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To the distant observer, who uses measuring instruments not affected by gravity, gravi-
tational repulsion can occur anywhere in the Schwarzschild field. It depends on the rela-
tionship between the transverse and radial Schwarzschild velocities. On the other hand,
local observers, whose measuring instruments are affected by gravity, cannot detect a po-
sitive value for the acceleration of gravity.

I. INTRODUCTION

Newton's theory of gravitation states that mass
experiences an attractive gravitational force.
Newton's theory, however, is only applicable when
the gravitational fields are weak and the particle
velocities are small compared to the speed of light
c. For arbitrary fields and velocities Einstein's
theory of gravitation (general relativity) is valid.
As we show in the following, according to Ein-
stein s theory, particles with certain relativistic
Schwarzschild velocities are not attracted but re-
pelled by gravitating point masses.

II. HISTORICAL BACKGROUND

The history of gravitational repulsion is charac-
terized by extreme controversy. Seven years after
Einstein founded general relativity Bauer and, in-

dependently, Hilbert noticed that a massive parti-
cle in radial motion can be repulsed in the
Schwarzschild field. Bauer concluded that repul-
sion can only take place near the Schwarzschild ra-
dius, r =a. On the other hand McVittie' found
that repulsion can occur anywhere in the
Schwarzschild field and that it takes place if the
total particle velocity is greater than c/v 2. In-
dependently, Jaffe and Shapiro arrived at the same
conclusions as McVittie. However, Cavalleri and
Spinelli strongly criticized the conclusions of Jaffe
and Shapiro on the basis that they used an improp-
er velocity, instead of the locally measured particle
velocity.

Cavalleri and Spinelli also maintained that a
particle's locally measured velocity at the
Schwarzschild radius is c. This result agrees with

Newtonian gravitational theory, where freely fal-
ling particles with zero initial velocity at infinity
arrive at r =n with the speed c. Independently,
Markley found that the particle velocity at r =a
is c, showing that the gravitational force is always
attractive in general relativity too. Next, Zeldovich
and Novikov explicitly repudiated the notion of
gravitational repulsion. They asserted that the de-
crease in the Schwarzschild velocity of a particle
only occurs near r =u and that it can be complete-

ly attributed to the fact that the Schwarzschild
time interval dt differs from the locally measured
time interval dT. Later Landau and Lifshitz
came to similar conclusions as Markley and Zel-

dovich and Novikov.
Opposed to the above authors, Janis, without

using the concept of gravitational repulsion, con-
cluded that particles cross the Schwarzschild ra-
dius with speeds less than c. Cavalleri and Spinel-
li' claimed to refute Janis's results, but, Janis"
later rejected Cavalleri and Spinelli's arguments
and reaffirmed his earlier results. Meanwhile,
Treder and Firtze, ' without mentioning the other
authors, confirmed the results of Bauer and Hil-
bert. They considered radial motion only and em-

phasized that repulsion takes place at a well-

defined distance from the gravitating point mass.
From the historical background we see that the

answers to four interrelated questions are in dis-

pute: j.. Can gravitational repulsion take place in
the Schwarzschild field? If it can: 2. Does it
only occur for distances near the Schwarzschild ra-
dius? 3. Is it attributable solely to the difference
between the Schwarzschild time interval dt and the
locally measured time interval dT? 4. Is it depen-
dent on the radial velocity only or on the total par-
ticle velocity?
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It is curious that nobody to date has considered
the relationship between gravitational acceleration
and the components of the total velocity. This
point is crucial because it is well known that parti-
cles in transverse (nonradial) motion are deflected
toward, that is attracted by, a large central body. '

In the following we prove that gravitational repul-
sion actually occurs in the Schwarzschild field and
we obtain the conditions for massive particles in
arbitrary radial and transverse motion to experi-
ence it. We accomplish this by studying the velo-
city dependency of the Schwarzschild acceleration
of gravity.

