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Gravitational perturbation of the hydrogen spectrum
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The perturbations of the energy levels of a freely falling one-electron atom in an arbi-

trary external gravitational field are considered. The energy-level shifts are calculated to
first order in the Riemann tensor for the relativistic 2P3/2 levels and the nonrelativistic

3S, 3P, and 3D levels. These and earlier results are evaluated explicitly for atoms in radi-
al orbits of the Schwarzschild and parametrized post-Newtonian metrics and for atoms in
circular orbits of the Schwarzschild metric. Highly excited Rydberg atoms are also dis-
cussed.

I. INTRODUCTION

The general theory of relativity and other metric
theories predict that gravitation is manifested as a
curvature of spacetime. This curvature is charac-
terized by the Riemann tensor R it's. It is of in-

terest to know how the curvature of spacetime at
the position of an atom affects its spectrum. Fre-
quency shifts caused by local curvature are dif-
ferent for various spectral lines and are thus distin-

guishable from the familiar Doppler, gravitational,
and cosmological red-shifts.

One can, in principle, use the atom as an instru-
ment to detect possible regions of high curvature.
Because the information about the curvature at the
atom's location is carried by its electromagnetic
spectrum, regions at large distances from us can be
explored. In a recent experiment, ' the wavelengths
of the 2s-3p transitions in hydrogen and deuterium
were measured to a precision of one part in 109.

The magnitude of the energy-level perturbations
produced in a freely falling atom by spacetime cur-
vature increases as n, where n is the principal
quantum number (see Appendix B). Highly excit-
ed or Rydberg atoms with n =10 are studied in
the laboratory and atoms with n =350 are observed

by radio astronomers. The characteristic radius of
curvature D necessary to produce a wavelength
shift of one part in 10 in a transition between two
adjacent energy levels of hydrogen near n =100 is
D (0 7km. Near n.=350, a shift in wavelength
of one part in 10 requires a radius of curvature of
D & 30 km. For comparison, the characteristic ra-
dius of curvature of the spacetime near the surface
of a typical neutron star is roughly D =30 km. To
observe the wavelength shift for atoms with

n =350 near a black hole of one solar mass would

require an accuracy of about one part in 10 .
For sources such as white dwarfs and neutron

stars, it would be necessary to distinguish the grav-
itational perturbations of the spectrum from the
perturbations produced by the electromagetic fields
present near such sources. The results in Sec. VI
show that in the Schwarzschild geometry, the level

spacing of the gravitational effect is different from
that of the well-known first-order (degenerate)
Stark and Zeeman effects. One can show that the
higher-order electromagnetic perturbations also
produce patterns of energy-level shifts which are
different from the lowest-order gravitational per-
turbations. Therefore, in principle, it would be
possible to separate the electromagnetic and gravi-
tational perturbations of the spectrum. Near a
black hole, that problem may not arise because its
electric and magnetic fields are both proportional
to the black hole's electric charge, and a black hole
in space is expected to be essentially uncharged.

One can also envision the possibility of using
atomic spectra to detect gravitational waves near
their sources. The frequencies of most sources of
gravitational waves are small with respect to atom-
ic frequencies. Therefore, the quasistatic approxi-
mation is valid and the results obtained here and in
earlier papers can be used, with R~~&~ regarded
as a function of time which oscillates at the fre-
quency of the gravitational-wave background. The
spectral-line shifts would oscillate at the frequency
of the gravitational waves impinging on the atom.
One might hope to observe such an effect in the
absorption spectrum of cold gas (the sources of
electromagnetic waves and of gravitational waves
need not be the same). Because the atoms may be
relatively close to the source of gravitational

3180 1982 The American Physical Society



25 GRAVITATIONAL PERTURBATION OF THE HYDROGEN. . . 3181

waves, the amplitude of those waves at the position
of the atom can be much larger than at the Earth.
Unambiguous information concerning the measure-
ment of the wave by the atom would be transmit-
ted in the atom's electromagnetic spectrum. (With
T. Leen, we are currently investigating this topic. )

