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We calculate neutrino mean free paths from neutrino-neutron scattering in neutron
matter. We formulate the problem such that the correlation effects of the neutron system
can be taken into account in terms of Landau parameters. It is shown that the neutrinos
are scattered not only by single-pair excitations (in the density and spin-density channels)
but also by the collective mode of the system (spin-zero sound). We find that for degen-
erate neutrinos the effects of nucleon-nucleon interactions reduce the neutrino scattering
rate by a factor 2—3, where the contribution from the collective mode is negligible be-
cause its temperature dependence is different from that of the single-pair excitations.

I. INTRODUCTION

Neutrino processes in dense matter play an im-

portant role in the later stages of stellar evolution.
In this paper we consider neutrino scattering pro-
cesses in neutron matter. Interaction effects are
large in neutron matter, which is a strongly in-

teracting quantum system, and it is therefore im-

portant to determine how the neutron-neutron in-

teraction affects neutrino scattering rates. The
most convenient way of discussing the problem is
to consider scattering from fluctuations in the sys-

tem, as one does when studying scattering of parti-
cles and radiation from condensed matter in the
laboratory. The scattering of neutrinos by density
fluctuations in neutron-star matter was first dis-
cussed by Sawyer, ' who estimated the neutrino
mean free path. He used a thermodynamic rela-
tion to express the static density fluctuation spec-
trum in the long-wavelength limit in terms of the
compressibility, which in turn he obtained from
the equation of state derived from the Reid
nucleon-nucleon potential. His treatment was stat-
ic; no dynamic properties were incorporated. In
addition, only the vector part of the weak neutral
current, which couples to density fluctuations, was
taken into account and the axial-vector part, which
couples to spin-density fluctuations, was neglected.

Quantum liquids have other elementary excita-
tions in addition to the single-pair excitations
which exist in noninteracting systems. Among
these are collective modes (such as phonons) and
multipair excitations. Sutherland and Flowers

considered scattering of neutrinos by phonons in
neutron-star matter. They treated only density
fluctuations and assumed that the collective mode
exhausts the f-sum rule. Their conclusion was
that scattering of neutrinos by phonons could have
a significant effect on the mean free path.

The purpose of this paper is to treat the problem
in a consistent fashion: we incorporate the
nucleon-nucleon interaction effects within the
framework of Landau-Fermi liquid theory. Using
the Landau parameters calculated for pure neutron
matter, we consider the scattering of neutrinos by
both density and spin-density fluctuations. This
formalism enables us to treat both single-pair exci-
tations and collective modes on an equal footing.
Compared with a noninteracting neutron gas, we
find the following major differences. (I) The
scattering by single-pair excitations is modified. In
particular, the Gamow-Teller transitions (the axial-
vector ones) are suppressed appreciably due to the
large value of the Landau parameter Fo ( -0.97 at
p=po, where pp=2. 8&(10 g cm is nuclear
matter density). (2) A collective mode (spin-zero
sound) appears, and gives a contribution to the
neutrino mean free path which has a qualitatively
different temperature dependence compared with
the contribution from single-pair excitations. At
nuclear matter density zero sound involving densi-

ty fluctuations is not expected to exist in neutron
matter, since Fo is not sufficiently repulsive. (It is
estimated that zero sound begins to appear only at
densities above -2.3po. ' )

The organization of the paper is as follows. In
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II. SCATTERING RATE

In this section we calculate the rate of neutrino-

neutron scattering in terms of the dynamic form
factors of the neutron system.

Neutrinos scatter from neutrons via the weak
neutral current. According to the Weinberg-Salam
model, the interaction Lagrangian density, in the
low-momentum-transfer region, has the form

~t(x) = l„(x)j,"(x),P (2.1)

where the weak coupling constant is

Sec. II, the probability of neutrino-neutron scatter-
ing is expressed in terms of dynamic form factors.
In Sec. III, we calculate the linear response func-
tions by solving the quantum kinetic equation, and
derive expressions for the dynamic form factors for
density and spin-density fluctuations. We then dis-
cuss kinematics in Sec. IV, and neutrino mean free
paths are calculated for both degenerate and non-
degenerate neutrinos in Sec. V. A summary of the
results and discussions are given in Sec. VI.

G = 1.4358 &(10 erg cm,

ip(» =P.rp(1 —rs) W.

is the lepton weak neutral current, and

j,"( )= , 4-.r "(I c—r W.

(2.2)

(2.3)

is the third component of the isospin current with

Cz -1.25. Since the neutrons are nonrelativistic
in neutron matter we may use the approximation

0.r (1 C~rs—)4. f.4.&o

(2.4)

The first term on the right-hand side of Eq. (2.4}
represents a density fluctuation and the second
term a spin-density fluctuation. We denote the ini-

tial and the final four-momenta of the neutrino by
q"=(q, q) and q"'=(q ', q '), and the four-
momentum transfer by k"=(co,k)
= (q —q ', q —q '). The rate at which a neutrino
is scattered by a system of neutrons is calculated
from Eqs. (2.1)—(2.4) by using Fermi's golden rule,
and taking a statistical average over initial neutron
states and summing over final neutron states:

2

[(1+cos8)S(k,co)+Cz [(1 cos8)5J +q—,
"
qj+q;qj' ] P',z(k, co)+iC& e Jk(qk —qk }A'J(k,co}] .

