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An approach to the quantum theory of gravitation is developed by analogy with the

quantum mechanics of the simplest generally covariant system —the relativistic point par-

ticle. The central object in the formalism is the transition amplitude from one three-

geometry to another which is given by a path integral. In that path integral one sums

over all possible histories which connect two three-geometries separated by a given local

proper time and then integrates over all possible proper-time separations. The choice of
the range of integration for the proper time fixes the boundary conditions for the transi-

tion amplitude. If only positive proper times ate allowed, the resulting amplitude is

causal. A perturbation theory is developed in which the expansion parameter is the sig-

nature which takes the value minus one when the field histories (spacetimes) have hyper-

bolic signature and plus one for the Euclidean case. The "free" theory corresponds to
zero signature and may be viewed as the result of replacing the Lorentz group as a sym-

metry group of the tangent spaces by one of its contractions, namely that one where the

speed of light approaches zero. It is argued that besides the processes in which the

universe starts or finishes at a singularity, there are also processes with a nonzero ampli-

tude in which the universe starts and finishes in the same regular configuration without

ever going through a singularity. These latter processes may be pictured as a loop in the

configuration space of the gravitational field. The work remains formal throughout in

that no definite meaning is given to the functional integrals considered.

I. INTRODUCTION

An important lesson learned from the develop-
ment of quantum field theory is that, remarkably
enough, it is worthwhile to develop formal schemes

ignoring the fact that one's equations many times

possess only catastrophic solutions, or what is the
same, they possess no solutions at all. Thus one
works in practice with formal generalizations to a
continuous number of variables of expressions
valid for a finite number of them, assuming that
basic linear algebra properties and rules for dif-
ferentiation and integration still hold in the case at
hand. It then turns out, sometimes, that one can
formulate in this way an approximation scheme to
solve the (formal) equations of the theory and-
turning the process upside down —use the approxi-
mation method to define what is meant by one' s
equations in the first place.

The procedure described above has been carried
out successfully so far for theories such as quan-
tum electrodynamics and, more generally, Yang-
Mills gauge fields which have been shown to be re-

normalizable. However, it would appear fair to
say that, up to now, straightforward extension of
the methods used for the Yang-Mills theories to
the quantum theory of the gravitational field,
described classically by Einstein's equations, has
not been successful.

A natural way to proceed in the face of this im-

passe is to develop a formal approach to the quan-
tum theory of gravitatio'n which is sufficiently dif-
ferent from previous ones as to suggest either an
approximation method of its own or another pro-
cedure which could be used in turn to give a pre-
cise meaning to the formal equations that one
started with. Clearly, only after the equations have
been given a precise meaning can one speak of a
theory instead of a formalism. However, even be-
fore that step is taken (if ever) there is value in a
different formal point of view as it still contributes
to one's understanding of the problem.

The purpose of this article is to discuss an ap-
proach to the quantum theory of gravitation that
may be regarded as a blend of the superspace ideas
of Wheeler' and the path-integral methods origi-
nally developed by Feynman. The central object in
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the formalism is the transition amplitude from one
three-dimensional geometry to another which is
given by a path integral. In that path integral one
sums over all possible histories which connect two
given three-geometries and which are separated by
a given local proper time (in a sense made precise
below) and then integrates over all possible
proper-time separations. The choice of the range
of integration in the proper-time variable fixes the
boundary conditions for the transition amplitude.
In particular, if only positive proper times are al-

lowed, the resulting amplitude is causal, that is, it
corresponds to the Feynman propagator in super-
space.

Within the proper-time formalism there is a na-

tural and apparently unique choice for a perturba-
tion theory. The parameter in which one expands
is the signature o which takes the value minus one
when the classical solutions of the theory are
Riemannian spacetimes with Minkowskian signa-
ture ( —,+,+,+}and plus one in the Euclidean
case (+,+,+,+ ). What deserves to be called the
"free theory" in this approach is obtained by set-

ting cr =0, and here the corresponding field his-
tories possess a geometrical structure which is half-
way between Euclidean and Minkowskian signa-
tures. Such geoinetry is that of a manifold where
the tangent spaces have by symmetry group a con-
traction of the Poincare group which is obtained

by letting the speed of light go to zero and which
is therefore just the opposite of the ordinary non-
relativistic limit. Consequently, in the free theory
the light cones are shrunk to lines and there is no
propagation in spacetime.

Although the zero-signature limit looks quite
singular when looked at from the viewpoint of
spacetime and would therefore seem an unsuitable
starting point for perturbation theory, it appears to
be regular when viewed from the configuration
space of the gravitational field (superspace}. In
particular, wave propagation in superspace remains
perfectly well behaved, and simplifies considerably,
by setting 0 =0, and the Feynman propagator
remains well defined.

The scope of this article will remain formal in
that, for example, the possibility of actually imple-
menting the small-signature perturbation theory as
a well-defined scheme, effectively free of infinities,
will not be'discussed; and hence the functional in-

tegrals involved will remain as expressions without
a definite meaning.

A short account of these results has appeared in
Ref. 3.

II. GENERAL COVARIANCE VERSUS
INTERNAL GAUGE SYMMETRY

There are many similarities between a gauge
theory of the Yang-Mills type and a generally co-
variant theory like general relativity. In both cases
the action is invariant under a set of transforma-
tions, the parameters of which are functions of
space and time. As a consequence, in both cases
there are constraints among the canonical variables
of the theory.

There is, however, one central difference between
internal gauge symmetry and general covariance, a
difference which at first sight would seem to be a
matter of detail, but which on more careful
analysis turns out to be a central one. The differ-
ence in question resides in the boundary conditions
which the symmetry transformations of the action
must satisfy. In the Yang-Mills case the action
contained in a spacetime region is invariant under

gauge transformations even when those transfor-
mations are not restricted on the region's boun-

dary. In the case of general coordinate transfor-
mations, on the other hand, the action is invariant
only iohen the transformation is restricted to map
the boundary onto itself. This difference may be
taken as the distinction between internal and space-
time gauge symmetries. In fact, if one is given an
action principle, one should be able to recognize
just by inspection of the necessary boundary condi-
tions for invariance, and without any knowledge of
differential geometry or fiber-bundle theory, which
kind of theory one is dealing with. This is quite
satisfactory as one should expect all criteria and
distinctions of physical relevance to be supplied by
the action integral itself.

The amount of freedom for the gauge transfor-
mations on the boundary has important implica-
tions for quantum mechanics in that it determines
the kind of gauge conditions which is permissible
to impose on the system at hand without eliminat-

ing physically permissible histories from the path
integral. Thus for an internal gauge symmetry
(Yang-Mills), one is free to impose conditions
which restrict more strongly the behavior of the
dynamical variables on the boundary than in the
case of a generally covariant theory. This is so be-
cause in the latter case there is less gauge freedom
available on the boundary.

The most efficient general, and foolproof, way
of analyzing the quantum mechanics of a gauge
system appears to be through the Hamiltonian
.form of the path integral, and we shall follow that
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III. RELATIVISTIC POINT PARTICLE
("GENERAL RELATIVITY

IN ZERO SPATIAL DIMENSIONS" )

A. Lagrangian

The action for a relativistic particle in (flat} con-
figuration space is

with

~2

S[x(r)]=f I.dr (3.1)

procedure in the study of the quantum mechanics
of the gravitational field. However, instead of ad-
dressing immediately that problem, we will analyze
first the simplest example of a generally covariant
system, namely, a relativistic spinless particle in
Minkowski space. This has the advantage that
many of the key features of the more complicated
systems already appear in this physically well-
understood problem. In particular, one of our cen-
tral results, namely the fact that canonical gauges
are not permissible for generally couariant systems,
and its implications, will be established first in this
simple case.

e(ri )
=E'(r2) =0, (3.8)

B. Hamiltonian

which is the infinitesimal version of (3.5).
Now, one might attempt doing quantum

mechanics directly in terms of the action (3.1) by
defining the propagator as a sum over all possible
histories of the exponential of (i /A} times the ac-
tion (3.1). This meets, however, several difficulties.
First of all, there is the practical problem of
evaluating a functional integral which is not
Gaussian. Second, it is not clear how to treat
spacelike histories for which the integrand in (3.1)
becomes imaginary. Third, it is not clear either
how to eliminate the multiple counting of histories
associated with (3.4), i.e., fixing the gauge, by im-

posing a condition on the x "(r) (see below for
more on this). Fourth, there is no indication of
how to distinguish the Feynman propagator—
which is the desired answer —from other Green's
functions of the Klein-Gordon equation. All these
difficulties are overcome by going to the Hamil-
tonian form of the path integral which we will

now discuss.

and

dx" dxpL= —m
d1 dr

x (1.) )=x i, x (r2) =x2 .