We use the notation and conventions of Ref. 3.
In that reference, the Dirac equation in curved

spacetime was reviewed, the Dirac Hamiltonian
was evaluated in Fermi normal coordinates to first
order in the Riemann curvature tensor of an arbi-

trary spacetime, the energy shifts of the relativistic

lS~~2, 2Si~2, and 2P1~2 levels were calculated, the
nonrelativistic limit was discussed, and the shifts
of the nonrelativistic 1S, 2S, and 2P levels were

calculated. The hydrogen atom in certain cosmo-
logical spacetimes was considered by Audretsch
and Schafer, who also discussed the previous
literature. The mixing of opposite-parity states of
an atom supported in a gravitational field was in-

vestigated by Fischbach, Freeman, and Cheng.
They showed that the separation of center-of-mass
and relative coordinates is a comphcated problem
which in weak gravitational fields can evidently in-

troduce corrections of the same magnitude as the
gravitational perturbations. Atoms at rest in the
Schwarzschild and Robertson-Walker metrices
were also considered by Tourrenc and Grossiord.
In the present paper, we deal only with freely fall-

ing atoms. In a later paper, we will also discuss
accelerated or supported atoms. We have not at-
tempted a fully relativistic separation of center-of-
mass and relative coordinates, which would intro-
duce corrections beyond the use of the reduced
mass for the mass of the electron.

Except for the perturbations of the nonrelativis-
tic 2P levels, the energy-level shifts obtained in

Ref. 3 vanish when R„, is zero (a vacuum space-
time in general relativity). Here we calculate the
energy-level shifts of the relativistic 2P3~2 levels

(Sec. II) and of the non-relativistic 3S, 3P, and 3D
levels (Sec. III). All of these shifts involve the un-

contracted Riemann tensor and need not vanish
when Rz is zero. For the convenience of the
reader, the energy-level shifts calculated in Ref. 3
and in the present paper are summarized in Sec.
IV. The general expressions for these energy-level
shifts are evaluated explicitly for atoms in circular
and radial orbits in the Schwarzschild metric (Secs.
V and VI). Finally, the energy shifts are evaluated
for an atom falling radially in the spherically sym-
metric, lowest-order, parametrized post-Newtonian
(PPN) metric (Appendix A). The results in that

case depend on the initial velocity of the falling
atom and on the PPN parameter y. The order of
magnitude of the energy-level perturbations for
highly excited or Rydberg atoms is obtained in Ap-
pendix B.

II. RELATIVISTIC CALCULATIONS

In this section we calculate the energy shifts of
the 2P3&2 states of the one-electron atom caused by
an external gravitational field. For n =2 and
J =3/2, ther are four eigenstates of the unper-
turbed Hamiltonian Ho [Eq. (8.14) of Ref. 3], cor-
responding to the energy eigenvalue

with

E2 3g2=m [1+((4—g ) ] (2.1)

v3
F(r)(3/2+M)' Yi (8,$)

F(r)(3/2 M)' YP—+ (8,$)v3

vs G(r)(5/2 —M)' Y2
' (8,$)

vs G(r)(5/2+M)' Y2
+' (8,$)

(2.3)
1 3

with M =+—,, + —,. (Note that the coefficient of
the undefined Yl vanishes. ) F(r) and G(r) are
given by

F(r) =m'r N(1+w)'~ (mr)rexp( —Amr),

(2.4)

G(r) =—m '~ N(1 —w)' (mr )"exp( Amr ), —

(2.5)
where

and

y=(4 —g')'~', w=y/2, A, =g/2,

gr+ 1/2

[2I (2y+1)]

(2.6)

(2.7)

Then
' 1/2

G(r) = — F=O(g')F .
1+M

(2.8)

(2.2)

(we use units with fi=c =1). The eigenstates are
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HI= R01om» P.I m

2
(2.9)

Therefore we can neglect 6 with respect to I' for
the purpose of calculating the energy shifts to
lowest order in g.