4V

(2.5)

Here n is the neutron number density, cos8=q q, and efJk is the antisymmetric tensor of rank three. The
dynamic form factors are defined as

S(k,co) = f dt e'"'(p(k, t)p( —k, 0) ) (2.6)

for density fluctuations, and

P'cj(k, co}= J dte'"'(o;(k, t)crj( —k, O)) (2.7}

for spin-density fluctuations with symmetric and antisymmetric components,

(2.8)P',q"'(k, co) = —,[5,J(k,co)+( —)5 p(k, co)],
~ ~

where p(k, co) and o;(k,co) are the Fourier components of the density operator (f„g„)and the spin-density
operator (g„cr;f„),respectively; ( ) denotes the statistical average, and V is the normalization volume. In
the present case the dynamic form factor for spin-density fluctuations is symmetric [P';J(k,co)—=5&P'( k, co)], so that Eq. (2.5) may be written in a compact form as

G2
$Vf; = [(1+cos8)S(k, co) +Cz (3—cos8)P'( k, co)] .4' (2.9)

The collision term in the Boltzmann equation is given in terms of 8'f; by the equation
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+ 3~ d
= —Vf W&;(q —q', q q—')n(q)[1 n—(q')]+ V

3 ~yt(q
'

q—, q
' q—)n(q')[1 n—(q)] .

at

(2.10)

Here, n (q) is the neutrino distribution function. The first term in Eq. (2.10) represents the rate at which
neutrinos are lost by scattering out of the state q, while the second represents scattering into the state q.
The n and 1 n—factors in (2.10) physically correspond to the fact that the process can occur only if the ini-

tial state is occupied and the final one is unoccupied. The relaxation time r(q) is calculated by linearizing

(2.10) with respect to the deviation 5n(q) from the equilibrium (Fermi) function,

n ( q) = [exp[(q —p„)/kz T]+1j

where p is the neutrino chemical potential. One finds

Bn(q)
Bt

= —5n(q)/r(q),

where

3~ g

=V 8'~; q —q', q —q
' l —n q' +8'y; q' —q, q

' —q n q'
(2m )'

(2.11)

(2.12)

(2.13)

With the help of the principle of detailed balancing, which for a system invariant under spatial reflections is

Wp(k, co) =e~WJ;(k, —co),

where P= 1/kz T, Eq. (2.13) may be rewritten as

)/k r 3~ /

=[1 " ]Vf W ( — ' — ')[1 n( ')]-
r(q) (2n. )

(2.14)

(2.15)

This result contains the effects of neutron-neutron interactions through the dynamic form factors that occur
in 8'~;. To evaluate the expression we need the form factors of the neutron system, and we now calculate
these.

III. DYNAMIC FORM FACTORS
OF THE NEUTRON LIQUID

In this section we derive expressions for the
density-density and spin-density —spin-density
response functions in the neutron liquid, and evalu-

ate the dynamic form factors from them by using
the fluctuation-dissipation theorem. The neutrino
momenta and the momentum transfers in many
applications are small compared with the neutron
Fermi momentum, and energy transfers and the
temperature are small compared with the neutron
Fermi energy. Consequently, we may describe the
properties of the neutron system using Landau-
Fermi liquid theory.

We begin with the linearized form of the Lan-
dau transport equation in the presence of an exter-
nal force F-„(k,co),

0
pa pa X ~pa p 'a' p 'a'

P '0'

is the local excitation energy of a quasiparticle.

(3.2)

(co —k v-„)5n- (.k, co)

B '
+k v-„g f-„-„, ,5n-, , (k, co)

P Be P0'P0 P~
P, 0'

Bn0+iF- (k,co).v- =0, (3.1)'Be
P

where 5n- =n- —n - is the departure of the
quasiparticle distribution from the ground-state
distribution, eP =e- is the ground-state quasiparti-
cle energy, and f-„-„,, is the interaction energy of
the excited quasiparticles po. and p 'O'. The quasi-
particle group velocity is given by v-= V'-e-,
where
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The density fluctuation

5n'-„(k, ar) =5n-, (k,ar)+5n „,(k,co) (3.3)

couples to the spin-independent external force

quasiparticles. The quasiparticle interaction is
then a function which is invariant under rotation
of the quasiparticle spins. In an isotropic system,
introducing

F-„(k,co) =i qQ(k, co),

while the spin-density fluctuation

5n'„(k, co) =5n-„„(k,co) —5n „,(k, co)

couples to the spin-dependent external force

(3.4)

(3.5)

one can decompose the transport equation (3.1)
into a spin-antisymmetric part,

(co —k v )5n' (k, co)

an'
+k v- +2f':„:,5n'-, (k, co)

BEp
P

(3.7)

F- (k,a))=ikgp~oH(k, co), (3.6)

where the perturbing magnetic field is chosen in
the z direction, g is the Lande g factor, and pz is
the Bohr magneton. Since this is the first detailed
investigation of how neutron-neutron interactions
affect scattering of neutrinos, we shall neglect the
tensor contributions to the interaction between

2k v „—gps i
0

i
H(k, ro) =0, (3.8)

BEp

and a spin-symmetric part, which has a form simi-
lar to Eq. (3.8}. In (3.8) the external force is
chosen explicitly as (3.6). Let us calculate the
spin-density —spin-density response function,
which is defined as

X~(k,co) =—ggps i
0

i
5n'-„(k, co)/(gp, so)H(k, ar. ) .