=—m( —x }'~ (32)

(3.3) (3.9)

The Hamiltonian form of the action (3.1) is ob-
tained in the standard manner. The momentum
conjugate to x "(r) is

Bi"

x (r)-+x(r) =x(f(r)), (3 4)

provided the transformation becomes the identity

at the boundary:

This action is invariant under reparametrizations:
which implies the constlaint

Mo p~"+m =0——.2

Furthermore the canonical Hamiltonian

(3.10)

f«i) =ri f«z) =r2 ~ (3.5) Pq~ I"—L

Note that since the boundary has dimension zero
this statement is equivalent to mapping the boun-

dary onto itself.
The infinitesimal version of (3 4} is obtained by

setting

vanishes identically on account of the homogeneity

in the velocities of (3.2), which is in turn a conse-

quence of reparametrization invariance.

Consequently, the equations of motion for the

system are obtained by extremizing the Hamiltoni-

an action,

f(r) =r+ e(r),

and the corresponding change in the action is

(3.6) r2
S[x(r),p(r);N(r)]= J (p„x)' NA p)dr, —

I3.11)

5S=(—x )'i @i,', (3.7)

which vanishes for arbitrary x(rz}, x(ri) (the veloci-

ties are not restricted at the end points) if and only x(1i)=xi, x(12)=x2 . (3.12)

under variations of x (r), p (r), N (r), subject again
only to the conditions
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Thus, neither the momenta p& nor the I.agrange
multiplier X are restricted at the end points. The
reason is that after (3.12) is imposed there would
be in general no solutions for the equations of
motion compatible with restricting the p's or 1V at
the end points in addition to the x's.

Now, since the original Lagrangian action (3.1)
was invariant under gauge transformations involv-

ing one arbitrary function of time E(r), one would

expect that invariance to show itself somehow in
the Hamiltonian formalism. This means that the
action functional (3.11) should be invariant under a
transformation of its arguments x, p, and X, which
depends on a function parameter e(r).

The way in which the canonical variables x and

p must change is the standard one from the theory
of constrained Hamiltonian systems, namely one
writes, in terms of the Poisson brackets in x and p,

and

5x (r) =e(r)[x,A 0] (3.13a)

5p(r)=e(r)[p, A o], (3.13b)

where 4 o is the constraint (3.10). To these equa-
tions one must add a transformation law for N
which is determined by the requirement that the
action be invariant. ' In the present simple case
that transformation turns out to be just

5N(r) =i(r) . (3.14)

In effect, if one evaluates the change of the ac-
tion (3.10) under (3.12)—(3.14) one finds

(3.15)

Now, the constraint (3.9) is quadratic in the mo-
menta. Consequently, the expression

p
p —A p

Bp
(3.16)

e(r& }=0=@(rz), (3.17)

in agreement with (3.8).
Thus we learn that general covariance manifests

itself in the Hamiltonian formalism in the appear-
ance of constraint generators which are not linear
and homogeneous in the momenta (In all case.s of
interest found so far, the constraints in question

is different from zero (it equals in this case

p —m ), and in order for the action to be invari-
ant for arbitrary values of p& at the end points (the
p's are not restricted at r&,r2) we must have

turn out to be quadratic in p.)

That quadratic constraints are the distinguishing
mark of generally covariant systems is confirmed

by observing that, for example, in Yang-Mills
theory the gauge constraints are linear functions of
the p's and therefore expression (3.16) is identically
zero in that case. As a consequence the Yang-
Mills Hamiltonian action is invariant under the
analog of (3.13) and (3.14) even when (3.17) does
not hold. A similar feature will be found below in
gravitation theory where the constraints which
generate mappings of the boundary onto itself are
linear, whereas those which generate deformations
of the boundary in a direction normal to itself turn
out to be quadratic.

C. Gauge fixation

In order to pass to quantum mechanics one must
eliminate the multiple counting of histories in-
herent in (3.13) and (3.14) by imposing an addition-
al restriction (gauge condition) on the allowed his-
tories of the system. That condition must be such
as to make it possible to deform any given history
into another one where the gauge condition holds,
by an iteration of transformations of the type
(3.13) and (3.14},subject to the boundary conditions
(3.17). If this is not possible, the gauge condition
is not a permissible one since it eliminates physi-
cally relevant modes from the system. Further-
more, the gauge must be fixed completely. That is,
if a transformation of the type (3.13) and (3.14)
subject to (3.17) preserves the gauge condition, then
it must be the identity e(r) =0 for all r.

One usually fixes the gauge by imposing addi-
tional conditions on the canonical variables of the
theory of the form

r=P(x,p) (3.18)

for all times (including end points). A condition of
this form is customarily called a canonical gauge.
However, for the gauge freedom associated with a
quadratic constraint such as (3.10) a canonical
gauge is not permissible. This is due to the fact
that, on account of (3.17), there is no gauge free-
dom available at the end points and consequently
(3.18) implies a restriction on physically relevant
modes. This is an important difference between
generally covariant systems and ordinary gauge
symmetries of the Yang-Mills type where canonical
gauges are allowed because there is full gauge free-
dom at the end points.

It is important to stress here that the impossibil-
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ity of using a canonical gauge in the case of a qua-
dratic constraint generator is not a matter of prac-
tical difficulty but an obstacle of principle.

If canonical gauges are not allowed, how should
one fix the gauge? The answer is provided by ob-
serving that an admissible gauge condition should
be such that if it is itself subject to a gauge
transformation it should yield a second-order linear
differential operator acting on e(r) and that opera-
tor should have a unique inverse subject to the two

boundary conditions (3.17). The existence of the
inverse ensures that any history can be deformed
into another obeying the gauge condition and its
uniqueness guarantees that the gauge has been
fixed completely.

Since the canonical variables x and p transform
with e undifferentiated, a condition involving only
x and p would require at least one second deriva-
tive x or p to appear. Admitting second deriva-
tives would seriously complicate the action princi-
ple as they would be effectively incorporated into
the Lagrangian when adding the gauge condition
with a Lagrange multiplier to the action. Al-
though it is conceivable that a consistent way of
dealing with such second derivatives may exist, it
is not an alternative that one would like to explore
unless forced to do so, and fortunately that is not
the case. In fact, one sees from (3.14) that the
transformation law for the Lagrange multiplier N
involves already the first derivative of e(r). Hence
a gauge condition involving the first derivative of
N as well as N, x, and p undifferentiated will do.
The simplest of all those conditions is just

X=O, (3.19)

which is the prototype of a noncanonical gauge.
Indeed, given an arbitrary history where N=N(r)

one may deform it into another satisfying (3.19) by
a transformation (3.13) and (3.14) with e(r) given

by

N =X(p,x,N),

where P is any given function.

(3.20)

D. Path integral

We will now study a path-integral expression for
the transition amplitude from xi to xq for the free
particle with action (3.11). That action has the full

gauge freedom (3.13) and (3.14) of the theory; so in
order to evaluate the path integral it is necessary to
choose a gauge condition and we shall take the
simplest one, namely (3.19). It may be shown that
the result obtained is independent of the particular
gauge condition chosen.

When writing down a path integral one has to
integrate over all the variables which are varied in
the action in order to obtain the classical equations
of motion; this is so because the classical theory is
obtained by means of a stationary phase approxi-
mation to the path integral. In the present case
these variables are x(r), p (r), and N(r) at all in-
stants of time. in the interval [ri,'r2], subject to the
end-point conditions (3.12) on x (r), while p (r) and
N(r) are not fixed at either ri or rz. However,
after fixing the gauge by (3.19), only one indepen-
dent variable of integration N—which may be
thought of as being N(r&)—is left from the infin-
itely many N(r).

If we first perform the integration over p (r) and
x (r) we obtain a functional integral of the form

'e(r) = N—(r),
an equation which possesses one and only one solu-
tion under condition (3.17) (there is no difference
in this case between infinitesimal and finite
transformations since there is only one parameter
involved).

A wide class of permissible gauge conditions
consists of those of the form

'2 dp (r)dx (r)I go[xp, x i', N, Ti, r i]=exp i (px N~o)dr— (3.21)

(&2—&i jmo
x2 8 x] (3.22)

Next, the amplitude of interest is obtained by in-
tegrating (3.21) over all possible values of N. This

where N is a fixed number. The right-hand side of
(3.21) is just the path-integral expression of the
matrix element

I

last integration over N is not a functional one but
a plain ordinary integral over one variable.

Although technically simple, the integration over
N involves two conceptually important aspects.
The first concerns the measure and the second the
range of integration.