The gravitational perturbation of the Hamiltoni-
an to first order in the Riemann tensor is given in
Ref. 3, Eq. (8.15); the largest term is

HMM =(P»11t/" ) . (2.10)

Using the eigenfunctions (2.3) and neglecting 6,
the matrix elements reduce to

The energy shifts are determined by Eq. (5 15) «
Ref. 3. Thus we need the matrix elements

l~mm R dy P2( )[( ~)1/2( +~&)1/2@M 1/2 —yM' —1/2
1 1

+( 3 M)1/2( 3 ~i )1
/2@M+1 /2 syM +1/2]

2 2 (2.1 1)

Here R010 is evaluated at the center of mass of the atom in a locally inertial proper frame with the spatial
axes oriented along the Riemann tensor's principal directions. The product x x can be expressed in terms
of spherical harmonics. Therefore the angular part of (2.11) is the integral of three spherical harmonics and
its value is obtained in terms of the Clebsch-Gordan coefficients or the 3-I symbols. The radial part is also
readily calculated. The matrix elements are given by

I—3/2, —3/2 H3/2, 3/2 0 m (6RQQ 3ROzoz) 9

—2 —1

—2 —1+—3/2, 1/2 ~—1/2, 3/2 + 3k m ( ozoz Royoy) ~

~—1/2, —1/2 H I/2, I /2 0 m (4R 00+ 3R Ozoz )
—2 —1

The other matrix elements are obtained by symmetry,

~MM' +M'M '

Now we can substitute Eqs. (2.12)—(2.15) into Eq. (5.15) of Ref. 3,

det[HMM —E'"5MM ]=0

to obtain the secular equation. Defining the following quantities,

p =g-2m-',

q=p(RQQ —3RQ 0 )

P( QXQX QyQy) ~

one finds that the secular equation is given by

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(4q+ 15pRozo E ) (6q+ 15pRO 0 E'") 2s'(6q+ 1SpRO—
oz E )(4q+ 15pRozoz E)+s =0 . —

(2.20)

With the change of variable

a= Sq+ &5px„„—S"',
Eq. (2.20) reduces to a quadratic equation in A, :

(A, —q ) —2s (A, —q )+s =0.

(2.21)

(2.22)

Therefore the solution to the fourth-degree secular equation is easily obtained. There are two double roots,

E1 (2P3/2) =p m I SRQQ+2[Rozoz +Royoy +Rozoz —(R QzRozQyoyR+ozozRozoz+RoyoyRozo. )](1) —2 —1 2 2 2 1/2

(2.23)
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and

E2 (2P3yq) =g m I 5R op 2—[Rp„p„+Royoy +Ryan (R—oxoxRoy py+Ro~o&Rozoz+RoyoyRozoz)]
(1) —2 —1 2 2 2 1/2

(2.24)

It is interesting that the average of these two energy shifts is the same as the energy shift E"'(2P i~2) of the

2Pi~2 levels [Eq. (11.22) of Ref. 3].

III. NONRELATIVISTIC CALCULATIONS

Here we calculate the perturbation to the energy
of the third level of the nonrelativistic one-electron
atom in the presence of an arbitrary gravitational
field. The gravitational interaction obtained from
Eq. (9.13) of Ref. 3 is

1 1 mHI =
2 ttlRolom+ + (3.1)

(3.2)

In the nonrelativistic regime one can calculate the
matrix elements of the perturbation (3.1) between

the nonrelativistic hydrogenic wave functions, us-
ing again a frame where Romp is diagonal. Writ-
ing the third-level states

I
3lm )as

I
lm ) for brevity,

we find that the nonvanishing matrix elements in-

volving the third-level eigenstates are

&oolH, Ioo&= g-'m-'R

(2—2
I
HJ

I
20) = (20

I HI
I
22 )

= —3V 6g m '(R p„p„Rpyp—y),
(3.9)

&2—1
I
HI

I
2—1& = &21IHI

I
» &

=9( m '(2Rpp+Ro, o,},

&2—1
I Hr

I
21& =—C m (Rotor Royoy)—

(3.10)

(3.11)

The other matrix elements are obtained by symme-
try.

