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For Schwarzschild s static spherically symmetric external field, a coordinate system is

determined in which the metric field is the transverse field satisfying the coordinate con-

ditions of Arnowitt, Deser, and Misner.

I. INTRODUCTION

AJJ ——0 (3)

is for special-relativistic Maxwell theory. Also the
latter condition is not even Lorentz invariant, so
that a transformation to a moving coordinate sys-
tem requires a simultaneous gauge transformation,
if (3) is to be maintained. Similarly, after a
transformation to a moving coordinate system, in
general (1) and (2) would not remain automatically
valid. An additional coordinate transformation is
required, if (1) and (2) are to be reestablished.

The purpose of postulating the validity of these
conditions and their time derivatives is to make all

but the dynamic components of the gravitational
field functionals of the sources of the gravitational
field [just like (3) and its time derivative make the
electric potential and the longitudinal part of the
electric field strength functionals of the electric
charge distribution at equal time]. This should

leave only the dynamic components of the grav-
itational field as quantities independent of other
fields at the same time, allowing canonical quanti-

We assume here that Dirac's gravitational
Lagrangian density is used, ' so that the primary
coordinate constraints reduce to p& =0
(p =0,1,2,3).

It has been suggested that for dynamic quantiza-
tion of the gravitational field one then should use a
coordinate system in which the spatial components

g 1 of the metric, and their canonical conjugates p'j,
would satisfy the four coordinate conditions

gtj j:0 (t:12 3)

«JJ P «&J

0 lJ

These conditions, which are not invariant under
coordinate transformations, are supposed to be for
the gravitational field what the Coulomb-gauge
condition

zation of these dynamic components, while treating
the other components like derived variables. 3

We shall not discuss here the question whether

(1) and (2) satisfactorily serve this purpose in

curved space. We will here merely answer the
question how in one simple case a coordinate sys-

tem satisfying (1) and (2) is related to a coordinate
system that is more familiar.

II. THE STATIC SPHERICALLY SYMMETRIC
EXTERNAL FIELD

dS =(1—X ')dX +X dP (4)

by dX=(dX/dR)(R'dR'/R) and R dg=dR'dR'
—dR, we find

In special-relativistic Maxwell theory, the exter-
nal static spherically symmetric field is given by

Ao ———q/r, A; =0. Condition (3) then is automati-

cally satisfied, and no gauge transformation is
needed for achieving this.

In gravitational theory, the external static spheri-

cally symmetric field is known in various coordi-
nate systems. It is best known in Schwarzschild
coordinates. It is known in isotropic coordinates,
and it is known in harmonic coordinates. Howev-

er, none of these coordinate systems fulfills condi-
tion (1).

Therefore, we want to solve here the following

problem. Let r, 8, tp be Schwarzschild's spatial
coordinates. Let x,y,z be the coordinates in a sys-

tem satisfying (1), related conventionally to polar
coordinates r,e,q. We want to determine r as a
function of r.

W'e introduce dimensionless quantities by
X=r/2m, R=r/2m, R'= x'/2m, and dS=do./
2m for the spatial line element given by dS
=g;jdR'dR j. (Here, m=GM/c .) Let also

df =d8 +sin 8 dq& . Then, from Schwarzschild's
equation
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r

4R' 1 dX
R~ 1 —1/X dR

'2
X
R

We find

iR d (dX/dR) X
R'(1 —1/X) R'

R' d X
R dR

2
2 dX

1 —1/X dR
2X 2R dX d X
R (1—1/X) dR dR

g,. =[(1 X—') '(dX/dR} X—/R ]RiRj/R

+(X /R )5ij .
We now want

O=g;J J

Thence,
r

d2g dg d

dP dg de dg/de

dr) d g
drj'

e-& dq
2(1—e &)

4I

—[1—e &]
dg

(13)

This nonlinear second-order differential equation
therefore represents the coordinate condition (1) for
the external Schwarzschild field.

Condition (2) is automatically satisfied, because
Dirac's gravitational Lagrangian density provides

R (dX/dR )

X (1—1/X)
so that

1 d R (dX/dR)
R dR 1 —1/X

Therefore, Q =0 gives

d (RdX/dR)
dR 1—1/X

2X
R

(7)

(8)

pij (2&&)
—i( g)

—i/2Eijnmi 0 (14)

Here, «=8nG/c, .and E'&" =e'e" e' e"j, —
where the matrix

~

~e'j~
~

is the inverse of the 3)&3
matrix //g;j//, while

o ~ ox
mn g g (gkm, n+gjn, m gmn, A, ) ~ (15)

In the Schwarzschild field, g '=0 and gom
——0 and

g o=0, so that I =0 and p J=O. We assume
here with Dirac that the matter Lagrangian does
not contain gravitational field velocities.