The measure in the path integral is determined

by the requirement that the answer should be in-
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dependent of the particular gauge condition
chosen. Thus, one should require, in particular,
that the specific form of the function X in (3.20)
should be immaterial. Application to the simple
case at hand of the general theorem proven in Ref.
7 yields that the measure is simply that indicated
in (3.21) together with an integration over

T2) ——N(r2 —r)), (3.23)

=N[x,A 0]=2Np .
d~

(3.24)

Next, observe that although arbitrary the parame-
ter ~ must be a good one, i.e., it must be such that
two points on the trajectory have the same ~ only
if they coincide (this is the reason for introducing
r in the first place). This means that N must be
different from zero for all times. Furthermore, N
is assumed to be a continuous function of r. It
follows that it must be either always positive or al-

ways negative. Therefore we see that the trajec-
tories which obey (3.24) may be divided in two dis-

joint classes, those with N & 0 and those with
N &0. At this point one makes a crucial assump-
tion, namely, that the physical amplitude is ob-
tained by integrating over just one of these two

classes. Which class is actually selected is in the
last instance a matter of convention, since both
differ by an interchange of past and future. Nor-
mally one takes N & 0.

We will give below some arguments to justify in-

tegrating over one class only, but the best argu-
ment is perhaps the result obtained. So, we

proceed to write the answer which, on account of
(3.21)—(3.23), reads

instead of over N itself. The meaning of T2, given

by (3.23) will be explained below.
The analysis concerning the range of integration

proceeds as follows. Consider, to begin with, a tra-
jectory which solves the equations of motion.
Then we have, in particular,

duce the prescription

~0 +~0 l 'g (3.27)

with ri & 0. Notice that as a consequence of in-
tegrating over T2i given (3.23) rather than on N it-
self, there is no mention in the final result (3.25) of
the arbitrary end-point parameters ~~,72.

Let us now return to the reasons for restricting
the integration in (3.25) to T2~ & 0. First of all one
may argue that since the classes with N & 0 and
N &0 cannot be deformed continuously into each
other (given that N=O is excluded), the relative
weight of contributions from both classes to the
path integral remains undetermined and thus a
choice must be made. Now, in order to motivate
the choice, consider for definiteness the class with
N &0. Equation (3.24) implies in that case that

dx . 0&0 ifp &0
d~

(3.28a)

dx
&0 ifp &0, (3.28b)

so we see that the N & 0 class contains trajectories
with both orientations of x relative to r, provided
we allow for positive and negative energies. Furth-
ermore, according to the inequalities in (3.28) when
N & 0 a particle with positive energy "travels for-
ward in time" whereas one of negative energy trav-
els backward in time. Thus, from a physical point
of view, all trajectories of interest (particles and
antiparticles) are already included in that one class.
Finally, one may rephrase the above argument by
saying that restricting the integration to positive
values of T2~ amounts to inserting a factor 8(T2~)
in the right-hand side of (3.21) which converts that
equation into the usual expression for the retarded,
i.e., causal, Green s function (in the time T2~ not in
x ) ED[xi, x~', T2i] of a nonrelativistic particle with
space coordinates x ", obeying

Ep(x2&x i ) = Eo(x2&x ) ', T2i )dT2), (3.25)0 +0[x2,xls Tzi ]=0 if Tii &0 . (3.29)

with E given by (3.21) and (3.22), and which in the
free case (3.10) becoines

—llew Tzy p z~z1
3:0(xq,x~,'Tq&)=e xq e x~) .

(3.26)

Equation (3.25) is recognized as the integral rep-
resentation for the Feynman propagator. In order
to damp the oscillations for large Tz& and thus
render (3.25) well defined, it is necessary to intro-

The reader may add to the above arguments his
own favorite one for selecting the Feynman propa-
gator over other possible choices. However, it is
an important point here that by selecting the ap-
propriate integration range for Tz~ one finds the
correct propagator directly from its fundamental
definition as a path integral without ever invoking
the concept of a Green's function for the Klein-
Gordon equation (other choices for the relative
weight of the N & 0 and N & 0 classes yield other
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(3.30)=2' T21

for this reason T2i is referred to as "the proper
time. "

There is in fact a useful physical image to
describe Eq. (3.25), which is as follows. One says
that Kp is the amplitude for propagation from 1 to
2 during the proper time interval T2&. Next one

invariant functions for the Klein-Gordon equation,
not all of them Green's functions). This is of im-
portance since in the extension on general relativity
discussed below, the analog of a Green's function
in a functional configuration space is not an easy
concept to deal with, whereas the analog of equa-
tion (3.25) may be written down in a simple
manner.

Incidentally, it is of interest to notice that the
arguments based on (3.24) rely only on the half of
the classical equations of motion which is obtained

by extremizing the action with respect to the mo-

menta. Now, since the action is Gaussian in p one
will find that (3.24) will be effectively implemented
upon functional integration over p„. Therefore,
the reasoning in question holds for every trajectory
in the configuration (x") space and not just for ex-
tremal ones. Last, a word about the meaning of
T2, . The total proper time between ~z and ri for a
particle obeying equations (3.10), (3.19), and (3.24)
1s

' 2 1/2

dT =2NNi ('P2 7 i)—

adds that the proper time employed in propagation
is not observable and that one is interested in the
total amplitude to arrive at xz from xi irrespective
of how long it takes in propertime for the propaga-
tion to occur. Since in such a situation the indivi-
dual amplitudes must be added, one integrates over
all possible values of Tzi. Only positive T2i are
allowed for causality reasons ["retardation in prop-
er time, '* Eq. (3.29)]. This way of speaking will be
employed below.

H. Perturbation theory

Suppose that the particle interacts with an exter-
nal scalar (for simplicity) potential 4 (x). That is,
one adds a position-dependent contribution to the
square of the mass, thus replacing A p in (3.11) by

m=mp+ e(x) . (3.31)

One is then interested in the deviation in the
propagation amplitudes from their free value due
to the presence of +. The corresponding perturba-
tion expansion for E is then simply the familiar
one,

(3.32)

with

(3.33)

playing the role of the nonrelativistic potential V.
Thus one has

~3
K'"[3,1; Nr 3r ]i= i f —dry f dxzKp[3, 2;T32]N+(2)Kp[2, 1;T2i],

f4E' '[4, l;N, 'l4, 1i]=( i) f —dry f d~z f dx3dxzKp[4, 3;Tg3]N k(3)

(3.34a)

XKp[3 2 T32]N+(2)Kp[2 1'T2i ] (3.34b)

etc.
Now, the integrand on the right-hand side of

(3.34a) depends in a rather complicated manner on
N, r3, and r~ and not just through the product
N(rz —ri). It is therefore not possible to define an
amplitude K "'[3,1;T3i] through (3.34a). However,
after integrating (3.34a) over dN(~& ri) one does—
obtain an answer independent of r3 and ri as
should be the case. This assertion may be checked
by changing the integration variables from v2 and
N to T32 ——N(~3 —~z) and T2i ——N(r2 —ri). One
then finds that if r2 runs between r& and r3 and N
from zero to infinity, then T3z and T2i run from

I

zero to infinity; furthermore,

dT32dTii NdN de(r3 r—,—) . —

Therefore one finds

(3.35)

K"'= fK"'[3,1;N, rp, ri]dN(r3 ri)—
i f d Ts2dTz, Kp[—3,2;Tii]+(2)

XKp[2, 1;T2i], (3.36)

which yields [since 4 (2) is independent of Tiz and
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K ' "[3,1]= i—f dx2KO[3, 2]+ (2)KO[2, 1] .

Similar changes of variables lead to

K' '[4, l]=( i—) J dxzdx3KO[4, 3] k(3)KO[3,2]+(2)KO[2,1],

(3.37)

(3.38)

etc. In this way one obtains the standard perturba-
tion expansion for the propagator from the
proper-time representation (3.25).

We may obtain the perturbation theory by notic-

ing simply that

F. Extension to several particles

V= g N"4„ (3.41)

The previous discussion of perturbation theory
can be extended to systems of several particles with
spacetime coordinates x&~2, . . . ~~ each of which
interacts with an external potential. In such a case
the action reads

S= J g (p„x„N"4„—)dr,
n=1

where

(3.39)

(3.40)

Now, in order to have a theory which is invariant
under independent reparametrizations of the n

world lines, the functions A „must be first class in
Dirac's terminology, which means that the Poisson
brackets of any two 4 s must be a linear combina-
tion of the A s themselves. It is easy to see that

this iinplies that the nth + must depend only on
the coordinates of the nth particle, which means
that the particles do not couple to each other.
Therefore, the propagator for the p-particle system
is the product of one-particle propagators, each of
which has a perturbation series of the type previ-
ously described.

It is, however, instructive to rederive the results
that could be obtained by multiplying the expan-
sion of the one-particle propagators directly from
the action (3.39) as a whole. The reason for this
seemingly futile exercise is that in the case of the
gravitational field the analog of +„can depend on
coordinates other than x„(this is due to the pres-
ence of other constraints besides the A „which
close the algebra —a feature which has no analog
here) and therefore the propagator does not factor-
ize. Hence in the gravitational case one has no al-
ternative but to deal with the action as a whole.
With this in mind we will not use the fact that
depends only on x„until the very end of the dis-
cussion.

plays in this case the role of the potential (3.33).
Therfore, the first-order correction to K is obtained

by replacing N + in (3.34a) by (3.41) and letting
the various subscripts refer collectively to the coor-
dinates of all the particles. Thus, for example, dxi
means now a product over all the particles of the
spacetime volume elements associated with each
one.