III. SCHWARZSCHILD ACCELERATION

where

A =(1 a/r)—
B=(1 a/r), —

c=1, and a=26M. The radial equation of mo-
tion' for a particle in the Schwarzschild field is

(2)

(3)

d2r A' dr

dp 2A dp
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We now derive the Schwarzschild radial ac-
celeration as from the radial equation of motion.
In spherical coordinates (x =t,x'=r, x =8,
x =(b) the Schwarzschild line element ds is

ds =Bdt /I dr rd—8 —rsin 8d—p2, (1)

Now, combining Eqs. (6) and (4) and rearranging

yields
r

r8 rP sin 8 B' A' .2
B'

B 2A

(7)

Using Eqs. (2) and (3) in (7) and rearranging leads

to the Schwarzschild radial acceleration as where

g =GM/r:

as ——r' —r8 —rP sin 8

=g —2us —(1 a/—r)3r
1 a/—r

For purely radial motion Eq. (8) reduces to the ra-

dial acceleration according to Treder and Fritze. '

Next, we discuss the Schwarzschild acceleration
'of gravity as. Newton's theory is valid for small

particle velocities (r'«1 and us «1) in weak
fields (r » a). Consequently, Eq. (8) becomes

as ———g. In Newton's theory the acceleration of
gravity is always negative, indicating gravitational
attraction. In Einstein's theory, however, Eq. (8)
shows that for

r' & + —,us (1 a/r)—(1 a/r)—
we have as p 0, implying gravitational repulsion.

We now turn to consider how each component
of the velocity influences the Schwarzschild ac-
celeration of gravity. For transverse motion (r=0)
Eq. (8) becomes

as r' r8 rP——sin—8—
= —g[2us +(1 a/r)] .— (10)

where a prime denotes differentiation with respect
to r. We also need the relation between dt and dp,
where p is a parameter describing the particle tra-
jectory. It is'

di'/dp =1/B .

Equation (10) shows us that transverse particle mo-

tion does not lead to gravitational repulsion. We
note that the acceleration of gravity for highly
relativistic particles (us-1) in weak fields is

as 3g

To obtain the Schwarzschild radial acceleration as
as a function of the Schwa'rzschild radial velocity
r'=dr/dt and the Schwarzschild transverse velocity

us (r 8 + r P——sin 8)', we first insert Eq. (5) in
the identities

dx'/dp=(dx'/dt)(dt/dp), i =1,2, 3 .

(6)

For purely radial motion (8=/ =0) Eq. (g)

yields

3r
as ——r =g

1 —a/r
—(1—a/r)

We see that the gravitational acceleration of ex-
treme relativistic particles in weak fields is

(12)
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as =+2g (13)

In general, the acceleration of gravity is positive if

sticks and clocks, which are situated in and affect-
ed by the gravitational field. We rewrite the line
element Eq. {1):

I —a/r
r (14) ds =dT dR— rd—g2 rsin—gdP (16)

Inequality (14) was first derived by Hilbert and
later confirmed by Treder. ' It tells us that for
r & I/v 3 a particle at every point in the
Schwarzschild field is repelled.

where

dT =ddt

dR =Adr

(17)

(18)

IV. LOCALLY MEASURED ACCELERATIONS

dr 2

=g —1 (1 ajr) —2ur——1 2

dp
(15)

Schwarzschild coordinates, velocities, and ac-
celerations refer to quantities measured by a dis-

tant observer who is not located in the gravitation-
al field, whereas locally measured quantities are
determined by observers situated in the gravitation-
al field. Thus, the measuring instruments of the
distant observer are not affected by gravity, while

the instruments of the local observer are affected
by the gravitational field, because the measured
time and radial space intervals differ from the
corresponding Schwarzschild quantities. Conse-

quently, it is to be expected that locally measured
velocities and accelerations will not be the same as
the Schwarzschild quantities. We now turn to the
derivation of locally measured radial accelerations.

