
Y evolves together with the nondetection state of
the apparatus and observer.

We can describe this in terms of wave functions
as follows.® Initially, just before the first transition,
the wave function for the overall system of
charged particle + apparatus + observer is in
the form

\lli=1/15-”(f)¢,~(y))(,-(z)
=) (X (2) + 95X (W)X (2) 2.1)

where ¢;(y) describes the apparatus and X;(z) the
observer’s brain or a mechanical device. This ini-
tial wave function is normalized to unity. After
the measurement, the state is

W = g ()8, (DX (2)+ 86" (X)do(»)Xof2)
(2.2)

where ¥{!” is the final state of the charged-particle
wave function produced by the decay of the excited
state with the emission of the final photon. In ad-
dition, ¢, (y) is the state of the apparatus after the
photon wave has been emitted and the detectors
have operated. On the other hand, ¢y(y) is the
state of the apparatus when no photon detection
has been made. Finally, X, is the observer’s wave
function when the detection has been recognized,
and X, is his function when no detection has been
observed.

We assume that a generator is available to pro-
duce the same charged-particle function 1; as often
as we like. For example, we might consider 9; to
be the wave function of a pion generated in an ac-
celerator by the collision of a proton pulse with a
target. If the pion packet v; is required to first
pass through a wire loop (See Fig. 2), we can corre-
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FIG. 2. Apparatus to determine if coordinates
relative to the center are X, or ¥,. The charged-particle
packet from the generator ¥; is split into two equal
parts 1;; and ¢, by a half-silvered mirror. Each part
passes into a coordinate-measuring device. One device
has its pulse-overlap region set at the coordinates x;
relative to the center of 1;; while the other is set for x,
relative to ¥;;. The wire loop detects the passage of the
charged “particle” for correlation with the coordinate
measurements.

late the subsequent coordinate measurements with
a current pulse induced in the wire by the passage
of a single pion. Then by repeatedly reproducing
all the physical conditions associated with the gen-
eration of 1;, we can make as many measurements
as we like to determine the probability distribution
produced by it.

If we repeat the coordinate measurement once,
we bring in the wave function of a second charged
particle ¢f~2). Of course, ¥ is identical to 1/4” ex-
cept that it is generated at a later time. The initial
wave function for this second measurement will
then be

VP =9z, W 2.3)

The second measurement splits each term in Eq.
(2.2) into two terms again so that

(2) __ (2 g (1) (2)r 4(1)
\I’f - ¥x x ¢xx)(xx+¢'0 x '¢0xX0x

U 40" broXxo 40 ¥ dookon
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The first term on the right represents the com-
ponent involving two final photon waves and two
positive measurement results recorded in the
observer’s brain. The second term represents a
positive reading for the first measurement but a
negative one for the second.

We may ask if the second measurement leading
to \II}Z) is properly done. That is, does it represent
a measurement with the same initial conditions as
the first one to the extent that further repetition
would give a probability distribution to be com-
pared with ¥*(X)y¥(X)? We immediately note that
each branch of \IJ}” in Eq. (2.2) serves as an initial
state for the second measurement. Each branch
should, therefore, be normalized to the same value.
However the first measurement produces branches
of different magnitudes. This “weights” the
second measurement results unequally so that the
four terms in \I/‘f” in Eq. (2.4) do not have the
proper magnitudes to represent subsequent “identi-
cal” measurements. Each term in Eq. (2.2) needs
to be normalized, but this would prevent us from
using the Schrodinger equation to determine the
properties of the final wave function. We shall
correct this defect in the next section.