We now put g =lnR. This gives

d (dX/dg)
de 1 —1/X

2(dX/drj)(d X/dr) )

1 —1/X (1—1/X)'X

(10}
so

Inserting (11}in

d'n= dn d
dX dg

dX

dn.

3
dq d'X
dX

we obtain

III. FIRST INTEGRATION
OF THE COORDINATE CONDITION

d X X(X—1) (dX/dr))
dg~ dX/dg 2X(X—1)

Putting also g=lnX, we find

df d 1 dX
dg2 dg X dg

dq 1 1=(X—1)
dX X2 2X —2

=(1—e &) + —1
2(e~—1}

dX

de

dg
der

(12)

d2
4

= —X(X—1)
dX

1 dg
2X(X—1) dX

Introducing the abbreviations

p =drjldX, 8=(1—I/X)'i,
so that

d8/dX=1/(2@X ),
we may write (17) as

(17)

(18)
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"P =—X'e'p"—
X 2X@

=—X282 4 L d4
0 dX

(19)

and

(F—+3K)

=e&(1—e &) ' (3E+F) (29}

Putting

s =ln(p@),

so that

p0 =e',
we obtain from (19),

(20}

IV. ASYMPTOTIC SOLUTION AT LARGE I

For large X and g, we will put here

1e=—=e-&,
X

so that

d$2 2 3 I 3s
2

dX
=—X@p = — e (21) lne= —g . (30)

so that
Then, expansion in powers (and logarithms} of e
gives

$ =—Zr4e"= — e"
dQ (1 cP)4

Thence,

d(e ')=6X d5 .

Let

F=(X +—X +—X)4+—ln
5 2 15 is 1+5
4 8 16

(22)

(23)

4 = (1—e)'/ = 1 ——,e+ O(e }

and, from (29),
' —3

=e 8 (F+3E)

=(1—e) (1+—,e+ —,e )

(31)

Then,

dF= X+—X+—X+ d5s 2 is 15/8
4 8

(24)
+—e ln —+3Ke +O(e")

16

=1—
~ e+ —,e ——,e +—„e(21n2+g}+3Ee3

+(3X'+—,X+—, )AX +O(e ) . (32)

=(X + —,X +—,X)d@

+2 1 ——(3X + —,X + s X )d5

=6X d5,

so that (23) is integrated by

e '=I'+3K,

(25)

(26)

Thence,

d'g 1 1 3 5 5 5

d
=1+—,e——,e +e ( —,——, ln2 ——

16 / —EC}

2 9 y 9+—( —e'- ——e + )16 16

14 27——( ——e+. . )+81 64

4 16=1+—'e -&——'ge -'&

where E is an integration constant. It follows that +(—„——, ln2 E)e '~+ . —-(33}

p8=(F+3X)

so that

(27) Integration gives

s
~

3g 6s

y —1(F+3g )
—1/3

dX
(28) +(—ln2)e ~+—e ~+ .5 3 K

24 (34)
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where there is no second integration constant, if we

postulate that R/X=e" &~1 for X~~.
From (34) we now find for R asymptotically, .

=e~exp( ——,e+ —
48

gas —etc. )

=X(1——,X '+etc. )

beyond r, when negative E is used at all. So, the
behavior of these external solutions at and inside r,
is indicated for mathematical curiosity only.

The sphere where dr/dr flips sign is given by
F+3K=0, so that X,= r, /2m is related to E by

+ —, 1n(1+5,)], (37)
=X——+—X +—X lnX

1 1 1
' 5 2

4 32 48

—ln2+ ——„, X + . , (35)
E 263

1

so that R ~X——, for X~O.
Solving for X from (35) in successive approxima-

tions, we find

X=R +———E. ——8 lnR
1 1 1 5 2
4 32 48

where 5,~=1—1/X, . Close to this sphere, at
X=X,+b„we find, by (25) and (18),

I'+ 3E=I' I', =6—X,'(5 8,)—
=3X, b, /5, ,

so, by (28),

drildX=(3X, /0, )
' b,

(38)

(39)

—ln2 817 E 5

72 3 24 (36)

Integration gives

3
(3X 2/y 2)—1/3g2/3 (40)

It is now easily verified that, up to terms of rela-
tive order e, (36) satisfies Eq. (9), and (34) satisfies
Eqs. (13) and (29).

V. SOLUTIONS %'ITH NEGATIVE E

Below, we will also use the radial coordinate

P =log'= log ln(r /2m ),
so that

dX=Xdg=(Xgln10)dg .

(41)

(42)

If E &0, there exist points with X & 1, for which
I' & 3

~
E ~, so that I'+3E &0. Then, by (29),

drildg& 0, and r would increase upon further de-

crease of r. At the point where drildg jumps
from —ao to + 00, r as a function of r shows a
cusp at r =r, where r has its minimal value r, .