V
P

Expecting a solution to Eq. (3.8) of the form

(3.9)

5n'-( k, co)=
k v /no

X~ ~

o) —k'v
P

(3.10)

one expands x- and f'::,in Legendre polynomials

x- =g xIPi(cosO),
I =0

(3.11)

f'--, =g f PI(cIs8o),
1=0

(3.12)

where cosH=P k and coso=p p . Retaining only the I =0 and l = 1 components in Eq. (3.8), one obtains

N(0) g(A, )

1+[F0+k,Fi/(1+ —,F|)]g(A, )

in terms of the reduced interactions
FI' '=N(0)ff ', where N(0) =Vm pI(n)/m R is
the density of states for both spins, A,

—=co/kuF(n)
[pF(n) and u~(n) being the neutron Fermi momen-
tum and Fermi velocity, respectively], and

g (A, )—:1 ——ln
A+1

2 A, —I

=1——ln + AH(1 —iA,
i

) .2n A-. l 2

(3.14)

(3.13)

I

In general, the spin-density —spin-density response
function has a tensor form, X,l(k, co), whose
nonzero components are X =X„z——X = X (k, co)
in an isotropic system. The density-density
response function, Xz(k, co), can be calculated simi-
larly and has the same form as (3.13) except that
the E~"s are replaced by I'I"s. The dynamic form
factors of density and spin-density fluctuations,
S(k,co} and P';1.(k, co) may be obtained from the
corresponding response functions via the
fluctuation-dissipation theorem. For spin-density
fluctuations, for example,
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A,J(k, co) = ~ Imp, j(k,co), (3.15)—Phoo

X [5(co—c,k) —5(co+c,k)],

(3.17)

where

8 = [Fo+[Fi /(1+ —,F' )]Xi, [Ao/2~, (3.18)

A =2F i A,og (A,o) /(1+ —,F i )

+[Fo+Fiko/(I+ iFi)lg'(Ao) ~ (3.19)

TABLE I. The Landau parameters for pure neutron

matter at nuclear matter density calculated by Backman,
Kallman, and Sjoberg (Ref. 3).

where n is the neutron number density.
Let us now examine the density and spin-density

fluctuation spectra by using the Landau parameters
calculated for pure neutron matter. In Table I the
parameters at nuclear matter density (po), which
corresponds to the neutron Fermi momentum
p~(n)=1.708 fm ', are listed. From these parame-
ters one immediately notices that zero sound does
not exist as a well-defined collective mode in neu-
tron matter at this density; it suffers strong Lan-
dau damping since the repulsive force is too weak,
FO-O. ' In fact, the Landau parameters of Ref. 3
indicate that zero sound appears as an undamped
collective mode only at densities above -2.27 po
[pz(n)=2.24fi fm ', Fo-0.73, Fi ——0.59]. At
such densities, the conditions'

Fo&0, Fi &0, and Fo& ~Fi/(1+ , F;)
~

—(3.16)

are satisfied so that X(k,co) has a pole within the
same approximation used to derive Eq. (3.13).
Therefore, only the single-pair excitations exist in
the density fluctuation spectrum at p=po. On the
other hand Fo——0.97 is enough to sustain a well-

defined spin-zero-sound mode. ' From Eqs. (3.13)
and (3.15) one can obtain the spin-zero-sound-pole
contributions to the dynamic form factor,

N (0)RkUF(n)
P',q(k, co) =5,J nVB 1 —e

and Ao—=c, /uz(n) is the solution to the equation

1+[Fo+Fi lo/(1+ 3 F i )]g(io)=0 (3.20)

(3.22)
for spin-density fluctuations. In this limit, the
Fermi-liquid effects are included in the neutron ef-
fective mass m* =(1+—,F'i )m through N(0) and

by factors (1+Fo) or (1+Fo) In F. igs lan. d

2, we compare calculations of a number of expres-
sions for the dynamic form factors for density and
spin-density fluctuations:

(1) the result for a free Fermi gas,
(2) the result for a Fermi gas with an effective

mass,
(3) the low-frequency results (3.21) and (3.22),

and
(4) the full expressions from Eqs. (3.13)—(3.20},

including the effects of the Landau parameters Fo,
Fo, F&, and F~.

From these figures one sees the following. In
the case of density fluctuations, the single-pair ex-

citation spectrum S(k,co) for a free Fermi gas is
modified by the effective-mass correction (F'i ),
which is further modified a little by Fo. In con-
trast to this, for the case of spin-density fluctua-
tions, the reduction of the single-pair excitation
part of WJ (k, co) due to a factor (1+Fo) is
marked, and the collective mode appears. In both
cases the low-frequency forms of S(k, co) and

W,&(k,co) give a reasonable approximation to the
full expressions. Therefore, we adopt those forms,
which enable us to make analytic calculations in
the following sections.

IV. KINEMATICS

From the Landau parameters in Table I we have
B=1.14 and A,O-1.10. From the same set of Eqs.
(3.13) and (3.15) the single-pair excitation spectrum
can be obtained, and its leading term in the low-

frequency limit (A, « 1) has the simple form

S(k,co)=, 2 ~ (A, &&1), (3.21)
n+N(0) A,

n V(1+Fo) 1 —e

for density fluctuations, and

A,q(k, co}=5,q, ~ ~ (&&&1),vrfiN (0) A,

nV(1+Fo ) 1 —e

FO

0.07

Fa

0.97

Fs

—0.43

F;

0.51

In this section we discuss the allowed momen-
tum and energy transfers for the various cases of
interest. The limits on co and k( =

~

k
~

) due to the
neutron system may easily be obtained by inspect-
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FIG. 1. Dynamic form factor for spin-density fluc-
tuations in neutron matter. The fluctuation spectra are
shown for (1) a free Fermi gas (thin line); (2) a Fermi

gas with an effective mass m*=(1+—,F~ )m (dotted

line); (3) a Fermi liquid in the low-frequency approxima-
tion, Eqs. (3.17) and (3.22) (dashed line); and (4) a Fermi
liquid, including the effects of the Landau parameters

Fo, FI, and F& (bold line). This is obtained from Eqs.
(3.13)—{3.20). Fermi-liquid effects reduce the contribu-
tion from the single-pair excitations, while they give rise
to a spin-zero-sound pole at A, =co/kvF(n)=1. 10. The
spectra are normalized so that the maximum of curve

