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The phase space of a supersyrnmetric point particle turns out to be constrained in certain cases, which lead to a

new type of superspace. This report treats the cases where the Weyl condition is imposed on the spinors, as well as

the case of a de Sitter supersymmetry.

I. INTRODUCTION

Super symmetric field theories have attracted
much attention in recent years. Of particular in-
terest is the N= 4 Yang-Mills theory in four dimen-
sions of space-time, which is the maximal theory
of its kind and ean be constructed from a theory
with simple supersymmetry in ten dimensions of
space-time. ' This theory has been shown to be
finite up to the three-loop level and offers the
hope of being a finite quantum field theory. To be
able to prove this, it would probably be advanta-
geous to formulate the theory in a way which is
supersymmetric also off the mass shell. So far,
however, only a few supersymmetric field theories
have been constructed off shell; in particular, it
has been demonstrated that the H = 4 Yang-Mills
theory cannot be taken off shell in any simple
way. ' This problem motivated the investigation
of the logical foundations of superspace carried
out in Ref. 4.

II. QUANTUM SUPERSPACE

In Ref. 4 one considers a supersymmetrical point
particle described by the trajectory x"(r), 8'(r)
(where 8' is a Majorana spinor). The action is

I= A' V ' ' -i8y 8'+lB8 —Vm'

where l is a, dimensional constant (this action,
without the l term, was first studied in Ref. 5).
(The conventions are those of Ref. 4; in particular,
we use a spacelike metric and fy", yb)= —2q b. )
%hen /4 0, the action is unconstrained and one can
impose the canonical commutation relations

These constraints a.re encountered in the study of
spinning particles. However, they are not all sec-
ond class. In Ref. 7 some gauge conditions are
added which result in the same Dirac brackets
for the quantities x, p, and g 8 as in the present
ease. The present case is different, however,
since all the second-class constraints are deriv-
able from the Lagrangian and one does not have
to impose any gauge conditions from the outside.

Noncommuting coordinates are clearly unsuit-
able for quantum mechanics. In the study of spin-
ning particles one is led to the following gauge-
invariant expressions for the position':

q„(r) = (z"'q, + ~p") .1
(8)

They are solutions to the gauge condition q„x" —g

= 0 imposed to solve for the first-class constraint
p' -~ = 0. They commute with each other when g
is lightlike. This turns out to be true in the pre-
sent case also; after introducing new spinorial
coordinates as well one finds indeed that the non-
covariant coordinates

SP 8

troduces the Dirac brackets compatible with the
constraints and quantizes, one finds that the co-
ordinates do not commute anymore.

Note that the Lorentz generator is
go', 8 — a@8 Bpn+ uB — ap8 Bpa 8 nBp

(4)

so that the constraints imply

[P,x'] = -lq"',
fPa gb) l(~0)ab

(2a)

(2b)

(Vb)

('lc)

all the other commutators being zero. When 1=0,
on the other hand, we have the second-class con-
straints

p8 fb"pg)'= -o-
The terminology is that of Ref. 6. When one in-

obey a remarkably simple algebra where the only
nonzero brackets are

(8a)

(8b)
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The space spanned by these coordinates is called
"Clifford algebra superspace" or "quantum super-
space. " The suggestion in Ref. 4 is that certain
supersymmetric field theories can be usefully
written in terms of superfields which are functions
of these coordinates.

A note may be added concerning the massless
limit. When m = 0, the constraint matrix

4' 0']=-2(~ p&')"

used to get the Dirac brackets becomes singular
(because of reparametrization invariance we have
the first-class constraint p'-m, '= 0), so one has
to add some further gauge conditions reducing the
number of degrees of freedom. The final quantum
superspace coordinates do not suffer from this de-
fect, however, and it is assumed that this point
does not cause any trouble. Note that the ~'s
disappear when p'= 0.

In this report we will study the quantum super-
space algebra in some additional cases, namely,
when one imposes the Weyl condition on the spin-
ors and in the case of a de Sitter symmetry.

6x = —8r ~-—rr 8
2 2

58„=6„,
58'=P

(14a)

(14b}

(14c}

[p,x'] = -iq~,

e'
(p„e'}= -ic*'.