(2O IH, I
2O) =3g-'m -'(5Roo+6Rogog) . (3.12)

(00
I HI

I
2 —2) = (00

I
HI

I
22)

15 3
m (Rp o —Rpypy),

(3.3)

(1'm'I HI
I
lm) =(lm

I
HI I

l'm') .
The secular equation

det[&lm
I
Hl

I

l'm') E""&ir'8 m']—=0

(3.13)

(3.14)

&OOIHI I2o&= — 0 'm '(Rpp —3R„„),15@2 can be expressed compactly in terms of the follow-

ing quantities:

(1—1IHI Il —1)=(11IHI
I
11)

=18( m '(2Roo —Ro os}

(3.4)

(3.5)

A= —,g m Rpp E—69 (1)

15' 3
m (Roxox —Royoy»

2

C= g m (Roo —
3R ogpu),

—15' 2

2

(3.15)

(3.16)

(3.17)

(1—1
I
HI

I
11)=—18( 'm '(Rp„o„—Roypy),

(3.6)

(10
I HI I

10)=18/ m '(Rpp+2Rp, o,), (3.7)

(2—2
I HI

I
2—2) = (22

I
HI I

22)

D =18( m '(2Rpp Rpzp, ) E'"—, —

E=18) m (Rop+2Rozos) E-
G =9( m '(3R pp 2Rozoz)

H =9( m '(2R po+R p, o, ) E'", —

J=3( im '(5Rop+6Rpgpg) —E'" .

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

=9/ m '(3Rop 2Rozoz) ~—

(3.8)

With these definitions the secular equation is given

by
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X [B2(—A+ 2J+ —v 2C)+ G(C —AJ)] =0 .
25 5 (3.23)

This ninth-degree equation already contains factors
of lower degree, which makes it possible to obtain
its roots. The first six roots are

E"' =9/ '(3R —2R „),
E~5 ' ——9g 2m ~(3Rpp —2Rpypy),

E~6" ——9g ~m (3Roo —2Rozoz) .

In last three energy shifts are the roots of the
third-degree equation

(3.27)

(3.28)

(3.29)

E',"=18( m '(Roo+2Ro„o„),

Ez" ——18( m '(Rpp+2Rpypy),

E3"=18( m '(Roo+2Ro, o,),

(3.24)

(3.25)

(3.26)

with

(E'")3+a,(E'") +a E'"+a =0, (3.30)

153
a) ———,g m Roo,

'[1296Roo'+1782(Roxo Royoy+Ro oxRo.o.+RoyoyRo. o. ) )

(3.31)

(3.32)

a3 ——g m
—6 —3 12393

Roo —18954(Ro.o. Ro o +Ro.o.Ro o +Ro.o. Ro.o,

+Royoy Ro~oz+RoxoxRozoz +RoyoyRo o )—129762Ro oxRoyoyRosoz
2 (3.33)

This equation can be solved for any given Riemann tensor. We will not take the space here to write the
general form of its roots. Even without solving Eq. (3.30) explicitly, it can be seen that the sum of the three
roots is given by

(3.34)

IV. SUMMARY OF RESULTS

For the convenience of the reader, we here summarize the energy shifts given in Ref. 3 and those obtained

in this paper.
Whenever an energy shift can be expressed in the form

3

E"'=ARpp+BR+ g C"Rp;p;, (4.1)

we will just give the nonvanishing constants 3, 8, and C". Here the curvature quantities R, Roo, and R;Ofo

are evaluated at the center of mass of the atom in a locally inertial proper frame with the spatial axes

oriented along the principal directions of Rp pj. (Since we are assuming that R~~rs is quasistatic in Fermi
coordinates, remaining nearly constant during the time of an atomic transition, the fact that the orthonor-
mal tetrad is parallel transported along the geodesic does not prevent us from orienting the spatial axes

along the principal directions of Rp;p~. ) We first give the nonrelativistic results, and then the relativistic re-

sults. Nonrelativistic regime:

11S level: A= —,g m

2S level: A=7/ m

(4.2)

(4.3)
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2P levels:

(1} A =18( m ' C"=6( m

(2) A=3/ m ' C =6/ m

(3) A=3( m ' C =6( m

3S, 3P, and 3D levels:

(1} A —lg' m C —36( m

(2) A 1 8g
—2m —1 C22 3g—2m —1

(3) A =18/ m ', C =36/ m

(4) A =27/ m ', C"=—18( m

(5) A 27( 2m 1 C22 i@.—2m 1

(6) A=27/ m ' C =—18$ m

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10}

(4.11)

(4.12)

where g=Ze . The remaining three energy shifts of the 3S, 3P, and 3D levels are the roots of the third-
degree equation (3.30), with coefficients given by (3.31)—(3.33). Relativisitic regime:

1Siy2 levels: A =—„g y(y+1)(2y+1)m '+ —„(2y+1)m
(4.13)

8 =—„(2y+1)m

2S„, levels: A =7(-'m-',

2Piyz levels: A=5( m

2P3/2 levels: Ei ' ——g m {5Rpo+2Ãoxox +Royoy +Rozoz

(Ro o Roy py+Ro o Ro o +RoyoyRo o }1

(4.14)

(4.15)

(4.16)

g~" =g m '{5Rop 2[Rpxpx +—Rpypy +Rpzoz (RpxpxRoypy+RpxpxRpzpz+RpypyRpzpz}l I ~ (417)

where (=Ze and y(1 —g )'y . Equation (4.13) is good to all orders in g, while the other results are valid to
lowest order in g.

V. FERMI NORMAL COORDINATES
FOR RADIAL AND CIRCULAR ORBITS

IN THE SCHWARZSCHILD METRIC

dH(r)
i eo ——.

dr (5.1}

i.e., ~z is the velocity vector of the particle on the
geodesic H(r). Also

Fermi normal coordinates along a geodesic
H(~), parametrized by the proper time r, are
characterized by a tetrad that satisfies the follow-
ing conditions:

(ii) The tetrad is parallel transported along the
geodesic:

De~/dv. =o . (5.3)

The coordinates of an event Q near the geodesic
H(r} are obtained by the following procedure.

For Q close enough to the geodesic H(r) there is
a unique geodesic 9P(s) joining Q to 9'(~) and in-
tersecting R(~) at a particular proper time r. Let
the tangent to 9F(s) at the point of intersection
with R(r) be n = n Jej and the proper distance
along 9F(s) to the point Q be s. The Fermi normal
coordinates of Q are given by

e~ ep ——g~p. (5.2) x (Q)=r, (5.4)
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x'(Q)=n's . (5.5) P=l/r (5.17)

One can now construct the Fermi normal tetrad
for the radial and circular geodesics in the
Schwarzschild metric.

The first integrals of motion for a particle in ra-
dial motion in the Schwarzschild metric are

Xt =e,
t2 X—lp2

(5.6)

(S.7)

where e is the energy per unit mass at infinity and

X=1- 2M
T

(5.8)

ep t (r) +——r'(r)—
9t Br

(5.9)

e i
——X r(r) +Xt(r)—

Bt Br
' (5.10)

e2 ——r (5.11)

e3 (r sin8)——
a

(5.12)

The dot means derivative with respect to proper
time. Using the above equations, one can verify
that a Fermi normal basis for the radial geodesic is
given by'

X(1+I /r )=e (5.18)

There are two circular orbits (one stable and one
unstable) for a given angular momentum, corre-
sponding to the extrema of the effective potential
given by"

X(1+I /r ) . (5.19)

The radii of those orbits are the roots of the equa-
tion

Mr —I r +3MI =0 . (5.20)

For the stable orbit one has r y 6M, and for the
unstable point one has 3M & r (6M (we are here
using units in which G,A' and c are numerically
equal to unity).

A Fermi normal basis for the circular orbits is
found using Eqs. (5.1)—(5.3) and Eqs.
(5.16)—(5.20), with the result that

ep =eX —+lr8 2 8
at

(5.21)

where e is the energy per unit mass and I is the an-

gular momentum per unit mass. These constants
of motion are related by

where t, r, 8 and P are the Schwarzschild coordi-
nates and v is the proper time along the geodesic.