(2) is unity. The Landau parameters are due to
Hackman, Kallman, and Sjoberg {Ref. 3) at nuclear
matter density.

ing the dynamic form factors. According to Eqs.
(3.13) and (3.14), these are nonzero in the range

FIG. 2. Dynamic form factor for density fluctuations
in neutron matter. The fluctuation spectra are shown
for (1) a free Fermi gas {thin line); (2) a Fermi gas with

an effective mass m*={1+—F ~ )m (dotted line); (3) a

Fermi liquid in the low-frequency approximation, Eq.
(3.21) {dashed line); and (4) a Fermi liquid, including the
effects of the Landau parameters Fo and F~ (bold line).
This is obtained from a formula for S(k,~) similar to
Eq. (3.13). Fermi-liquid effects modify the single-pair
excitation spectrum and no collective mode exists at nu-

clear matter density.

corresponding to the collective mode. ' The range
of the single-pair continuum may easily be under-
stood by considering scattering of a neutrino by a
free nonrelativistic particle of mass m~. The ener-

gy and momentum conservation laws are

—kuF(n) &co &kuF(n) . (4.1)

corresponding to the continuum of single-pair exci-
tations, and at the energies

~2 ~ &2

p, +my= " .+~q,
2@i 2@i

p+fiq =p '+fiq ',
(4.3)

(4 4)

N =+Csk (4.2) where p and Rq are the neutron and neutrino ini-
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tial momenta, respectively, q =
~ q ~, and the prime

denotes the final-state quantities. The energy and
momentum transferred from the neutrino to the
neutron are defined by fico =fic(q —q') and
A'k =Pi(q —q '), respectively. Expressing the rela-
tion between co and k in terms of the initial neu-
tron momentum, one has, from Eqs. (4.3) and (4.4),

Ak Ak—ku+ &co & ku+
2m~ 2m*

(4.5)

/

co
f

& ck &
f

co —2cq
f

. (4.6)

where v =
~ p ~

/m ~. This is a familiar excitation
domain for nonrelativistic particles. For a degen-
erate Fermi system the maximum velocity of an in-
itial neutron is v~(n}, the value which gives max-
imum possible range for co. Curves corresponding
to the condition (4.5) for this case are shown in
Fig. 3, where lines ro=+c,k (4.2) corresponding to
phonon emission and absorption are also shown. '

In actual situations, since the typical neutrino
momentum is much smaller than the neutron Fer-
mi momentum [fiq «pz(n)], and since the
momentum transfer is on the order of the larger of
the two momenta, iriq and ks T/c, the recoil term,
haik /2m ~ is negligible compared with the resonant
term kvz(n} in Eq. (4.5). The condition (4.5) then
reduces to (4.1), obtained earlier from the dynamic
form factor calculated in Landau theory. Similar-

ly, in terms of the initial neutrino momentum one
has

also shown in Fig. 3. The condition (4.6) is noth-

ing but the relativistic counterpart of the condition
(4.5) with the sign of co reversed.

Thus, energy and momentum conservation re-

quires that ~ and k must. lie in the region which
satisfies both (4.5) and (4.6}. This condition ap-
plies to single-pair excitations. The condition (4.6)
restricts the phonon momenta to lie in the range

0&k &2q/[1+(c, /c)] . (4.7)

The plus (minus) sign in Eqs. (4.2) and (4.7) corre-
sponds to phonon emission (absorption).

In the co-k plane, the region which satisfies both
(4.5) and (4.6) is indicated by the hatched area in

Fig. 3. This region corresponds to single-pair exci-
tations. In addition, the collective-mode branch
which satisfies both (4.2) and (4.7) is also shown in

Fig. 3 by dashed lines. These two regions in the
co-k plane are kinematically allowed by the energy
and momentum conservation laws.

Neutron degeneracy may further restrict the al-

lowed domain in the co-k plane. At low tempera-
tures the momentum states of the neutron system
with p &pz(n) are occupied. Therefore, although
the neutron system can be excited (co & 0) to the
extent allowed by Eqs. (4.1) and (4.6), the deexcita-
tion of the system by an amount larger than
—kz T is strongly suppressed by the Pauli princi-
ple. This means that the (negative) energy transfer
is bounded from below,

The boundaries of the region described by (4.6) are ks T /fi & a) & 0—. (4.g)

cq

—k8T~(n)/7T
tu = -kvF(n) + 5k /2m

FIG. 3. Single-pair and collective excitation spectra.
The hatched region represents the continuum of single-

pair excitations and the dashed lines correspond to the
collective-mode branch which are kinematically allowed
in the scattering of a neutrino of energy Acq by a system
of degenerate neutrons with a Fermi energy k&TF(n)
=R kF{n) /2m*. 0~co &k~T/A, (4 9)

Whether this restriction affects the original domain
of the single-pair excitation spectrum (the hatched
region in Fig. 3) or not depends upon the relative
magnitude of the temperature, kz T, and the max-
imum energy transfer -fiqvz(n). When

kii T» fiqv~(n), which we shall designate as the
high-temperature case, the condition (4.8) is less
restrictive than (4.1) and (4.6).' Therefore, neu-

tron degeneracy does not modify the original
domain of possible energy and momentum
transfers [see Fig. 4(a)]. On the other hand, when

ks T « fiqvF(n) (which we shall designate as the
low-temperature case) the lower part (co &0) of the
original domain is cut down as shown in Fig. 4(b).
This is a direct consequence of the neutron degen-
eracy. When the neutrinos are also degenerate and
when the temperature is low [ks T« iriqv~(n )], the
kinematical region of excitation spectrum is bound-
ed from above
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Zq

I + UF

ZqvF{n)

I+UF
/(I-uF)

ZqvF(n)

I+ UF

kBT/0

2
I-uF

kBT/5

2q
I+ uF

)('f vF (q)

kBT/hvF(n)

(c)

kBT/ Ti

-kBT/5

FIG. 4. (a) Single-pair and collective excitation spectra at high temperatures [kvT&& fiqu~(n)]. The hatched region

of the single-pair excitation continuum and the part of the collective-mode branch indicated by dashed lines are

kinematically allowed. The neutrinos may be either degenerate or nondegenerate. (b) Single-pair and collective excita-

tion spectra at low temperatures [ksT« fiquF(n)] for nondegenerate neutrinos. The notation is the same as Fig. 4(a).