(15a)

(15b)

(15c)

When /=0 the Lagrangian is constrained; we have

p" =--'(8I p)" (16a)

p"-=-—(r pe)".e 2

The Dirac brackets become

(16b)

1 1
[x x']= er 'r pe+ er pr~'8 (1&a)

4@2 4p2

[x",8„]= ', (r pr" e)„, (17b)

We can now impose the naive commutation rela-
tions, the nonzero ones of which are

III. THE HIGHER-DIMENSIONAL CASES

(1+I')„'8,=0. (10)

The formulas of Ref. 4 are valid whenever we
have Majorana spinors (as in four-dimensional
Yang-Mills theory). In the six-dimensional case,
we cannot impose the Majorana condition since
the charge-conjugation matrix Q is symmetric.
Instead, one imposes the Weyl condition

e']= ' (er r p)'

(8', 8„)=—,(r p)'„,1

(1'7c)

(IVd)

(e„,8„]=(8', e'j=[p, e,] =[p, e'] =0,

[p", x]= iq '.-
(1Ve)

(1Vf)

In the same way as in the Majorana case, we can
introduce noncovariant coordinates having simple
commutation relations as follows:

Using 8'—= (8~I')' we have

e„=-(r')„"e„, (11a)
q"=x + er"'r. pe+ '+er pI"'e, (18a}

ea eb(r7) a (11b)

The index of 8' is said to be a Weyl index (denoted

by s, 5, c, . . . in the following), and the index of

8„ is said to be anti-Weyl (denoted by x, y, x, . . . ).
Note that the indices of the charge-conjugation
matrix Q" have different Weyl properties, so that
raising and lowering indices change their Weyl
properties. Note also that contraction over indices
with different Weyl properties yields zero. The
term /88 does not survive. It is, however, still
possible to give an unconstrained Lagrangian. In

fact, it is

=—'V '(x ——e~l 8+ —8 I 8+ le I 8}'+~m

where the superspace coordinates are Z„=(x, 8„,8')
and the supersymmetry transformations, given by

1
s, =(,}„,(r'r pe)„, (16b)

1s'=(,}„,(er pr')',

pa )x/a
T„=i

( 2 + ~

(r+8), ,

p. )~]2(er')'.
2p j

(18c)

(16d)

(18e)

(s', s„]=(r', T„]=(r')'„,

[p",q.'] = -iq '.
The generators Q„Q", and J~ are

(19a)

These quantum superspace coordinates obey an
algebra with the following nonzero brackets:

are

5Z" =i[eQ+Qe, Z ], (13)
Q, =p,.——(r pe). =-i(r.pe). ,

i
(20a)
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q"=-p", + (er-p}'=f(8r p)*, (aob) q'= -(,)„,[iBr p-(-p')'T], (aab)

dna & nag & Bpn & gl n8p &p I n86I dna ~nps ~ gpn +~a8 (23a)

=x"ps -esp" +-'error pe+ 'er.-pr"'e.
4 4

(21)

They become when expressed in the new coordi-
nates

where

K+ =K+~ =0 t

x"= '(s—r"—r s+Tr"r T)
2 y

(23b)

(23c)

1
Q. =

(ap ) g.['r'Ps+( P}- (22a) and

~ W

K = — -(SI"+r.PS+TI"+I"PT)+ (SI' r'PS+Tr~ I' ~ PT)4(p ) 8P

+ 4(,), ( p')'i-'(T-r"s sr*'T-) —8,(-p')"(Tr' s sr' T-) —(f --) .ap+ (23d)

In the ten-dimensional case, one imposes both
the Majorana and the Weyl conditions on the spin-
ors. In this case, the quantum superspace coor-
dinates of Ref. 4 remain as they stand; a difficulty
appears, however, in trying to give an uncon-
strained Lagrangian, since both /88 and igl" 8 are
zero. The only term of this kind available is
g8I'~&8 and it cannot be used in the Lagrangian.
In this case the quantum superspace seems to be
the only available superspace. This might be the
explanation why one cannot find the auxiliary fields
needed for the off-shell representation of the ten-
dimensional supersymmetric Yang-Mills theory.

[D,P"] = -fp"

[D,sc"] = fK",

[&,p'] =i(n "p' n"p -}

[z"8,z ] = i(&.~If' &»~"—),

(25a}

(25b)

(25c)

(25d)

(25h)

[J"',J"]= f(P"q'" +Z "rp" Z "q"' -Z~q'&), -(25e)
[PN ff8] 2 (~ SD+~a8)

[D v'] = --'e'

[D, z'] =-'z',

IV. THE de SITTER CASE

[p",z']=-(r V)',

[e',~ 1= -(~"z}',
(25i)

(25j)
It is also of some interest to consider super-

symmetric-field theories in a de Sitter space. A

de Sitter space is defined as the four-dimensional
manifold

y„y" = -(y')'+ y' -(y')'= -&'

imbedded in a five-dimensional flat space. g is a
constant, the radius of curvature of the universe.
The signature of the five-dimensional space is
chosen as (—,+, +, +, —), since this signature ad-
mits four-component Majorana spinors.