The E so obtained will depend on the end-point
coordinates x~, x; of all the particles, on the lapse
functions N" of all the particles, and on ~y and r;
To obtain the physical amplitude one must in turn
integrate this K over dN'(rf 1()dN (Tf &;) '

(one factor for each particle).
Now, in the case when only one particle was

present it was possible to perform the integration
over d~, and dN(~~ —w;) by means of the change of
variables (3.35) and thus obtain an answer which
was expressed solely in terms of the physical un-

perturbed propagator Ko (Eq. 3.37). In the case of
several particles this last step cannot be taken,
namely, it is not possible to obtain an answer simi-
lar to (3.37) where K'" is expressed solely in terms
of the potentials +„and the unperturbed propaga-
tor Kp of the total system.

Technically this is due to the fact that if there
are p particles, it is necessary to perform 2p
proper-time integrations to convert the two propa-
gators Ko in (3.34a) to Ko's. There are, however,
only (p+ I) time integrals available [p from
dN (ry —r;) d¹(~y r;) and one f—rom dr, ]
Ifp= 1 this just balances, if p & 1 it does not.

Physically the reason is that the elementary pro-
cess involved is not the scattering of the p particles
as a whole but rather the scattering of each indivi-
dual particle by its own potential. To see this
more clearly let us consider the case of two parti-
cles with the coordinates x,y and lapse functions
N„P'», respectively. Then the analog of (3.34a)
reads
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'TE"'= —i f dr& f dx&dy&Kp[I, 1;N„(rf r—~),Ny{rf 'Ti)]

X [N„%'„(1)+Ny ky. (1)]Eo[ l,i;N„(ri rg—),Ny (r( —r; )] . (3.42)

Now, the free propagator Ep factorizes as a product of two single-particle propagators. Hence we can carry
out the integrations over drt, dN„(rf r;) —and dNy(rf r;)—in the first and second term in (3.42) just as in
the one-particle case [i.e., using (3.35) for each particle]. This yields

&~"'=(—i) f dyidxi f Ko[xf xl]+ (1)Eo[x1 xi]KO[yf yl Ny(+f ~1)]

XEp[y&,y;, Ny(r~ r; )]—dNy(rf r; )+—(x++y) . (3.43)

The amplitude (3.43) is the sum of two terms corresponding to mutually exclusive alternatives. In each of
these alternatives, particles x and y play an asymmetric role and adding up the contributions from both al-
ternatives restores the symmetry. If the potentials k„and ky depended on the coordinates of both parti-
cles, this is as far as one could go, and there would appear to be no concise physical image to describe each
of these processes. However, if 4 „depends only on particle x and 4 „depends only on particle y, one can
go one step further. In that case the integration over y~ can be performed on the first term in (3.43), yield-

ing

f Eo[yf yi Ny(&f &i)]Ko[—yi yi Ny(&y &i)]dye =—Eo[yf~yi~Ny(+f (3.44)

an expression which can consequently be integrated on Ny(rf r;) to yi—eld just Ep[yf,y;]. The answer then
reads

E"'=( i) f dxiE—o[xf,x, ]%„(1)Eo[x„x;]Eo[yf,y;]+(x~y), (3.45)

which is what could be obtained much more easily
from the fact that if U„=U„(x„) the full propaga-
tor factorizes.

Equation (3.45) describes the first-order ampli-
tude as a sum of two alternatives corresponding to
one of the particles being scattered once while the
other proceeds freely and vice versa. What is to be
noted here is that Eq. (3.43) as it stands contains
all this information essentially from the fact that
the sum over all particles in (3.41) makes the am-
plitude itself a sum over exclusive alternatives.
Each of these alternatives is an elementary process,
and for this reason the amplitude cannot be ex-
pressed as a function of the totak Ep but must in-
volve the one-particle Ep's (Eq. 3.45). If the po-
tentials k„could couple different x„'s (as it hap-
pens in the gravitational case), one could not even
reach stage (3 45) but (3.43) as it stands with its
Ep s would be the final expression.

IV. GRAVITATIONAL FIELD

We will discuss in what follows the development
of a formalism for the quantization of the gravita-
tional field along lines similar to those explained
above for the point particle.

The analogy between both systems will be heavi-

ly relied upon. Many technical proofs will be om-
itted in order not to make this account unduly ex-
tended while still trying to convey the essential
points as clearly as possible.

For the same reasons of simplicity it will be as-
sumed that the three-dimensional spacelike sections
of spacetime are topologically compact ("closed
space" in the language of cosmology) since in this
case the analogies with the point particle are
closest and the departures from ordinary field
theory are sharpest. The open, asymptotically flat,
case can also be dealt with in the present approach
provided due consideration is given to the role in
the action of integrals over a remote two-dimen-
sional surface. Those integrals act as generators
of Poincare transformations at spacelike infinity
and must be included because in the asymptotically
flat situation the propagation amplitude depends
not only on two three-geometries (as discussed
below) but also on the "location" of those three
geometries at infinity. This additional dependence
must be taken into account both in writing expres-
sions for the propagation amplitude and in inter-
preting them. We plan to describe the special
features of the open case elsewhere.

Couplings to matter will not be considered; their
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inclusion does not introduce conceptually new
features.

A. Classical action principle

The Hamiltonian action principle for Einstein's
equations' "is given by the statement that a func-
tional of the form

S= f (n'~g; NA —N'A—;)d~xd r (4.1)

must be extremized with respect to variations of
g,J, m'J, N, and N'.

The integral in (4.1) is extended over the region
of spacetime included between two generic space-
like surfaces r=ri, r=r2 The .g;j are the com-
ponents of the metric tensor on the three-dimen-
sional spacelike surfaces r=constant and ~'~ are
their canonically conjugate momenta. The func-
tions N and N' are Lagrange multipliers which
describe the relative position of two neighboring
spacelike surfaces.

The only restriction on the variations of the
functions involved in (4.1) is that the spatial metric
tensor g;i must be fixed up to a change of spatial
coordinates both at ~=~~ and 7 =72.

The constraints A and A; are given by

4 =(2a)Gijkin'jn"+'(2') 'g ('irR +2A),

5g j(x,r) =[g;,(x,r),H(e")],
5m'i(x, r) =[a'j(x,r),H(e")],
5N i'(x",r) =ei'(x",r)

+ f k&„i'(X,X',x")N "(x')

X @ "(x")dx'dx" .

(4.5a)

(4.5b)

(4.6)

Here H [k "] denotes a linear combination over
all points of space of the constraints (4.2) with ar-
bitrary coefficient functions e"=(e,e'):

H[e"]= f (eA +e'A;)d x, (4.7)

and the functions k are the structure coefficients
appearing in the Poisson bracket algebra6' of the
constraints P

&
=(A,P;):

[~„(x),~„(x')]= f a.„„i'(X,X',x")

1

Gijkl =
z (gikgjl+gilgjk gij gkl) ~ (4 4)

and where g, R, and V are, respectively, the deter-
minant, curvature, and covariant derivative corre-
sponding to g;J A is the cosmological constant,
and a = 8m G/c . The quantity o is the signature of
spacetime6'" '; it takes the value —1 for the hy-
perbolic case and + 1 for the Euclidean one.

The action (4.1) is invariant under a gauge,
transformation which is the generalization of (3.13)
and (3.14); It takes the form '

(4.2)
XA ~(x ")d x" . (4.8)

with

(4.3)
An example of equations (4.8)—actually, the

most interesting one—when written explicitly reads

[M(x),A (x')]=—ir[g(x)g(x')]'~2[4 '(x)+4 '(x')]5;(x,x') . (4.9)

This equation differs from the one given in Ref. 13
because the constraint P used here differs from
the 4 i used there by a factor: A =g'~ 4 i. The
present choice of weight has been preferred because
it simplifies considerably the measure for the path
integral discussed below.

The transformation (4.5) and (4.6) leaves (4.1) in-

variant provided the function e is restricted to van-

ish at the end points:

I

geneous in m''J.

Geometrically, the reason for the necessity of
(4.10) is that the action of A deforms a hypersur-
face perpendicularly to itself and therefore if e
were not zero on the boundary, the region of
spacetime over which the integral (4.1) is extended
would be changed by the transformation. This
reasoning does not apply to P; which maps each
hypersurface, and in particular the boundary, onto
itself.