Given the tetrad we can calculate the com-
ponents of the Riemann tensor that are ntx:essary
to obtain the energy shifts. In the Fermi frame the
components of the curvature tensor are

+X'/ cos(aP)
a
T

(5.22)

(S.23)

Rap 8=RE„,(e P'(ep)"(er) (es) (5.13)

R- - = 2M/r— (5.14)

Here R&, are the components of the Riemann
tensor in the Schwarzschild coordinates. Using the
conventions of Ref. 11, we have +X'/ cos(aP)

8
Br

' (5.24)

R@yap
——Rpepe

——M /r 3 (5.15) where

(5.16)

We note that in this frame R~~-. is diagonal for all

times. This result is also given in Ref. 10.
For the circular orbits the first integrals of

motion are (8=ir/2; r=constant)

Xt =e,

( 3M) i/2 —i/2 (5.25)

Substituting Eqs. (5.21)—(5.24) into (S.13) we

obtain the components of the Riemann tensor in

the Fermi normal basis,

Rely=Mr (r 3M) 'I r5;51+—[(r 3M)5;5J (2—r 3M)5;5—]cos—2ap

+[(r 3M )5 5J' (2—r 3M )5,'5—,'] sin—'ap 3rX(5,.'5,'+5—,'.5,'. ) sjnap cosa) I,
5.26
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where 5J. is the Kronecker delta. %e observe that
only the last term in (5.26) is nondiagonal. It is
not possible to diagonalize RQ,.Q-. for all times but it
is diagonal for )=0, and the off-diagonal com-
ponents will remain small with respect to the diag-
onal elements for some time interval. For the
stable orbits, using (5.17) and (5.26) we find that
the off-diagonal elements of (5.26) are much small-
er than the diagonal elements for proper times
satisfying the inequality

2r r —3Mr &&,&2
. (5.27)M'~' 3r —6M

a2 ———5346M r g m

a3 ——145800M r g m

Solving (3.30) we obtain the last three energy
shifts,

E7"(n =3)=36Mr g m

E~s" (n =3)=(—18+@'4374)Mr g m

E9 '(n =3)=(—18 V'4374)—Mr g m

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

At v=0 (/ =0) the relevant components of the
Riemann tensor in the Fermi frame are

Roio, ———(2r 3M)(r—3M) —'Mr 3, (5.28)

The relativistic energy shifts are obtained by

substituting (5.14) and (5.15) into (4.13)—(4.17).
The energy shifts to lowest order are for an atom
on a radial orbit,

Rggpp: (r 3M) Mr

RQ3Q3 Mr ~

(5.29)

(5.30) E"'(1Sig2)=E"'(2Sig2) =E'"(2Pigi) =0 (6.13)

VI. ENERGY-LEVEL SHIFTS
IN THE SCHWARZSCHILD GEOMETRY

and

E'i" (2P312 ) =—E2"(2P3/2 )

=6Mr g m (6.14)

Now we can use the calculations of the preced-

ing section to obtain explicitly the energy shifts in

the Schwarzschild spacetime. the nonrelativistic

energy shifts for the atom falling on a radial orbit
are obtained by substituting Eqs. (5.14) and (5.15)
into Eqs. (4.2) —(4.12) and then into Eq. (4.1). The

energy shifts are

E' "(1S)=E"'(2S)=0, (6.15)

E'i"(2P )= 6(2r 3M—)(r —3M ) 'M—r g m

In a similar way, using now Eqs. (5.28) —(5.30)
for the components of the Riemann tensor in the
Fermi frame associated with the circular orbit we
obtain the following nonrelativistic energy shifts:

E"'(1S)=E'"(2S)=0,
E' '(2P)= —12Mr g m

E2"(2P)=E3"(2P) =6Mr g m ',
E',"(n =3)= 72Mr '—

g m

E2 '(n =3)+E3"(n =3)=E4"(n =3)

=36Mr g m

(6.1)

(6.2)

(6.3)

(6 4)

(6.5)

E'"(2P)=6( —3M) 'M

E '(2P) =6Mr g m

(6.16)

(6.17)

(6.18)

Ei '(n =3)=—36(2r —3M)(r —3M) 'Mr 3g 2m

(6.19)