Now, when both m and l are set to zero, the ac-
tion (1) possesses also a conformal symmetry.
This case has been treated in Ref. 9. The confor-
mal symmetry group in four space-time dimen-
sions is SO(2, 4), and the corresponding graded
group is SU(1; 2, 2). From this case it is easy to
extract the subgroups which give us the de Sitter
case. They are SO(2, 3), with the graded group
Osp(1, 4).

For SU(l;2, 2), the algebra is

+n gx5 pn Kn1 1
4R'

1
g qC+ gg ~2R

(26a)

(26b)

We get the following subalgebra:

[Z, n&]=g(q &m&-ri» ) (2Va)

(25k)

I z', z'j = 2(&„y'}"x", (251)

(9', z') = (xMr'}"~ '2(r')"D——3(r r')"&

[e',~l = (y.e}', (25n)

[z', w] = -(y,z)'. (25o)

The remaining brackets are zero.
From here, the Osp (1,4) algebra in a de Sitter

space with metric (-, +, +, +, -) and radius of
curvature & is easily obtained by defining
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(2&b)
Reference S contains the explicit expressions

for the variations of the coordinates as defined by

(O', G'] = —2(y„y')"]z + '—
(y y')"Z"', (2Vc) 5Z =i[a'p+eQ —&l BP ]]—D+pA —c'&+gZZ"].

[",G'] =- ~ b"G)'.1
(2Vd)

This is the Osp (1,4) algebra. Note that it con-
tracts to the usual graded Poincare algebra when

g ~00.

(28)

Putting C = (1/4R')a, g'= (1/2R)c ', ' and dropping
D and A we obtain the appropriate expressions for
the de Sitter case,

5Z" =z[a ]z --'.l~~+eG, Z"], (29)

IX 2
(30a)

58'=, (y'«y'a8)'+4R, (y'a888}'-4l&+(y 8)'+&'+2
R(

y' &«)'
4R

+ (y,y„e8y,y"8)' — e'88 —— (y,e8y,8)'. (30b)

We also have

157= — —,a'x+ —E~ V.
R R

(30c)

This algebra closes. By similarly comparing to Ref. 9, we obtain the quantum superspace representation
of the generators:

Z =«p'-«'p --'p 8y~»=q p' e'l +-&
2 l'

(3la

where K+ =K"= 0 and

'. (sr, r.s+&y,-y,T),

(-p')"—z' =z"—+ sy'y r
p+ 4 + +

]z =p -4R, (2««'p-««p" —4z« z8r~'8«-]]P, 8rzr 88-r-,r'8P" +8r,r 88r.r'P8}

(31b}

(31c)

=P 4 e P e ep (l8 + sr ~+1 2&r&r ~(2Trzr ~ sy r s)

(32)

1G'=2 (r.p8)'+2R[2(r r P8)'+ (r r r'P8}'8r.r"8+4 8']

16P+(-p,),), (sr5r,s- Tr r,T')sr r 'pr T

+5 ((Ty,y 7)' —(Sy,y S)'+2Sy,y'y TSy,y, y, T] —4iq —)8, ,),~ Sy~T}, .

16p+

+ &). [zr'PS+( P'}' 'T]'+2R --z(y. (l)Q'-'2 +)&q. b5r'T'}'T'r, r&y+S

+ ( (( )'"fr r(T) '-*Tr-~'7"'+&(r.(T) ]'}, ' (33)
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Ordering problems have here been dealt with by
requiring hermiticity.

It is intriguing to ask whether one could con-
struct an unconstrained Lagrangian using the di-
mensional constant R now available. The problem
does not seem to have a simple solution, however.

V. CONCLUSION

The fact that one cannot describe the supersym-
metric point particle within the ordinary super-
space formulation certainly casts some doubts on
the latter. Whether the "quantum superspace"

coordinates will ever turn out to be useful re-
mains, of course, highly speculative. It is inter-
esting to notice, however, that the introduction of
a Clifford algebra for the fermionic coordinates
suggests the possibility of obtaining the space-
time coordinates as "composites" of the fermionic
ones.
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