E(x,r i)=t(x, tp)=0 for all x (4.10)

Equation (4.10) is the analog of (3.17); it follows
from the quadratic dependence of A given by (4.2)
on the momenta ~'J. No restriction is imposed on
the functions e' at the endpoints because the con-
straints A; given by (4.3) are linear and homo-

B. Analogy with point particle

It follows from the above discussion that (4.2)
plays in gravitation theory a role similar to that of
(3.10) [or, more precisely, (3.31) (see below)] for a
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particle. The constraint A;, on the other hand,
enters into the formalism much as the generator of
a symmetry of the Yang-Mills type would.

The analog of x" for the point particle is the
three-dimensional metric g,j up to a change of
coordinates, or in other words, the three-geometry.
This is so because in the action principle based on
(4.1) one needs to fix the three-geometry at the end
points. Therefore the basic object of interest in
quantum gravity is the amplitude %[2,1] for prop-
agation from one three-geometry to another.

In order to specify a three-geometry, one needs,
roughly speaking, three functions of three variables
(six metric coefficients g,j minus three changes of
coordinates). In the classical theory two of those
functions may be thought of as describing the two
independent degrees of freedom of the gravitational
field at a given instant of time. The third function
corresponds then to specifying intrinsically the "in-
stant of time" by giving the equation of a hyper-
surface within spacetime. In the analogy with the
relativistic particle, the first two functions corre-
spond to the three spatial coordinates x' while the
third corresponds to giving x . By giving x' and
x, i.e., x ", one therefore picks a point on the
world line without ever mentioning a particular
parametrization x (r) of the world line. This is
what is meant by the term "intrinsically" above.

Now, in the particle case, the quantum theory
was developed by keeping the four x & on the same
footing. This was not only natural since in the ac-
tion principle the four x & enter symmetrically, but
it was also compulsory in the sense that breaking
that symmetry by choosing a gauge such as x =~
was not permissible.

In the gravitational case, for the same reasons,
the quantum formalism will be developed below

dealing all the time with the three-geometry as a
whole rather than assigning a privileged role to any
conceivable splitting which would separate the two
functions necessary to describe the "independent
degrees of freedom" from the "intrinsic time. "
That the theory should be built in a manner which
is independent of any such splitting would appear
to be as important for the quantization. of the
gravitational field as maintaining Lorentz covari-
ance is for the relativistic particle of Sec. III.

Several comments are pertinent in this context.
First, it should be clear that treating the three-
geometry as a whole is a different statement from
maintaining the invariance under changes of spa-
tial coordinates. For example, one may split the
three-geometry into a conformally invariant part 5gz(x}=5k(x)gz(x) . (4.1 1)

and a local scale factor in a coordinate-independent
manner and therefore preserve the coordinate in-
variance while breaking the uniformity in the treat-
ment of the three-geometry. Second, in the parti-
cle case, one may choose to treat the timelike coor-
dinates x in a different footing from the x' in an
intermediate calculation or to fix the ideas in a
particular context, the final formulas will however
always be symmetric in the four x &. Similarly,
here one may take advantage of a particular split-
ting of the three-geometry, such as that into a con-
formal part and a local scale mentioned above
without breaking the symmetry of the theory itself.
%e shall indeed use this possibility below.

At this point a related remark is called for con-
cerning the role of general covariance in the quan-
turn theory. In the classical theory one may per-
form changes of the four spacetime coordinates
and the action remains invariant. However, in the
final equations of the quantum theory there is only
room for changes of the spatial coordinates, which
still play a role in the formalism if the three-
geometry is specified by means of the metric coef-
ficients, but there is no place for reparametriza-
tions of the time coordinate.

This is due, in the last instance, to the fact that
one can only speak meaningfully about reparamet-
rization of the time coordinate when one deals
with histories. Now, individual histories are of
course fundamental for the evaluation of the prop-
agator, but after one has summed over all of them,
there remain only their common end points as the
arguments of the propagator, and it is meaningless
to ask about invariance under reparametrization of
the time coordinate of an end point. This is not a
peculiarity of general relativity. It also makes no
sense whatsoever to demand that for a point parti-
cle the propagator K(x ~2~ ~i) should be invariant
under r-time reparametrizations r—+f(r).

The analogy with the point particle is sharpened

by a closer examination of the structure of the gen-
erator A which shows that the coefficient (4.4) of
the quadratic term in (4.2) plays the role of a six-
dimensional (contravariant in spite of the position
of the indices) metric. It can be shown' that this
metric has signature ( —,+,+,+, +, + ). (Actu-

ally, our "supermetric" differs from the one used
in Ref. 14 by a factor g' . This improves its
properties making it, for example, geodesically
complete. }A typical "timelike" displacement is
given by a local change of scale,
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Indeed one has for the inverse G'l of (4.4)

Gijkl (gilgkj+gijgjl 2gijgkl)

so that one has for the displacement of (4.11}

G'ikl5gV5gkl = 6—(5A)2,(0.

(4.12)

(4.13)

1/3
g'ij =g g'ij (4.14)

where the conformal metric g,j has a determinant
equal to unity. Then the change (4.11) leaves g;l
unchanged while changing g' by

5(g 1/3
) g 1/35'

so that

5(lng'/ }=5k, .

(4.15}

(4.16}

Thus a natural "timelike variable, " i.e., the ana-

log of x in the particle case is

X (x}=lug'/3 . (4.17)

This choice is confirmed by observing that the fol-
lowing Poisson bracket relation holds:

We see from (4.11) and (4.13) that the local
volume plays the role of the coordinate x for a
point particle while the conformally invariant
three-geometry may then be taken as the analog of
the x . This definition may be made more explicit

by splitting the metric in the form

and backward in time.
It is worthwhile remarking at this point that in

electrodynamics the annihilation (or creation) of an
electron-positron pair can occur only quantum
mechanically. Here, however, the universe can be
scattered backward in time even classically. This
difference, which is of course of immense physical
importance, is however not a fundamental one
from the point of view of the formal structure of
the theory It. follows from a different coupling to
the external potential in both cases. One may
indeed invent examples' where pair creation oc-
curs also classically in particle theory.

As a final comment, we should point out that
for a classical history there will in general be more
than one three-dimensional section where X (x)
takes a given value. In fact, more generally, one
will find a given three-geometry to repeat itself one
or more times within a four-dimensional space-
time. The possibility of such a multiple occurrence
has been used as an argument against building the
intrinsic time from the three-geometry. ' However,
in the present formulation where trajectories are al-
lowed to go backward as well as forward in intrin-
sic time, this causes no problems, just as the possi-
ble repetition of a given x for a particular world-
line causes no problem in relativistic particle
theory.

[X (x),n (x') ]=1, (4.18) C. Gauge fixation

where

17(x)=gijgkl1T vr (4.19)

plays in (4.2) the role that p plays in (3.1).
From the preceding discussion one sees that an

expanding universe corresponds to a particle travel-

ing forward in time while a contracting one is the
analog of a particle traveling backward in time.

One may take the analogy further and picture
the dynamics of the universe as a scattering in con-
figuration space. Therefore an initially expanding
universe may be scattered "forward in time, " i.e.,
continue its expansion, or may be scattered "back-
ward in time, " i.e., recontract. This idea is the
basis for the perturbation theory considered below.

Now, in quantum electrodynamics one reinter-
prets physically a particle going back in time as an
antiparticle, and the scattering described above cor-
responds to the annihilation of an electron-positron
pair. In the present context that reinterpretation is
not necessary and it appears to be more natural to
stick to the view of a system able to travel forward

The propagation amplitude E(2,1) from three-

geometry 1 to three-geometry 2 is to be obtained

by summing the exponential of i times the action
(4.1) with the three-geometry fixed at both end
points. In order to do so, it is necessary to impose
a gauge condition that eliminates the freedom (4.5)
and (4.6). Just as for the point particle, it is not
permissible to do so by a canonical condition of
the form, say, ~=f [gii, n l] since such a relation
would not reduce to the identity on the boundary
~=xi or r2, and would therefore conflict with
[4.10].

The simplest permissible gauge fixation appears
to be that given by

N=O, (4.20a)

W'=0, (4.20b)

where N =dN(x, w) /Br. Equations (4.20) will be
referred to as the proper-time gauge. They elim-
inate the freedom (4.5) and (4.6) except for time-
independent changes of the spatial coordinates, i.e.,
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(4.5) and (4.6) with @=0,e'=0 .That residual in-
variance may be eliminated at a later stage by im-

posing, for example, a canonical gauge condition
at, say, the initial time ~~.

Geometrically, (4.20b) says that the line which
joins two points with the same spatial coordinates
lying on two neighboring surfaces is normal to the
first surface. Equation (4.20a) on the other hand
states that for a fixed value of the spatial coordi-
nates, the ratio of the normal distance between two
neighboring surfaces to the local volume of the
first surface does not depend on the location of the

first surface.
It is important to realize that (4.20a) does not re-

strict the dependence of N on the spatial coordi-
nates; this is essential for the compatibility of
(4.20a) and (4.10).