It is questionable whether condition (1) can be
deemed satisfied at the cusp by solutions of this
kind. Therefore, and for the lack of elegance of a
radial coordinate that would increase for circles of
decreasing circumference 2mr around the origin,
solutions with E~0 are undesirable when the
external Schwarzschild field prevails down to those
values of r where dry/dg would become negative
If, however, there is a rnatter distribution around
the origin which extends to a spherical boundary
outside the points where the external solution
would make dR /dX & 0, solutions with E & 0 out-
side that matter distribution would be acceptable,
if they can be fitted at the boundary of matter to
an acceptable internal solution that satisfies condi-
tion (1).

%%en, below, we discuss solutions with E & 0
also at r & r„we should remember that these exter-
nal solutions lose their physical meaning inside the
matter distribution which we expect to extend

(43)

with

C= —,(3X, /Q, )
' (X,g, ln10)

= —,[3(g,/0, )in10]2/i .

For instance, a cusp in R (X) at X=X,= 1.5625
=—, is found, according to (37), for E=—( ~,
+ —, ln2) = —2.392445 50, and, near it, by (43) and

(44), ri=ri, +1.4888($ —P, )
/ . This is a good ap-

proximation for
~ P —P, ~

& 10 . It enables us to
compute ri (or R) as a function of P (or g or X)
through the neighborhood of the cusp, where
Simpson integration of (28) or (29) or of drildg
would fail because of the singularity in the in-

teg rand.

VI. SOLUTIONS WITH NON-NEGATIVE SC NEAR
THE SCHWARZSCHILD RADIUS

For E& 0 we now consider the limit X~1,
$~0, 4 ~0. For E+0 we may expand in powers
of (4/E) . The case E=O must be treated separate-
ly.
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For 5~0 we find from (25), by X=(1—4 ) d =} 2F—1/3( 1 c) 2)—2

F=6@+80 +125 +, 8~+ ' ' '

Since, by (28) and (18),

(45)

Integration gives
(47)

=2(F+3K)-'"(1—@')-'
d5 dX d4'

we find, for K =0 and 5« 1,

where i}0 is q at the Schwarzschild radius (at
r =2m, X=1, (=0, 8=0).

For K~ and
~
8

~
&& (

K
)

we find

(48}

d =2(3K) ' 1+d5 3E

-1/3

(1—42) '

=(3K) / 2+45' +65
3g 9g 9g 2 27@2

2248 11205
Sly 3 243' 4 (49)

Integration gives X 1 and 5=(1—e &)' (52)

+(3K) ' ' 28 — +—8'+
3K 3 27K'

105 568 6
9K 81K'

Since, according to (47) and (49), drl/d5 for g~,
5~0 becomes proportional to 5 '/~ for K =0 and
becomes constant for K+0, it follows from (51)
and (52) that, for (~0,

2249 224&

$ 35+2 243+ 4

dq/dgcc5 ac/
2 for K=O,

dq/dgccQ 'ccrc '/ for K+0.

(53a)

(53b)

(50)

VII. GENERAL NUMERICAL INTEGRATION

dg Xdrl (2@X) i d'g

dg dX d8

For g~O we have

(51)

For g & 8, we may use (34) for finding g as a
function of g. For g between 0 and 10, we then

could obtain q(g) by integrating Q9) numerically

from g up to 10, and subtracting the result from

rl(10) calculated by (34).
There is a problem with this method when g be-

comes small as we come close to the Schwarzschild

radius. By (18),

dgldg=(F+3K) '/ (Xg/8)ln10 . (54)

For given K and X or g or P we now calculate g
by

i}=r}(10)—I (F+3K) '/X/5 '(ln10)dg

with q(10) from Eq. (34).

(55}

This divergence of dqldg toward the Schwarz-

schild radius makes ( there a poor integration vari-

able for numerical calculations.
Since, in both cases (53a} and (53b),

gdrl/d f=drl/d(lng) remains finite, ln g or log g is

a good integration variable. We therefore use p of
(41). From (28) and (42} we now get
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TABLE I. Calculating Ro for chosen K. We use here the notation g[(()]=rI(g), go=g(0) =ri[ —oo ].

—2.392 445 03 ' 0.712632 814 8.644843 172 27.873 343 Eqs. used

'9[ —6]—rio

v[1]-n[-6]
r)l 1]-r)o

ri[ 1]
gp
Rp

—0.001 0370
8.95S 103 1'
8.954 066 1

9.999988 6
1.04S 922 5
2.846 022 8

0.016509 6
11.132 246 2
11.148 755 8
9.999988 6

—1.148 767 2
0.317027 4

0.001 551 8
10.691 5840
10.693 135 8
9.999988 6

—0.693 1472
0.5000000

0.000 675 6
9.999 3130
9.999988 6
9.999988 6

—0.0000000
1.0000000

0.000457 3
9.594066 2
9.594 523 5
9.999988 6
0.405 465 1

1.5000000

(48) and (50)
(55)
+

(34) and (=10

(S6)

'Here, use is made of Eq. (40) across the cusp at X=1.5625, R =0.8962.