At these temperatures, the energy transfer is bounded from below (%co & —k&T) due to the neutron degeneracy. (c)

Single-pair and collective excitation spectra at low temperatures [kuT «Rqv~(n)] for degenerate neutrinos. The nota-

tion is the same as (a). Neutrino degeneracy further restricts the energy transfer from above (%co & kqT).

for the same reason [see Fig. 4(c)]. Neutrino de-

generacy in the high-temperature case
[kz T» Rqvz(n)] is possible only when the neu-

tron Fermi velocity vz(n), is much smaller than
the velocity of light c. However, since v~(n) is of
the same order of magnitude as c in neutron
matter, the high-temperature condition

[kz T» fiqv~(n) ] and the neutrino degeneracy
condition (kz T«p„-ficq) are actually incompa-
tible. Nevertheless, we also include this case in our
later calculations for the sake of comparison with
the low-temperature case for the collective-mode
contribution.

In the case of the collective excitation spectrum,
the effect of neutron degeneracy (or neutrino de-

generacy) on the kinematical region is similar.
Those regions which are allowed for collective ex-
citations are shown by the dashed lines in Figs.
4(a) —4(c).

V. NEUTRINO MEAN FREE PATHS

We are now ready to calculate the neutrino mean
free path. Within the framework of Landau
theory there are three contributions to the mean
free path in neutron matter due to the following.

(1) Coupling to single-pair excitations by the
Fermi transition. Neutrinos are scattered by densi-

ty fluctuations, either creating or annihilating a
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neutron quasiparticle-quasihole pair through the
vector coupling. This is the first term in the
square brackets of Eq. (2.9), with S(k,co) approxi-
mately given by Eq. (3.21).

(2) Coupling to single-pair excitations by the
Gamow-Teller transition. This is the axial-vector
counterpart of (1), in which neutrinos are scattered
by spin-density fluctuations at a rate given by the
second term of Eq. (2.9) with the form factor given

by Eq. (3.22).
(3) Coupling to collective excitations by the

Gamow-Teller transition, which comes from the
axial-vector coupling of the neutrinos to the collec-
tive mode (spin-zero sound). The scattering rate is
also given by the second term of Eq. (2.9) with

(3.17).
%e estimate these contributions separately in

both the degenerate and nondegenerate neutrino
cases.

I

1 —(cu/cq ) + —,(cu/cq) ——,(k /q)
cos0—:q.q =

1 —(co/cq)

A. Degenerate neutrino case

I. Mean free path

We assume the neutrinos to be degenerate with a
Fermi distribution n (q) and chemical potential p„.
Then, the neutrino mean free path [lD ——cr( q )] is

1/lD ———f 8'f; [ I n—( q') ]
V d k
c (2ir)

X [ &+exp[(p„—E,)/kaT]J . (5.1)

Let us first evaluate the contribution from single-
pair excitations. The integrand in Eq. (5.1) con-
tains cos0 [Eq. (2.9)], which from Eqs. (4.3) and
(4.4) may be expressed as

(5.2)

(5.3)

From Eqs. (4.3) and (4.4) one also has

&t sufficiently low temperatures, most of the region in the co-k plane allowed for single-pair excitations [the
hatched region in Fig. 4(c)] satisfies co/cq « 1. Therefore, one may approximate

cos0=1 ——,(k/q)

cos8ek =q k = , (k/—q)+pi/c—k —, (tu/ck)(pi/c—q) .

Thus

(5.4)

d (cos8ek ) = [1—(co/cq)](dco/ck)

~dN/Ck .

(5 5)

(5.6)

The angular integral in (5.1) can be changed into an co integral, by using (5.6), where the region of integra-
tion may be extended to —eo & to & eo. Since only the region

~

co
~

& kit T/fi contributes to the tu integral,
this extension does not cause any serious error at low temperatures. First, the k integration may be done in
the range 0&k &2q [cf. Fig. 4(c)]. Then, the remaining pi integral is standard, ' and one has

kgT
/lD )single pair ( / )0

32 (1+F0)2 uF n
I tr2+ [(E,—iM„)/kii T] ]

TF(n)
(5.7)

for the Fermi part of the single-pair excitations, and

C, ' 1 kT
( I /lD )„„gl,p„„——(1/l)P

16 (1++0) fiquF n
[tr +[(E„p,)/k&T] ]-

TF n
(5.8)

for the Gamow-Teller part of the single-pair exci-
tations. In Eqs. (5.7) and (5.8), E =ficq,

0.0=46 I, /~A =1.76&&10 cm (5.10)

(1/l)il =—nop(E, /m, c )

where

(5.9) and m, is the electron mass. The difference be-
tween (5.7) and (5.8) arises from the axial-vector
coupling constant (Cz ), the angular factors in Eq.
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(2.9), and from the Fermi-liquid correction factors
(Fo and Fo).