D. Path integral

Straightforward generalization of the procedure
followed for the point particle would suggest set-
ting E=O=N' in the action and to write simply

~(x)=~
&[g;,(2),g;, (I)]=I„.. . &[2,1;N( )( — )]Pd[N( )( — )] (4.21)

for the gravitational field propagator in the metric representation, where

dgj(x, r)dry'J(x, r)
+[2 1 N(r2 rl)l= I exp[iS] ff 2m

(4.22)

In the integral (4.21) one would sum over all
positive-definite g,j which have fixed values g,z(2),
gz(1) at ri and ri and over all n" . [We ignore for
the moment the neccessity of introducing extra
gauge conditions at r, in order to fully fix the spa-
tial coordinates. It is quite all right to do so since
those conditions only restrict the variables at the
end points and do not interfere with the integra-
tions in (4.21) and (4.22).]

Equations (4.21) and (4.22) are however not
correct as they stand, the reason being that if one
would select a different set of gauge conditions and
then follow the same naive procedure of inserting
them in the action thereby summing afterwards
directly over the variables which remain free, one
would obtain a different answer for the propagator.
This problem stems from the non-Abelian nature
(4.8) of the composition of surface deformations
whose generators are the constraints (4.2) and (4.3)
and does not arise for the point particle where the
composition is commutative.

It turns out that in order to obtain an expression
for the propagator which treats all permissible
gauge conditions on the same footing one must use
instead of the action (4.1) a modified effective ac-
tion which involves two extra real anticommuting
scalar "ghost" fields C, C and their conjugate mo-
ment P,P.

To avoid being led astray from the main line of
reasoning, we will omit the procedure for obtaining
the necessary modification of the action. It is an

application of the general procedure given in Ref.
7, which in turn generalizes the work reported in
Ref. 17. The final result is that in the gauge
N =0, N'=0 the effective action takes the remark-

ably simple form

~2

Seff —J (gtj' ir J+iCP+iCP —NA )d x dt

(4.23)

where

~ff ~+~host

with

~" '=i [(2a)PP+(2a)'trgg'JC;C 'J] .

(4.24)

Equations (4.23) and (4.24) show that the neces-
sary introduction of the ghost scalar fermions does
not alter the essential features of the action. It
merely results in the addition to the Hamiltonian
of a piece describing a minimal coupling [g;J enters
(4.24) undifferentiated] of the massless ghost fields
to the gravitational fields. Furthermore the extra
piece has the same form of the original Hamiltoni-
an; namely it consists of the sum of two contribu-
tions: a local term quadratic in the momenta and
a "potential" where spatial derivatives appear. The
potential part drops out in the limit of zero signa-
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ture cr +—0, a feature that will be essential for the
feasibility of the perturbation theory discussed in
the next section. Other remarkable properties of
the ghost Hamiltonian, such as the fact that its ad-

dition preserves the surface deformation algebra
will not be discussed here.

In terms of the effective action the correct ver-
sion of (4.22} reads

dgld/AC dP dC dP
K[2,1;N(x)(rz —ri)]= f exp[iS, r] g

2m
(4.25)

where

C(ri) =C(ri) =0,
C(rz}=C(rz) =0,

and, in the metric representation,

(4.26}

(4.27)

The gravitational momenta and the ghost mo-
menta are summed over without restrictions at the
end points.

On account of conditions (4.26) the ghost fields

do not affect the classical equations of motion,
since extremization of Scff under (4.26) makes the
ghosts vanish for all times and hence gives back
the classical Einstein equations. However, for
nonextremal trajectories the contribution of the
host fields is nonzero and corresponds to introduc-
ing a nontrivial integration measure for g,&,

n'& in
(4.22).

Writing the correct version (4.25} of (4.22) in
terms of the ghost fields requires also a slight
modification of (4.21). In fact the propagator is
obtained by integration over N with a logarithmic
measure:

N(x) = co

K[; (2},g;;(1)]=f, ,
K[2, 1,&( — )]g d [l~( )( — }] (4.28)

In the Abelian limit (cr=0) one may carry on ex-
plicitly the integration over the fermionic variables.
That operation results in a factor N(rz —ri) for
each space point which cancels the N ' in (4.28)
and restores the trivial measure dN(x)(rz —ri), just
as in the particle case.

Equations (4.25) and (4.28) are the central result
of this section. They provide an (formal) expres-
sion for the Feynman propagator of the gravita-
tional field as a whole which does not rely on
splitting off a background or a semiclassical ap-
proximation. The condition which selects the
Feynman propagator is the restriction to integra-
tion over positive values of X(x), or what is
equivalent, the proper time retardation condition:

I

with q constant, (4.24) can be described as result-
ing from the addition of a small negative ima-
ginary part to the cosmological constant.

C. The signature as a perturbation parameter

As discussed in the introduction, the need for a
- perturbation scheme appears to be not only a prac-

tical necessity but also a part of the actual defini-
tion of a quantum field theory

A particular kind of perturbation theory sug-
gests itself within the approach treated in this arti-
cle. It corresponds to treating the signature cr as a
perturbation parameter.

According to this idea one writes

K[»1;&«z rl}1=0 for &(~z ri}«.

In order to ensure convergence of the proper-
time integral (4.28) at the upper end, one must also
incorporate the (unique) prescription

with

=P p++

A 0 (2a)(G&1 l——n'le" +iPP)+(2a) 'gA,

(4.31}

(4.32)

A r(x)~A (x) i'(x), — (4.30)

where i}(x) is an infinitesimal positive-definite
scalar density of weight two If we wri. te il(x) =i}g

and

+ =erg(2z) '( —R+ig'lC;C J) . (4.33)

Here P 0 plays a role analogous to that of (3.10)
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whereas + appears as an "external potential" in
configuration space. The splitting is mathemati-
cally remarkable in that P 0 obeys a closed and,
moreover, Abelian [Eq. (4.9) with o =0] set of
commutation rules and on these grounds is quite
unique. In fact, dropping A from (4.31), a possi-
bility first contemplated in Ref. 18, amounts to
setting o =0 which inakes the right side of (4.9)
vanish identically.

The field histories of the 0 =0 theory possess a
geometrical structure which lies halfway between
Euclidean and Lorentzian curved spacetimes.
Since its Hamiltonian generators obey a closed
algebra, the theory is generally covariant (i.e., it in-
volves four arbitrary functions of x and v in the
solution of the equations of motion). A Lagrang-
ian formulation in which this four-dimensional in-
variance is manifest may be written in terms of a
metric tensor density with zero determinant and a
conformal factor. '

One may also view the o =0 theory as a limiting
case of general relativity in which the local light
cones become narrower and narrower and eventual-

ly collapse to a line. From a group-theoretical
point of view this limit corresponds to replacing
the Lorentz group as a symmetry group of the
tangent spaces by one of its contractions. That
contraction is the opposite of the Galilean
("c—+ ao"), that is, it corresponds to letting c~0
and has been called the "Carroll group". (' "A
slow sort of country, " said the Queen, "Now, here,
you see, it takes all the running you can do to stay
in the same place" '. ')

Physically this state of affairs would not seem
too unreasonable. In fact, it says that in the ab-
sence of interaction the light cones are closed and
therefore there is no propagation, which implies
that the different points of space are mutually
disconnected. (This may also be seen by noticing
that setting 0.=0 eliminates spatial derivatives
from A .) When the interaction is switched on
(o~), the light cones begin to open and physics
as we usually understand it starts to take place.
Thus, in this view propagation and interaction are
two concepts inextricably hnked to each other.

Now, the decoupling of different space points is
precisely what happens in the early stages of
cosmological evolution. In fact, one may show
that already at the classical level the o =0 Hamil-
tonian describes approximately the behavior of the

I

universe near the cosmological singularity.
Hence the region of configuration space where
three-space collapses plays the role of an asymptot-
ic domain where the free theory (0 =0) takes over.
This conclusion fits particularly well with the iden-
tification of X given by (4.17) as a time variable,
since that function approaches negative infinity
near the singularity g =0.

The fact that the cosmological singularity corre-
sponds to the "in" region in configuration space
means that what comes out of the singularity must
be prescribed as an initial condition and cannot be
predicted by the theory. This state of affairs is in

agreement with what one finds in the classical
theory where a singularity is also something
unpredictable. What is different, however, in the
quantum case, is that the equations appear to be
quite smooth ("free") in that limit. The role of the
singularity as an "in" region for scattering has
been previously discussed in the context of simpli-
fied cosmological models.

Statements analogous to the previous ones for
large volumes (X ~+ ao ) are much less clear even

at the qualitative level, and it is not known wheth-

er a simple Hamiltonian may reproduce the actual
behavior of the theory in that limit. It may be
necessary to introduce an ad hoc cutoff for lar'ge

volumes so that the theory will behave freely in

that region also (i.e., as if cr were zero). This could
be a useful procedure even if the actual situation
turns out to be that the "potential" becomes totally
reflective in that limit, i.e., if all trajectories bent
backward "in time. " In that case as the cutoff
went to infinity the barrier would become more
and more reflective. This note is intended only as
speculative at this point, since not enough work
has been done on how to introduce such a cutoff
into the theory.