E2"(n =3)=—36(r —3M) 'Mr g m ', (6.20)

Eq"(n =3)=E6"(n =3)
E3"(n =3)=36Mr g m (6.21)

= —18Mr g m (6.6) E4 '(n =3)=18(2r—3M)(r —3M) iMr 3g 2m

al ——0, (6.7)

Substituting (5.14) and (5.15) into (3.31)—(3.32)
gives the following coefficients for the third-degree

equation (3.30): E~"(n =3)= —18(r—3M) 'Mr g m

E~6"(n =3)= —18Mr g m

(6.22)

(6.23)
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a1 —0,
g2 — 17g2+M2r sg 4m

a3 ——72900(b, —l)M r g m

(6.24)

(6.25)

(6.26)

The coefficients of the cubic equation (3.30) are

+r2(d8 +sin 8dp ) . (Al)

them with those obtained in Sec. VI.
We start with the spherically symmetric static

metric

ds = A(r—)dt +B(r)dr

where

b, =3(r2—3Mr+3M )(r —3M) (6.27)
Later we shall specialize (Al) to the PPN metric.
The components of the Riemann tensor in the
above coordinates are

Solving (3.30) with coefficients (6.24) —(6.26) gives
the remaining energy shifts,

E7 (n =3)=2(5946, )' Mr g m 'cos8,

(6.28)

E&"(n =3)= 2( 594k, )' /Mr g rn 'cos(8+2m/3),

(6.29)

E9 '(n =3) =2(5946, )'/ Mr g m 'cos(8+4rrl3),

(6.30)

A" A A'8'
0101

rA'
R0202 28

2R0303 —R0202sm

r8'
R 1212 28

2R 1313—R 1212sln 0

R2323 —r ( 1 —B ')sin 8

(A3)

(A4)

(A5}

(A6)

(A7)
where

8= —,cos '[—50(b —1)(3l22b, ) ] . (6.31)

The relativistic energy shifts of the atom in cir-
cular orbit are found to be

where the prime means derivative with respect to r.
For a radial geodesic the first integrals of the

equations of motion are

At=@,

E"'(1St/2) =E"'(2S)/2) =E"'(2Pt/2) =0 At —Br =1 . (A9)

and

EI (2P3/2 } E2 (2P3/2 }

(6.32) Here the dot means derivative with respect to
proper time and e is an energy parameter.

A Fermi normal basis for this geodesic is given

by

=2(3a)'"Mr -'g-'m -' . (6.33)
' a ~ ae0=t—+r
at ar ' (A10)

Here the constant 6 is given in terms of the radial
coordinate r of the circular orbit by Eq. (6.27).
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APPENDIX A: PPN METRIC

i ae3=
r BP

' (A13)

where we have chosen the orbit in the plane
8=m l2.

The components of the Riemann tensor in the
Fermi basis are obtained using Eq. (5.13}:

Ro~tJ= Rp]pi (AB) 5I 51
111

In this section we calculate the energy shifts for
an atom on a radial geodesic in the PPN
{parametrized post Newtonian) metric and compare

(6z52 ~3~2) Ro2o2 (e —A )

(A14)
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R2323
R2323 ——

4 (A16)

where t and r' have been eliminated using (A8) and
(A9). R+~- is already diagonal.

We can now specialize our calculations to the
PPN metric by giving explicitly the functions A

and 8 corresponding to that metric. To lowest or-
der the PPN metric is characterized by'

2M 2yM
r 1)'

(A17)

where y is a parameter that measures how much
spatial curvature is produced by unit rest mass. "
For general relativity y= 1 and for the Jordan-
Brans-Dicke theory y=(1+co)(2+co), co being
the free parameter of the theory. The Viking ex-
periment' yielded y=1+2& 10

The substitution of (A17) into (A2) —(A7) and
into (A14}—(A16) gives, to lowest order, the fol-
lowing components of the Riemann tensor:

e A— eR
&&&&

——R i&&&
—— Rp2p2+ R igig, (A15)

r A r AB

Now we have the elements to calculate the energy
shifts in the PPN metric. Substitution of
(A18)—(A23) into Eqs. (4.1)—(4.17) gives us the
following results.