Let us now turn to the contributions from the
collective mode. In this case the dynamic form
factor [Eq. (3.17)] is used in the axial-vector part
of the transition probability [Eq. (2.9)] to calculate
the mean-free-path expression (5.1). At finite tem-

peratures the dynamic form factor contains two
pole contributions from the collective mode, which
correspond to phonon emission and absorption.
The angular part of the k integration in (5.1) may
be done by choosing the polar axis in the direction
of q. Then from Eqs. (5.2) and (5.5)

1I d(cos8ek )5(co+c,k)

1+(c, /c)( k /q)

ck

where the upper (lower) sign is for phonon emis-
sion (absorption) by a neutrino. Since, as we shall

see, the phase space is different depending on
whether a phonon is emitted or absorbed, it is con-
venient to treat these processes separately.

For phonon emission, (5.1) becomes

6 C~ N(0)uF(n)q
(1/I )'D coll g ~ 2 E ~I

where

X (1+e "), (5.12)

2/(1+ 0 ) 1 j.I =E =
0 y y „+~+pp2d

1+e v

)& [I—uy+ —,(1—u )yi] (5.13)

and we have introduced dimensionless variables

u= c, lc—, x= ficq/kE—T and y=klq (5.14)

so that uxy =Ac, k/k&T. The first exponential fac-
tor in the integral of (5.13) comes from 1 n(q '—)
in (5.1); the second factor from (3.17); and the last
factor from 3—cos8 in (2.9) expressed using (5.2) for
cos0. The region of the integration for the y in-

tegral in (5.13) comes from (4.7).
In some limiting cases we can calculate the in-

tegral IE analytically (Appendix A). At low tem-
peratures (kET « Pic, q) and for a neutrino on the
Fermi surface,

~
E„pv~ &&—kET, we have

( 1 /ID } il ( 1 /I )o 128ir8 TF n
L

kET UF(n)

cs
(kET « Pic, q,

~
E„p,

~

&& kE—T) . (5.15)

At low temperatures, since the number of thermally excited phonons is small the phonon absorption process
gives a negligible contribution to the mean free path. At high temperatures, where kET ))ficsq, the result
of the integral is given in (A9). The function IE depends on c, through the quantity u =c,lc. In the case
of phonon absorption, the mean free path may be expressed in a form similar to (5.12), in which we shall
denote the integral corresponding to (5.13) as I~. It can be easily seen that there is a simple relation Iz(c, )
= —IE( —c, ), as is physically obvious. Using this relation from Eq. (A9) one has

2 9+42u2+5u4
E+ A—

3 (1—u } ux 1+e +E&v (5.16)

In contrast to the low-temperature case (kE T «Rcsq), phonon absorption gives a contribution to the mean
free path comparable to that from phonon emission, since phonons of energy -Pic,q are abundant at tem-
peratures k&T gy Ac, q. The mean free path, including the contributions from both phonon emission and ab-
sorption, is

2 4

( I/r )hrfh 7
( 1/I)

1 9+42u +Su
32ir8 (1—u )

T
TF(n)

uF(n)
(kET)) Pic, q} .

cs
(5.17)

The contributions from each of the processes cal-
culated above are additive, and therefore one has

F
1 /ID —( /ID )single pair

GT GT+( / D)single pair+( /ID)coll ~ (5.18)

where Eqs. (5.7) and (5.8) are used for the first two

I

terms, while only the limiting expressions (5.15)
and (5.17) are available for the last term.

2. Transport mean free path

When momentum transport is in question the
scattering rate is characterized by the transport
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mean free path (ID, ) defined by

3V I d k
(1

—"+iitsv)
c (2n)

X [1—(q'/q)cos8] Wft [1—n ( q ') ] .

(5.19)

(5.20)

From Eq. (5.2) one has

1 —(q'/q )cos8= —,(k/q)

+ (tu/cq) ——,(to/cq)',

where use has been made of the same approxima-
tions as were employed to derive the expressions
for the mean free paths. Since the momentum
transfer (k) varies up to 2q in the single-pair exci-
tations, the factor 1 —(q'/q)cos8 introduces extra
numerical factors in the transport mean-free-path
expressions, which, however, have the same tem-
perature dependence as the mean free paths.

As to the contribution from the collective mode,
one has

1 —(q'/q)cos8=+uy+ —,(1 —u )y

(5.23)
and a straightforward calculation yields

F 2 F/ Dt)single pair S ( / D)single pair ~

GT 4 GT/ Dt)single pair s ( / D)single pair ~

(5.21)

(5.22)

for phonon emission (plus sign) and absorption
(minus sign), where the notation is as in (5.14).
For high temperatures (ks T ))ficsq), a calcula-
tion similar to the previous one yields

(1/I )high r (1/I) 1 25+ 195u +55u
80trB (1—u 2)4 Tp(n)

u~(n)

&s
(5.24)

In this case we see that the transport mean free
path has the same temperature dependence as the
mean free path. The reason is that the variable y
ranges to 0 (1) [see (4.7)] so that the factor
1 —(q'/q)cos8 is of order unity, as in the case of
single-pair excitations. At low temperatures
(ks T« tric, q) the situation is different. A typical
phonon gives a momentum transfer k -ks T/Pic so
that uy -ks T/Pic, q « 1. Thus 1 —(q'/q)cos8, in
fact, introduces a factor much smaller than unity.
Therefore without carrying out detailed calcula-
tions one has an estimate

(1/lDt )c~oii —(1/l)o

X(AT/Pic, q) [T/T~(n) J,
(5.25)

whose magnitude is negligible compared with other
contributions.