First we also consider the radial equation of mo-

tion, Eq. (4), which can be written

2
d r dg . 2 df

az —— —r —rsin 8
dp dp dp

dR/dT =~A dr/~B dt=r'/B . (19)

Equation (19) tells us that dR/dT & r.
Now, to find the totally locally measured radial

acceleration we must return to the radial equation
of motion, Eq. (15). First, we must express dr/dp
and d r/dp in terms of the locally measured radi-
al velocity dR /dT and the locally measured radial
acceleration d RjdT . Equations (5), (17), and

(18) lead to

and

drjdp =dR/dT

d r/dp =( I /B~i)(d2R jdT )

(20)

(21)

Thos, the totally locally measured radial velocity
dR /dT is equal to drjdp. Now, we place equa-
tions (17), {20),and (21) into (15) to obtain

d8 . 2 dbr +r sin g ' (1 ajr)'—
dT dT

d8
dT2

dT and dR are the locally measured time and space
(radial) intervals. The locally measured radial
velocity is dR/dT. From Eqs. (2) and (3) we see
that A =1/B; consequently

where

de 2. 2 drab
v r r 2sin2g

dp dp

'2

or with

'2
dE. —1 (1 ajr) '~—; (22)

Now, drjdp & 1; consequently, it follows from Eq.
(15) that az &0. We see that az does not indicate
the existence of gravitational repulsion. But, one
must realize that dp is measured by local observers.
It is to within a constant multiple the proper time
measured along the particle's trajectory. Finally,
we note that as r~ co, we have dp~dt, and for
highly relativistic particles in transverse motion
(dr/dp =0 and u~ = 1) we obtain az ——as ———3g.

Next, we study the totally locally measured radi-
al acceleration determined completely by meter

u =[rz(dgjdT)2+r sin2g(dpjdT) ]i~

de d0
dT2

'
dT

—rsin 8 dP

dR 2—vI —1 +0
dT r 3 (22a)

the totally locally measured transverse velocity, we
have
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Equation (22a) tells us that ai & 0 because for
massive particles dR/dT& 1. Thus, local observers
cannot detect gravitational repulsion, apparently
because their measuring instruments are affected
by gravity, whereas distant observers, whose instru-
ments are not affected by the gravitational field,
can measure a positive value for the acceleration of
gravity. Equation (22a) also tells us that for highly
relativistic particles in transverse motion (ut = 1

and dR /dT =0) in weak fields we have ai = —2g.

is satisfied. We conclude that gravitational repul-

sion can occur at distances which are not near the
Schwarzschild radius.

A positive value for the Schwarzschild accelera-
tion of gravity cannot be completely attributed to
the fact that locally measured time intervals dT
differ from the Schwarzschild time intervals dt as
maintained by Zeldovich and Novikov. Equation
(7) shows that it is the radial velocity term which
is responsible for the occurrence of gravitational
repulsion. That is, it may occur if

V. CONCLUSIONS
(25)

as g(3r ——2us —1) . — (23)

Thus, even if the fields are very weak the
Schwarzschild acceleration of gravity can be posi-
tive if

r & —, +2'us /3 (24)

We now answer the questions posed in Sec. II.
In Sec. III we proved that if the Schwarzschild
velocities obey inequality (9), then the Schwarzs-
child acceleration of gravity is positive, whereas in
Sec. IV we proved that the locally measured gravi-
tational acceleration can never be positive. We
conclude that gravitational repulsion can occur in
the Schwarzschild field; but, it can only be detect-
ed by an observer whose meter sticks and clocks
are not affected by gravity.

Next, we consider the Schwarzschild radial ac-
celeration as as r +oo. Equa—tion (g) reduces to

Now, dT =8dt; consequently to prove our asser-

tion, we simply place 8= 1 into equation (25).
From equation (2) we see that A' & 0, meaning in-

equality (25) is still satisfied if r'&0. Thus, the
Schwarzschild acceleration can be positive even if
dT does not differ from dt. We conclude that
gravitational repulsion cannot come about merely
because in the Schwarzschild field dT differs from
dt.

Finally, we point out that it is not possible to
correlate gravitational repulsion with the total par-
ticle velocity as McVittie and Jaffe and Shapiro
claim, because the transverse and radial velocities
affect the acceleration of gravity differently (Sec.
III). We conclude that gravitational repulsion is
not a function of the total particle velocity or ener-

gy; rather, its occurrence depends on the relation-

ship between the transverse and the radial velocity.
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