Nonrelativistic energy shifts:

E"'(1S}=(y—1)(1 e)M—r g m

E'"(2S)=14(y—1)(1 e)M—r g m

(A24)

(A2S}

E'i" (n =3)=18[2(y—1)(1 e)—4]M—r g m

(A28)

E"'(n =3)=E',"(n =3)

E'i"(2P) = 12[3(y—1)(1—e )—1]Mr g m

(A26)

E',"(2P)=E', '(2P)

=6[(y—1)(1—2e')+y]Mr 'g 'm

(A27)

2MR~—

M[y —~'(y —1}]
0202 =R03o3 =

(A18)

(A19)

=36[(y—1)(l e)+y]M—r g m

(A29)

E4 (n =3}=18[3(y—1)(1 e)+2]Mr g —m

1212 1313

2yM
R2323=

M[@ (1—y) —1] (A20)

(A21)
E5"(n =3)=Es"(n =3)

=18[(y—1)(1 e) y]Mr —g 'm—

(A30)

It follows from these relations that to lowest order (A31)

and

M[2(y —1)(1—e )]
T

R=O.

(A22)

(A23)
l

The remaining three energy shifts can be calculated
from the cubic equation (3.30}with coefficients
given by (3.31)—(3.33) for any specific value of e
and y.

Relativistic energy shifts:

E"'(1S, )= y [3 ( +1)(2 +1)g +2(2 +1)]M
18

E (2Sig2 ) = 14(y—1)( 1 e)Mr g—rn

E' "(2Pi2 )=10(y—1)(1 e)Mr g m—
EI"(2P3&2)=t 10(y—1)(1 e)+2(4+[y —e(y 1)][6 —y+e (—y —1}])' }—Mr g m

E2"(2P3/2)= I 10(y—1)(1—e )—2(4+[y—e (y—1)][6—y+e (y—1)])' }Mr g m

(A32)

(A33)

(A34)

(A35)

(A36)

where g=(1—g )'~ . We note that in this case the energy shifts depend on the initial velocity of the atom

through e. The relation between e and the initial conditions follows from Eqs. (A8} and (A9}:
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A (rp)
2A(ro) —8(ro)u, o

(A37)

where ro and U, o are the initial position and velocity, respectively. In principle the results of this appendix
could be used to measure y.

APPENDIX 8: MAGNITUDE OF SHIFT IN
HIGHLY EXCITED ATOMS

Here we consider highly excited or Rydberg
atoms and relate the accuracy of measurement to
the order of magnitude of the radius of curvature
that can be detected by means of atomic spectra.
Rydberg atoms are of interest becuase the energy
perturbations caused by curvature increase as n,
where n is the principal quantum number.

The leading term in the interaction Hamiltonian

caused by spacetime curvature in the nonrelativis-

tic limit is

E(l)(n+ 1) E(1)(n}
Q= E"'(n+1) E"'—(n)

=2.5$ (arm ) D (Ry) n6 .

This gives (in cgs)

D = 2.5Q 'g n.
PtlC

(Ry)

j./2

n 3

E' '(n) = 2—mRy. n

where Ry is the Rydberg constant. Then one finds
that for large n,

1 I m
2 mRolom+ +

The typical energy shift to the nth level of the

atom is of order

E'"(n) =mD (r ),

(81)

(82)

or with Ry=1.097p10 cm

D=Q —inn (2.2&&10 cm) .

(86)

(87)

where D is the characteristic radius of curvature of
the spacetime at the position of the atom and (r )
is given for state

~

nlm ) by

(r2) =
z

[5n2+1 —3l(l+1)]n g m . (83}

Therefore, for large n we have

E"'( )-2 5( 'D

With Q =10, corresponding to the accuracy of
Ref. 1, one has

D = (7.0X 10 cm)n

For n =100, this gives

D=7.0)&10 cm,

and for n =350,

(88}

(89}

with g=e (we are taking Z =1 and R=c= 1).
The unperturbed energy of the nth level is

D 3.0)(10 em=30 km . (810}
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