B. Nondegenerate neutrino case

V d k1/l= —J Wf; .
c (2ir)

(5.26)

(5.27)

z G N (0)cg
(1/ )singie pair=

Let us begin with the contribution from the
Gamow-Teller part of the single-pair excitations.
As has been done before, one may change the in-
tegral over the direction of k in (5.26) into an hatt

integral by using Eq. (5.5). At low temperatures

[kit T« fiquF(n)] the integral has the form

//(&++/ ) kvp
dk d Q)

corresponding to the co-k domain shown in Fig.
4(b). In (5.27) the lower boundary of the to in-

tegral is extended to —oo since the region
co « —kz T/A gives a negligible contribution to
the integral. Using Eqs. (2.9), (3.22), (5.2), and
(5.27) in (5.26), one finds

When the neutrinos are nondegenerate no block-
ing factor is necessary. The neutrino mean free
path (1) is simply given by where

X,2 Ig(x),
( I+Fo) uF(n)x2

(5.28)

2/(1+uF) g~ 2 2x( i —y/2) Z
~o "~ '+Xiii y I d' ' ———— — +-'y'

X
a

(5.29)
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In (5.28) and (5.29) the dimensionless variables
are defined by x:Pic—q /kE T, y:k—/q, z:Ac—o/ks T,
and uF =UF(n)/c The calculation of (5.29) is
given in Appendix B, and one finds

2

(I/I)„„gl",p„,-( I/I)0
(1+F0)'

1 —uF/8 qX (5.30)
(1+uF )' kF(n)

Similarly, the Fermi part of the single-pair excita-
tions gives at low temperatures [kE T« RqUF(n)]

(1/l)F;„lgl", PT.;;(1/l)0
20 (1+F0)X, . (5.31)

1+uF/2 q

(1+uF )' kF(n)

and u =c,/c. The range of the y integral
[0&k &2q/(1+u)] in Eq. (5.36) comes from the
co-k domain allowed for the upper phonon branch
(co =c,k) in Figs. 4(a} or 4(b). In the low-

temperature case (ks T« lrtcsq )

2/(1+ u )

IEl(X)= dy[y —uy + —,(1—u )y ]0

64 1 —11u/16
(1+u)'

(5.37)

x
kF(n)

(5.38)

Since the phonon absorption process (co & 0)
gives a negligible contribution at these tempera-
tures Eqs. (5.35) and (5.37) yield a mean free path

( I/l)io T (I/I)
2C

5~B (1+u)~

At high temperatures [kET» RqUF(n)], the re-

gion of integration becomes

2q/(1+ uF ) ku+ "p) 2cq —ek

0 kUF 2q/(1+ uF ) —kuF

At high temperatures (kE T» Pic, q) the calcula-
tion turns out to be essentially the same as in the
degenerate neutrino case. The resugis

( 1/I)high T

A straightforward calculation yields

2

( 1/ )single pair ( 1/1)0
(1+F0)' 32

1+—,up

(5.32)

(5.33)

9g~ uF(1+ 3 u + 9u )
=(I/1)0

32mB u (1—u2)3

T
TF(n)

(5.39)

I

VI. DISCUSSIONS AND CONCLUSION

from the Gamow-Teller part, and

/ }single pair ( / }0 sI F highT (1+F0)'
(5.34)

G N (0)C„uF( n )q(1/I)™=
.coll gv~ 2 El ~I

where

(5.35}

2/(1+ u)
IE l(x) =Jdy—

1 —e

X[1—uy+ —,(1—u )y ],
(5.36)

1 —3Qp T
(1 —u ) TF(n)

from the Fermi part of the single-pair excitations.
Next we calculate the contributions from collec-

tive excitations. For phonon emission (co=c,k),
Eqs. (2.9), (3.17), (5.2), and (5.27) in (5.26) yield

In this section we first explain the physical
meaning of the various mean-free-path expressions
obtained in the previous section in greater detail.

Next, we discuss Fermi-liquid effects, and compare
some of our results with previous calculations.

A. Physical explanation of the magnitude
of the mean free paths

Let us explain the physical meaning of those
mean free paths obtained in the previous section.
The fundamental quantity is (1/1)0 which charac-
terizes the mean free path of a neutrino of energy
E in noninteracting nondegenerate neutrons of
density n. %hen the neutrons are degenerate with
Fermi temperature TF(n) the mean free path con-
tains additional factors. As in the previous section
we assume that the neutrino momentum is smaller
than the neutron Fermi momentum fiq &pF(n)

Arguments based on the available space may be
used to explain the factors in those mean-free-path
expressions, Eqs. (5.7), (5.31), and (5.34), or Eqs.
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(5.8), (5.30), and (5.33) which come from single-

pair excitations. We first discuss the nondegen-
erate neutrino case. In the two-body collision of a
neutrino and a neutron, the energy transfer is
characterized by fiqvF(n) T.he amount of phase
space available to this scattering depends on
whether this energy transfer is greater or smaller
than k& T. When the system temperature is high
such that figvF(n) « kii T, a fluctuation in the neu-

tron energy of the order of k&T is enough to sup-

ply this characteristic energy transfer. Thus the
energy and momentum transfers exhaust the region
in the co-k plane which is kinematically allowed.
The reaction rate is proportional to the number of
neutrons which can participate in the scattering.
This is -(dnldE)AE=N(0)AE, where dn/dE is
the density of states. In the present case since
N(0)-1/kg TF(n) and AE-ks T, one has
N(0)bE —T/TF(n), which explains the factor
TITF(n) appearing in Eq. (5.34) [or (5.33)].' This
is a consequence of the fact that only neutrons
whose momenta lie within -ksT/c of the Fermi
surface can participate in the process. On the oth-
er hand, when the temperature is low, such that
ks T« fiqvF(n), the scattering occurs mainly by
exciting the neutrons by an amount -fiqvF(n).
The neutrinos can, indeed, absorb energy of order
kiiT from the neutron system ( ksTIA&co—&0),
but this process has negligible phase space com-
pared with that for positive-energy transfer
fico-fsqvF(n). Thus, the phase-space factor is

N(0)AE —[IITF(n)]fiqvF(n)-qlkF(n), which ex-

plains the factor in Eq. (5.31) [or (5.30)]. There-
fore, the difference arises whether the energy
transfer associated with scattering is thermal
-kii T or nonthermal -iriqvz(n)(» kii T).