For given positive E we now find the value go
of ri at X=1, /=0, by calculating [r}(10 )—rio]
from (48) (for E =0) or (50) [for K+0] with
5=[1—exp( —10 )]', and by subtracting the re-
sult from ri(10 ) as calculated by (55) with
=—6.
Finally, from r)o we obtain

Ro ——ro/2m=e '.
Some results thus obtained are listed in Table I.

More results, showing Ro as a function of E, are
shown in Fig. 1. These (and following) results
were obtained using a Hewlett-Packard 41C calcu-
lator with "Quad-mod" memory module added.

In Fig. 2 we show curves for (R —X) against X,
for the E values of Table I. This includes the neg-
ative E value mentioned at the end of Sec. V.
Horizontally we use a logarithmic scale. As

iR —X~——, for X~oo, all curves approach each
other on the right.

The cusp in the curve for E=—2.392445 03 lies
at I() =log ln « ———0.350385 663 8. For integrating
downward through this cusp, we used

r12 r)I+ J ——(F+3E) '~ X/8 '(ln10)dp

(57}

with for P„ the successive values. . ., —0.349,
—0.350, —0.3503, —0.35038, —0.350385. While
each next interval of integration here is smaller
than the previous one, we also make the steps in
the Simpson integration each time 10 times small-
er. Beyond —0.350385, the integrations mould
start losing their accuracy, but at this point Eq.
(40} gives already accurate values for Il, and gives
us Il, at the cusp, from rl at p= —0.350385, by

100
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I
)

I
(

I
)

I
)

I
(

I

20

IO
8
6

OJ

~O
II

I.Q

t as

I I I I I, I

0 I 2 5 4 5

—log K

FIG. 1. Ro ——r+2m (on logarithmic scale) versus logK
(on linear scale) for 0.1 &K & 106.

I I I I I I I ~ I I I I I I I

4 5 6 7 8 9 IO—X

FIG. 2. R —X=(r—r)/2m (on linear scale) versus
X=r/2m (on logarithmic scale) for 1 &X& 10, plotted
for five values of E. At right from top to bottom,
K=27.873343, E=8.644843172, E =0.712632814,
E=0, and E=—2.39244503, corresponding to Rp ——

1.5, 1.0, 0.5, 0.3170274, and 2.846022 8 at Xp ——1 (at
rp ——2m). To the left of its cusp at X=1.5625, the
bottom curve is undesirable because of dR /dX & 0. For
large X, all curves show R ~X——.1
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il, =ri[ —0.350385]—0.00011329

=—0.109543.

We then use (40) again for finding ri at
P= —0.350386. This gives

ri[ —0.350586]=g [—0.350 385]

—0.000041 306 6 .

From there, we start again using Simpson in-
tegration of (57), between successive (() values
—0.350386, —0.35039, —0.3504, —0.351, —0.352,
. . ., now each time increasing the size of the Simp-
son integration steps. Soon we can use steps as
large as those used for positive values of E, as we
continue by (57) to (()= —6, from where we find rio
at p= —ao by. using Eq. (50). (Only, x+-'~s for
x & 0 must be computed as —

~

x
~

+-'~ .)

VIII. DISCUSSION

The purpose of the coordinate condition (1) is to
eliminate the longitudinal metric field. This
presumes the possibility of Fourier expansion of

the field, with coefficients determined by integra-
tion over space. A pure (vacuum) Schwarzschild
field, as it removes from ordinary space a region
inside the Schwarzschild radius, would play havoc
with such integrations over space.

Therefore, the usefulness of the coordinate con-
dition (1) would seem dubious, unless the presence
of a matter distribution extending beyond the
Schwarzschild radius would remove the hole in
space and replace the external solution by an inter-
nal solution, where the external solution could
cause trouble.

It therefore would be useful to study coordinate
systems that satisfy condition (1) in the presence of
a matter distribution; for instance, the static spher-
ically symmetric incompressible perfect fiuid, for
which we know an internal Schwarzschild solution
which at the boundary of matter continuously goes
over into the external solution discussed in the
present paper. The freedom in the solution
presented here, by the possibility of choosing the
first integration constant E, might then perhaps be
useful for joining our external coordinate system
satisfying (1) to an internal coordinate system satis-
fying (1) and behaving properly at the origin.
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