III. AN EQUAL-PROBABILITY
MEASURING DEVICE

Let us alter the experimental apparatus so that
we make a number of identical measurements for
comparison. In order to determine the relative
probabilities for measuring different coordinates,
we shall determine the ratio of the probability for
obtaining X, to that for X,. For this purpose, we
shall arrange to have a “partially silvered mirror”
placed in the pathway of the charged-particle wave
function-as it moves from the generator to the
measuring apparatus shown in Fig. 1. This mirror
will serve to split the wave function into two equal
parts traveling in different directions as shown in
Fig. 2. A rectangular barrier serves as a mirror for
the nonrelativistic Schrodinger equation. A mea-
suring apparatus can then be arranged to determine
if the coordinates are at X; for one of the com-
ponents 1; while another setup can determine if
the coordinates are at X, for the other component
¥;5. By “equal parts” we mean that if we displace
¥, so that its center coincides with that of v;,, the
two functions will have the same numerical value
for their magnitudes at every point.

In order to be able to compare identical mea-
surements, we shall arrange to have the coordinate

measuring apparatus in Fig. 1 set to measure X, in
exactly the same state ¢;; before each measure-
ment. Similarly, the other apparatus will be in
state ¢;,. This would require the pulse emitters to
have the same orientations relative to the detectors,
etc., and the shutters to be open to form pulses at
the same times relative to i; generation prior to
each measurement. In addition, we will provide
for all pulse overlap regions to have the same in-
finitesimal volume so that the charged-particle
state generated in each region will have an ampli-
tude proportional to the value of the initial wave
function there.

It is convenient to introduce the spatial coordi-
nates X ¢ for the center of each component of 1; at
the time x°. Then we can measure X relative to its
center. Thus we write ¢;(X%,X) and ¥;,(X°,%)
with a different value of X ¢ for each of the two
components after they have been split into two
parts. The coordinate measurement for one com-
ponent is made for the relative coordinate X =X,
and for the other with X=X,.

After one measurement of both coordinates, we
will obtain a wave function with three components,
two like the first one on the right-hand side of Eq.
(2.2) and the third one like the last term in Eq.
(2.2). Thus the final-state wave function looks like

W=y (B 1 ()X 1(2)
+¢§c12)’ (X)) 2(¥)X x2(2)
+ (X)) do(»)Xo(2) - (3.1)

The two coordinate-measuring devices have split
the charged-particle wave function into three parts,
A, 9l and ¥ where the first component is
left from the photon emission from the pulse over-

lap region at relative coordinate X, the second
from X, and the third from the parts of 1/:5” out-
side the two pulse overlap regions. Each com-
ponent is correlated with the corresponding states
of the apparatus and of the observer.

We must repeat the measurement a large number
of times and ask if the observer’s state corresponds
to a frequency proportional to ¥*(X)y¥(x). Since
we will actually determine only the ratio of the
probability of a coordinate measurement at x; to
that at x,, we shall only be interested in those se-
quences where all measurements give either X; or
X,. We shall, therefore, not be concerned with ob-
server states that include measurements outside the
pulse overlap regions centered on X; or X,. The
third term in Eq. (3.1) will lead to observer states
of this latter type and will, therefore, not be of in-
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terest to us.

The first two terms in Eq. (3.1) will be propor-
tional to y¥; at X; and X,, respectively. In order to
make these values of ¢; the same, we shall redesign
the mirror already there and place additional par-
tially silvered mirrors in the path of the charged-
particle wave function arranged to reflect fractions
of ; at right angles as shown in Fig. 3. These
mirrors will further split ¥;; into n, equal parts
and v;, into n, equal parts ¥;, respectively, in
such a way that

| ¥i(X0X0) | = [97(X5,%2) | (3.2)

Here, X is the center of any one of the n; com-
ponents of v;, and X5 is the center of any one of
the n, components of 1;,. We are splitting the
original component that was to contribute the mea-
surement at X, ¥;;, into n; equal parts and the
component with measurements at X, ¥;,, into n,
equal parts with n, and n, determined so as to
satisfy the last equation. Of course, this cannot be
done exactly with discrete n; and n,, but it can be
done within a prescribed accuracy. The above
equation states that the magnitudes at relative
coordinate X, of the components derived from ;,
will have the same value as any one of the com-
ponents derived from ;, at the point X,.