F. Perturbation theory

The perturbation theory in the signature 0. may
be simply implemented in terms of the path in-

tegral for the propagator given by (4.28).
The analysis follows closely that of Sec. III F for

a system of point particles. Here we take as the
free, unperturbed propagator the one with signa-
ture zero, namely that obtained by setting o =0 in
(4.21)—(4.30), and write

I

exp[iS,rr(o)]=exp[iS, rr(o =0)]exp
~

i J N(x) k—(x)d x dv.
P]

(4.34)
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(4.35)

with 'k given by (4.33).
In order to obtain X[2,1;N (r2 —r& )] we have to

integrate (4.34) over coordinates and momenta, as
indicated in (4.25}. Now, the dependence on the
momenta is all included in the first exponential
factor in (4.34), and after the integrations over
rr'J, P,P are performed, the problem takes the
standard form discussed, for example, in Ref. 8.
There one deals with a free propagator whose ac-
tion is quadratic in the velocities perturbed by a
potential V(q} which is given in our case by

V[q;N]= f N(x)+(x)d x,

E=KO+K1+E2+ - . - (4.36)

with the standard expressions

where q is shorthand for g,7, C, and C at all space
points x. At this stage N(x} is regarded as a fixed
parameter in the problem.

Having made this observation we can write im-
mediately the perturbation expansion of (4.25). If
we call Ep[2, 1;N(r2 —r~)] the result of the integra-
tions in (4.25) with o =0, we have an expansion in
powers of a of the form

73

K)[3,1;N, r3, r)] = i f dr2 f—Dq2Ep[3, 2;N(r3 —r2)] V(q2)Ep[2, 1;N(72 —7&)],
TJ

(4.37)

&)[4 I~N)&4~&i]=( —&}'f d&3 f d&2 fDq3Dq2J:p[4)»N«~ &3}]V—(q3)7 ~l

XEp[3,2;N(r3 12)]

X V(q, )Ep [2, 1;N (r2 —r) )], (4.38)

etc.
It is important to emphasize that although the ghost fields vanish at the initial and final states they must

be included when summing over intermediate states in (4.37) and (4.38). Therefore, in (4.37) we set C(1),
C(1), C(3), and C(3) equal to zero but integrate over C(2) and C(2). Thus the volume element Dq2 is
shorthand for

dg J(x,2)dC(x, 2)dC(x, 2)
Dq2 ——

a11 space

points x
g+J

(4.39)

Similarly, for (4.38) and the higher-order terms. Finally, the physical propagator is obtained to each order
by integrating separately the various terms in the expansion (4.37), (4.38), etc., over N(x) with the loga-
rithmic measure (4.28). This completes the formal discussion of the perturbation expansion.

The picture which emerges from the perturbation theory is the following. In the absence of interaction
(0 =0) the light cone is closed and different space points evolve uncoupled. Accordingly, the free propaga-
tor factorizes as

J: [2,1;N( g
—))]=g&o(x)[q ( ),q ( );N( )( — )] . (4.40)

Furthermore, at any given point the ghosts fields and the metric are decoupled when o.=o. Therefore, at
each point we have

&p(x)[qq(x), q~(x);N(x)(1p —1 ~)]=ECp Ep'

Here it is a simple matter to write Ep "' in closed form. A short calculation yields

SC,'"-'[C„C„C„C„N(r, r, )]= gN(x)(r—,—r, )

(4.41)

Xexp f [N(r2 rl)] '(C2 —C&)(C2 —C~)d x (4.42}
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However, a closed expression for Eo""' is not
known at the moment of this writing. (Note added
in proof. Such an expression has been found in
Ref. 24.)

When the interaction is switched on (o+0), the
light cone begins to open and neighboring space
points couple through the potential 'k(x) which
contains first derivatives of the ghosts and up to
second derivatives of the metric.

Now we may imagine inserting expression (4.35)
for V(q) into the first-order perturbation (4.37).
That amplitude becomes then an integral over all
space which is analogous to the sum over all parti-
cles (Eq. (3.41) of Sec. 3 F. This means that the
first-order transition amplitude is in itself a sum of
infinitely many mutually exclusive alternatives.
Each of those alternatives corresponds to selecting
a point x and letting the points in its neighborhood
be scattered by each other under the influence of
the interaction potential +(x), while the points
outside that neighborhood proceed freely, i.e., as if
the local light cone were closed.

Similarly, the second-order transition amplitude
which becomes a double integral over all space
points upon insertion of (4.35) into (4.38) may be
thought of as a sum of mutually exclusive alterna-
tives. Each alternative corresponds to coupling
among themselves the points within two different
neighborhoods through the potential 4', while let-

ting all other pairs of neighborhoods evolve freely.

F. External lines and loops

Although the propagation amplitude E(2,1) is
the basic element of the quantum theory, it does
not have directly the meaning of a probability am-

plitude. In order to obtain probability amplitudes
it is necessary to fold the propagator onto wave
functionals which represent states.

Here we shall give a short account of how this is
done. The basic strategy is again to deal with the
intermediate amplitude K given by (4.25) and per-
form the proper-time integration [i.e., that over
d lnN(x)] at the very end.

Thus, one represents the state at the initial time
r by a functional %(q) which is then propagated to
the final ~ by means of E. The resulting expres-
sion is then folded onto a final state functional
4(q), which yields an expression which still de-
pends upon N(x) and the initial and final r's. One
then integrates over N(x) and the dependence on
the end-point Ys drops out automatically.

If this process is followed for the relativistic par-
ticle of Sec. III one recovers directly from the

proper-time approach the standard formulas of
positron theory.

In the case of positron theory, there are two
physically important choices for the initial and fi-
nal states %,4. They correspond either to the situ-
ation in which the particle is free for large times or
to that for which the particle starts at a spacetime
point which is not at infinity and ends at the same
point.

In the first situation the states 4[x&] and 4[x"]
are solutions of the free wave equation A 0+=0,
that is, of the Klein-Gordon equation. Such a
state is represented by an external line in a Feyn-
man diagram. In the second situation both states
are taken to be of the form g(x"}=5(x—y). In a
Feynman diagram such states are represented sim-

ply by a point (at y) and the whole process is pic-
tured as a loop that starts and ends at y.

Both situations have direct analogs in the gravi-
tational case which we discuss cursorily now.

~""0[g;1]=0 . (4.43a)

Here ~""is the expression obtained by drop-

ping the ghost part of the generator (4.32). The
reason for omitting the ghost contributions in the
operator appearing in (4.43a) is that the ghosts
must be equal to zero at the end points in the path
integral, so the dependence on those fields in the
state is of the form 5[C]5[C]=CC, rather than
through a solution of iPPQ=O

We will not be concerned here with the problem
of defining properly the operator 4 o in (4.43a).
The factor ordering in that operator is nontrivial
because the metric G;tkt given by (4.12) is not flat.
As a consequence the measure in (4.39) below may .

acquire some g,j factors when defined properly.
(See Ref. 24 for more on this. ) This issue is also in-

timately connected with the need for integrating
over positive-definite geometries only. A similar
problem occurs if one uses spherical coordinates
instead of Cartesian ones when describing the
quantum mechanics of a point particle. However,
the general features discussed in this report do not
depend on this ordering problem.

To (4.45} one must add the condition

A;V(g,q ) =0 (4.43b)

with 4; given by (4.3). Equation (4.43b) is the

G. Real universes (external lines)

By analogy with the particle case, we associate
with a universe which emerges from the cosmolog-
ical singularity a solution of the o.=O equations,
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(4.44)

where it is understood that Ci ——Ci ——0. Next we
recall that when 0.=0 the metric and the ghosts
decouple so that the propagator factorizes. Thus,
if we imagine inserting (4A1) into (4.44), the ghost
part of the propagator comes out of the integral
whereas on account of (4A3b) the effect of Eo ""'
upon integration in g J(1) is simply to reproduce lP

with argument g,j(2). Therefore, the expression
(4.44) reduces to

%(2)=% [g&(2)]KO [C2,C2,0,0;N(r2 —ri)],
4.45( )

with Eos '
given by (4.42).

The presence of the fermionic factor in (4.45) is
a reflection of the fact that ghosts appear in inter-
mediate times (r2 in this case) even though they are
absent at the initial and final times. It is in terms
of the functionals (4.45) that the transition ele-

ments are most simply written and we shall adopt
them, rather than %[g,z] as the basic description of
an "external-line state. "

To complete the transition element we multiply

(4.44) from the left by 4&*[gJ.(3)] and integrate
over g,J(3). The same analysis leading to (4.4S)
shows then that the first-order effect on the transi-

tion amplitude to go from 4' to 4 is obtained by
integrating the familiar-looking expression

T3

( i) J 4~(2)—V(2)%(2)de (4.46)

over q2 (which includes the metric and the ghosts)
and also over all positive values of the lapse N(x)
according to (4.37) and (4.28).

The integration of (4.46) over g J(x), C(x), C(x),

statement that the functional '0 depends only on
the three-geometry and not on the particular sys-
tem of coordinates chosen to write the metric ten-
sor g;j. This equation must be imposed because it
is the three-geometry rather than g,j which is fixed
at the end points in the path integral.

In order to derive a perturbation expression for
the transition element from a state + to a state 4,
both obeying (4.43a) and (4.43b) we first multiply
{4.37) from the right by a lp[gij(1)] and integrate
over dg J(1) at all points of space. This yields the
integral

Ko 2~1~% 72 —+& + g'ij 1 dgij

and N (x) cannot however be performed with that
expression as it stands. In fact (4.46) when regard-
ed as a functional of these variables is invariant
under reparametrizations of the spatial coordinates
x provided g,j is changed as a covariant tensor, C
and C as scalars, and 1V as a density of weight
minus one. Indeed, the ghost part of (4.46) may be
seen to be invariant by inspection [the infinite
product in (4.42) may be included in the measure
over X without destroying its formal reparametri-
zation invariance], whereas the metric part is in-
variant by assumption (Eq. 4.42). The potential V
given by (4.35) is also evidently reparametrization
invariant.

Since (4.46) is reparametrization invariant, one
must integrate over classes rather than over indivi-

dual field configurations much in the same way as
was done for the propagator in the first place, with
the difference that one is concerned here with
changes of the spatial coordinates at a fixed time
only.

In order to integrate over classes one must im-

pose a set of coordinate conditions,

X;(x)[g,j,C,C,N] =0,
and include in (4A6) a factor'

5[X]b[X] .

(4.47)

(4.48)

Here 5[X] represents a product of Dirac 5 func-
tions with argument (4.47) over all points x and in-
dices i, and b [X] denotes the functional deter-
minant of the matrix 5X;(x)/g' (x'), which yields
the change

5X;(x)
5X;(x)= J k, g"(x')

5( (x')
(4.49)

induced by an infinitesimal reparametrization by
the vector fleld g' on the coordinate conditions
(4A7).

The need for imposing (4.47) is a consequence of
the fact that the gauge is not fully fixed by the
conditions X=O, N'=0. As was previously ex-
plained these conditions still leave the freedom of
performing time-independent changes of the spatial
coordinates. That freedom may be eliminated by
imposing coordinate conditions at any fixed time
which is precisely what is accomplished by (4.48).

Thus we may finally write the first-order effect
on the transition amplitude as

i r J e—*(2)V{2)e(2)5[X(2)]5[X(2)]dr2Dq (2)D[lnN],
Tl

(4.50)
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where

D[lnN]= gd[lnN] . (4.51)

Similarly we obtain for the second-order contribution

( —i)z I 4~(3)V(3)KO[3,2]V(2)iP(2)dr3Dq(3)drzDq(2)5[X(2)]b [X(2)]D[lnN] . (4.52)

The pattern for higher-order terms is clear. It
should be noted that only one coordinate fixation
factor 5[X]3k[X] is needed for every order in 0.
The reason is that the integrand is invariant under

only one reparametrization, common to all fields
involved. Thus if the integral involves two
separate fields g& (2) and gz(1), say, one can in-

tegrate directly in g;z(2) provided g;j(1) is held

fixed. The very fact of keeping gij(1) fixed breaks

the gauge invariance at that level. However, when

performing the last integration there will be no
"external" field left and it is necessary to fix the

gauge by means of X. Another way of seeing this
is noticing that the different vertices in the pertur-

bation expansion correspond to scatterings taking

place at different times, and one is allowed to im-

pose the coordinate conditions (4.47} at only one

(arbitrarily chosen) time. That time was conven-

tionally chosen in (4.52) to be rz but it could have

been taken equally well to be v3.
We shall not be concerned in this paper, which

deals only with the general formalism, with specif-
ic choices for the gauge conditions X;. There is
however one relevant comment we wish to make.
After the factors 5[X]6[X]are included in the
measure in (4.50), (4.52},etc., one is effectively in-

tegrating over all possible three-dimensional

geometries (we include in this terminology the
ghosts C,C). Thus one would expect that if a pro-
cedure which avoided the introduction of spatial
coordinates altogether could be devised (such as the
use of Regge calculus on three-space) those equa-

tions would remain essentially valid, but with the
complicated measure 5[X]b,[X]Dq replaced by an

expression depending only on the invariant quanti-
ties involved in such a coordinate-free description.
We hope to return to this question in the future,

I

I

since it would appear that only in that way [(i.e.,
by dropping the spatial coordinates in (4.50) and
(4.52)] can one attempt to deal satisfactorily with
changes of topology and other related issues. For
this reason we cannot help but feel that (4.50),
(4.52}, etc., with their need for (4.47), should be
taken only as a provisional representation for the
transition elements. These same comments apply
to the loop amplitudes discussed below.

H. Virtual universes (loops)

The previous section dealt with states describing
a universe emerging from a cosmological singulari-
ty [solutions of the 0 =0 equations (4.43a)] which
then proceed to be scattered by the potential (4.35)
as the light cone begins to open (o+0). Those
states will eventually go back to the cosmological
singularity or proceed indefinitely to larger and
larger volumes.

There are, however, other processes which are in
principle conceivable in the present framework.
Those processes are the analog of closed loops in
positron theory. Thus one may conceive a three-
dimensional space starting from a state of perfectly
regular g,z (and zero ghost field} being scattered by
the potential V and coming back to the original
regular geometry. The amplitude for those pro-
cesses is obtained just by replacing the functional

%[g~j(1)],satisfying (4.43a) used in (4.44) by
another of the form 5[grj(1)—gj]. Similarly,
4~[gj(3)] is to be replaced by 5[gj(3) gz]—
Therefore, to a first approximation the effect of
the potential V on the amplitude for the universe
to describe a loop starting and ending at g,j is,
from (4.38),

( i) I So[4,3—]V(3)IDIO[3,2]V(2)ED[2, 1]Dq(2)driDq(3)driD[lnN], (4.53)

where

gij( )=gij(l)=gij ~

C(4)=C(4)=C(1)=C(1)=0 .

(4.54)

(4.55)

I

Now, in order to find the total amplitude for all
possible values of gj we have to integrate (4.53)
over all possible values of the initial configuration

g,j and divide by two since the loop may be taken
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as starting either at gz(4) or gtz(1). In order to
perform this final integration we must introduce a
coordinate fixation factor, so the final integration
includes a measure

&[X(gJ)]&[X(gj)]gdgt, .(x) . (4.56)

As for other cases, after performing all the integra-
tions ri and r4 should drop out from the problem
so that the answer is expressed only in terms of the
Planck length and any cutoff which may eventual-

ly be introduced.
The processes in which the universe describes a

closed loop offer interesting grounds for specula-
tion and are among the most unconventional
features which appear in the present approach to
quantum gravity. They are in the last instance a
consequence of the quadratic nature of the Hamil-
tonian constraint in all momenta and cannot there-
fore even be conceived of in ordinary field theory.

One may, however, take the view that only "real
processes" are of interest in nature, i.e., those
which correspond to states emerging from the
cosmological singularity. That view may con-
sistently be maintained only if there are no interac-
tions between the loops and the real processes or if
those interactions can consistently be ignored.

Now, the kind of interaction that we are talking
about could be described by means of a diagram
where a universe splits into two and one of the
branches merges subsequently with a loop. Three
possibilities are then open: (1) the splitting of a
universe into two is not at all possible; (2) the spht-
ting is possible but requires the introduction of a
new propagator with one or more new coupling
constants for the vertex in the splitting; (3} the

splitting is possible and the vertex is completely
determined by the structure of the theory itself.

Of these three possibilities the presumption is
strong that (1) is not the correct one; in fact, there
seems to be not only the place, but also need for
splittings to occur —for example, to account for
the final state in the black-hole evaporation pro-
cess.27 It is however not clear at the moment of
writing whether one should believe in (2) or (3).

Clearly (3) is theoretically more attractive, but
on the other hand analogy with the decay of point
particles would suggest that the decay of three-
dimensional space as a whole may occur through
more than one fundamental process.

In any case the propagation studied in this paper
would only be valid for the propagation between

splittings (i.e., it would be the analog of the free
propagator in particle theory}, so that if splittings
are compulsory one could not attempt to build a
unitary theory based on it. It appears therefore
more urgent to obtain more insight into the split-
ting question than to attempt discussing unitarity.
We hope to return to this issue in the future.
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