We now arrange n; measuring devices to make
the measurement for the n; components of y;; at
X, and another n, devices to make the n, measure-
ments for the components of ¥;, at X,. The last
equation guarantees that the initial wave functions
arising from pulse-overlap regions centered at X,
or X, all have the same magnitudes. Each of these
wave functions can then be used as initial wave
functiors to repeat the measurement. As we have
already noted, components of the total wave func-
tions that lie outside the pulse-overlap regions con-
tribute to observer states corresponding to measure-
ments at points other than X¥; and X,. They will
not, therefore, be considered in determining the re-
lative probabilities at X; and X,.

The observations for all of these different coor-
dinate measurements will be recorded in the
observer’s memory. This means that the state of
the whole system (including the observer) will be a
superposition of n,+n,-+ 1 terms with the
observer’s states correlated with those of the
charged particle and the apparatus. (The 1 counts
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FIG. 3. Apparatus designed to give equal magnitude
to subsequent measurements of coordinates. The ap-
paratus of Fig. 1 is altered by adding partially silvered
mirrors and additional coordinate-measuring devices.
The silvering of all the mirrors is adjusted to satisfy Eq.
(3.2). The coordinate-measuring devices attached to the
path of y;; have their overlap regions located at %, rel-
ative to the packet center while those attached to the
path of y;, have their overlap regions located at x,.
Only those devices attached to ¢;; are shown. This fig-
ure is oriented at right angles around the path of ;
relative to Fig. 2, and ¢, is shown perpendicular to the
plane of the paper.

the term resulting from v;(X) outside the pulse-
overlap regions.) Since we have adjusted the wave
functions in all the pulse-overlap regions to have
the same values, all of the n; +n, components of
W, like the first two in Eq. (3.1) have the same
amplitudes.

IV. REPEATED MEASUREMENTS

We can repeat the measurements we have just
described a large number of times N. Then, in
place of the one in Eq. (3.1), we will have a final
state for the entire system including charged parti-
cles, measuring apparatus, and observer of the
form

I % 4.1)
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The first number in each pair in the subscripts is 1
or 2 and distinguishes coordinate measurements
made at X; from those made at X,. The second
number in the subscript identifies the particular
coordinate-measuring device (see Fig. 3).

The state function X, 1,15, .. ., 23 represents a
state of the observer’s memory that records a se-
quence of N measurements of the relative coordi-
nates X;, X;, . . . , X,. By dividing the components
of ¢/ by using partially silvered mirrors, we have
arranged for each term to have the same magni-
tude. These sequences, after N has become very
large, will be those that would be predicted under
Laplace’s definition of probability where there are
n, equal opportunities for obtaining X, at each
measurement and 7, equal opportunities for X,.
Thus the observer in each of his states would con-
clude that the probability P(X;) of obtaining X, at
a given measurement is proportional to n; and for
obtaining X,, P(X,), is proportional to n,. That is,

P(k‘z)/P(fl):nz/nl . (4.2)

We may now investigate the relation of n,/n, to
¥;. According to Eq. (3.1), n,/n, was chosen so
that the parts of the various components of ¥; ly-
ing in the pulse-overlap regions are of equal nu-
merical magnitudes. As we have already noted,
since n, and n, are integers, the equality in Eq.
(3.1) can only be approximately true. To decrease
the error, we must increase n; and n,. We can al-

ways increase them enough to reduce the difference
of the two sides of Eq. (3.1) to a value less than a
prescribed number. In order to accomplish this,
we must increase the number of branches shown in
Fig. 3. These branches are designed to give equal
path lengths, from the bottom mirror shown, to
the center of each coordinate-measuring device.
This is so that every component of ¥; will have
spread by the same amount as every other com-
ponent so that it will produce a wave function of
size and shape identical to every other one relative
to the center of the device at the time a measure-
ment is made. Increasing the number of branches
will require more volume for the apparatus and,
therefore, paths of longer length. This will, of
course, increase the spreading of the wave packets
before the measurements take place. It will not,
however, alter the fact that they will have identical
sizes when they reach their respective measurement
devices. If the spreading is too great, each path
will need to be surrounded by an absorbing tube to
prevent interference between packets on different
branches. Furthermore, the mirrors will need to be
tilted so as to send each packet in a direction that
will place the part containing the relative point at
X, (or X,) in the pulse overlap region of the
coordinate-measuring device.

Since f PY*(X)W(X)d>x is conserved by the
Schrédinger equation, the splitting of ¥; into
ny+n, parts by the mirrors will be such that

ny [ ELE) 2% 4y [ 9(E55) | dx = [ | 90) | %%, .3)

where ¥},(X{,X) is any one of the components pro-
duced by the mirrors on which the measurement at
relative coordinate X, is made, ¥;,(X5,%) is any one
of the components on which the measurement at
X, is made, and ; is the original charged-particle
wave function. Since the mirrors produce com-
ponents of ¢ all with the same shape as ¥;, Egs.
(3.2) and (4.3) show that

ny T YED) [ P=ny 7 9(E) |2,
ni+ny—ow .  (44)
From this equation and (4.2),
P(x,)/P(X))= | ¢;(Xy) | 2/ | (%)) | %,
| ny+n,—w . 4.5

Thus we find that the observer, in each of his
states, will conclude that the measurement se-

[

quence that he observes implies the same probabili-
ty ratio for the two points as the postulate normal-
ly made for quantum mechanics. Since this
analysis applies to any pair of points,

P(x)x | (%)]%. (4.6)

V. DISCUSSION

We have seen that, in order to have the same
amplitudes for identical repeated experiments, we
must break up the wave function of the charged
particle into components of the proper size. The
fact that the quantity conserved by the Schrédinger

uation in this breakup has the form
? PY*(X)P(X)d>x determines these components to
such that the observer concludes that the coordi-
nate probability distribution is proportional to
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P*(X)P(x).

This author believes that the human brain is a
purely physical object and, as such, is describable
by a wave function. In this case, the “observer”
may be a human being. However, for those who
do not accept this point of view, the results of the
measurements that we have described can be
recorded by a mechanical device. This device then
becomes the “observer” and the arguments we have
seen are in no way altered.

If we consider the human brain to be purely
physical and, therefore, describable by a wave
function, a human observer’s state after the mea-
surement will be described by a wave function of
the type shown in Eq. (4.1). Each term in the su-
perposition will correspond to an observer’s state
such that his memory records a given sequence of
coordinate measurements. The observer will inter-
pret his condition in terms of a sequence of events
at the two points whose (relative) coordinates were
those of a sequence like X, Xy, . . . , X,. To him,
then, events occured at each of these points. Actu-
ally, however, his state is represented by the super-
position of terms in Eq. (4.1), each term represent-
ing an observer state corresponding to his recogni-
tion of a different sequence of events. Thus a hu-

25

man being would describe a charged particle as an
event whereas, in actuality, the only thing that ex-
ists is a total wave function of the system.

There are many physicists who reject the
description of reality as represented by the wave
function in Eq. (4.1) because of the lack of unique-
ness of the state of a human observer for which it
calls. They look for a process by which one of the
terms in Eq. (4.1) is selected over all the others.
The wave function “collapses” to one of its com-
ponents. No satisfactory equation of motion has
been proposed for this conversion of the superposi-
tion to one of its components. In particular, this
author is unaware of any suggestion of what
mechanism selects one of the components in
preference to all of the others. Zurek’ proposes
that this collapse is “forced.” Nothing in the
derivation of Eq. (4.1) provides any such forcing.

This collapse is avoided entirely by the Everett
proposal >
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