When the neutrinos are degenerate (p,» ks T,
where p„ is the neutrino chemical potential) the en-

ergy transfer is restricted to the range

kii TIE & co &kiiT—IA [see Fig. 4(c)] As far a. s
the neutrons are concerned the available phase
space gives a factor q /k'(n), as in the low-

temperature nondegenerate neutrino case, since the
same condition kiiT«AqvF(n) (for E =fieq-p„)
is satisfied. The neutrino phase-space integral has
the form fd k fk dk—fd(cos8)
—f k dk fdco. When ks T «AqvF(n), the range

of the k integral is 0 & k & 2q in the cases of both
nondegenerate [Fig. 4(b)] and degenerate [Fig. 4(c)]
neutrinos. However, the range of the co integral
differs. For nondegenerate neutrinos it is

kiiTIA&co &qvF(—n) [Fig. 4(b)], while for degen-
erate neutrinos it is k~ TIE & co & ks TIE [F—ig.

4(c)]. In addition, since the scattering rate [Eq.
(2.9g) is proportional to S(k,co) [Eq. (3.21)] and

W(k, co) [Eq. (3.22)], it has one power of co.

Therefore, the phase-space integral with respect to
co is smaller for degenerate neutrinos by a factor
-[k&T/iriqv~(n)] ( && 1). This is the origin of
the difference between Eqs. (5.7) and (5.31) or be-

tween Eqs. (5.8) and (5.30) of a factor
[k—a TlfiqvF(n) l
Let us now turn to the collective excitations.

For nondegenerate neutrinos one sees that the
mean free paths due to scattering from collective
excitations [Eqs. (5.39) and (5.38)] have the same
factors as those from single-pair excitations [Eqs.
(5.34) [or (5.33)] and (5.31) [or (5.30)]J in both the
high-temperature [ks T» fiqvF(n)] and low-

temPerature [ks T« iriqvz(n}] cases. This is be-

cause the energy and momentum transfers lie
essentially in the same range ( kii Tlfi —& co & 2c,q
and 0 & k & 2q for low temperatures; and

2c,q &—co&2c,q and 0&k &2q for high tempera-
tures) for both single-pair excitations and collective
excitations.

Let us next compare the mean free paths in the
following two cases: (1) The collective-mode con-
tribution at low temperatures (kii T« uE„) in the
nondegenerate neutrino case [Eq. (5.38)], and (2)
the collective-mode contribution at low tempera-
tures in the degenerate neutrino case [Eq. (5.15)].
The scattering rate is proportional to the phase
space available to the phonons fd k ~ (co ),
where (co) is the characteristic phonon frequency.
In case (1), the phonons emitted spontaneously
have a frequency (co) -c,q, while those which can
be absorbed have (co)-ksTIA«c, q. Therefore,
the spontaneous emission process dominates the
absorption process in terms of phase space, and the
reaction rate is proportional to (iric, q) . Since this
phase-space factor comes from spontaneous emis-
sion of nonthermal phonons, it has no direct rela-
tionship to the actual phonon number

In case (2), the phonons which can be emitted or
absorbed have to have a frequency & ks TIA; in
other words, only the thermal phonons are of im-
portance. Therefore, the phase-space factor is pro-
portional to (k&T) .

These considerations naturally explain the rela-
tive difference between the mean free paths, Eqs.
(5.15}and (5.38), by a factor (R;q /k' T)i, in terms
of the difference in phase space. In case (2), an al-
ternative way of understanding the factor (ksT) is
in terms of the phonon number, which has more
direct physical meaning. In this case spontaneous
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emission of nonthermal phonons is strongly
suppressed, so that the reaction rate is simply pro-
portional to the number of phonons present.

One may use the Debye model to estimate the
phonon number. In solids the maximum phonon
frequency is determined by coD c,——(6~ n; )'
where c, is the sound velocity and n; is the number
density of ions. In neutron liquids phonons exist
up to the critical wave number kL, where the pho-
non branch (co=c,k) merges into the single-pair
excitation region ( ku~—+fik /2m
& co & kvF+fik /2m). For k & kL a phonon can
decay into a single-pair excitation; in other words
it is Landau damped. Thus, in this case
coD-cgkL, where ki =5pp(n)/fi and
5=[c,—u~(n)]/VF(n). Then, as in the case of
solids, the phonon number at low temperatures
(T&( TD =ficoD/ks) is

9X CO

3 p fico/k~ Tdco
Ng) e

the magnitude of the contributions from the Fermi
part and the Gamow-Teller part of the single-pair
excitations and the collective excitations. We use
the Fermi-liquid parameters listed in Table I to
compare the mean free paths obtained in Sec. V.

The consequences of the Fermi-liquid effects
may be summarized as follow: Since Fo is large
(-0.97), the Fermi-liquid effects are especially
significant for the dynamic form factor for the
spin density. As a result, the single-pair excitation
spectrum is reduced by a factor -4 and the collec-
tive mode (spin-zero sound) appears. In the case of
nondegenerate neutrinos the temperature depen-
dences of the contribution to the mean free paths
coming from the collective mode [Eqs. (5.38) and
(5.39)] are the same as those of the contributions
from the single-pair excitations [Eqs. (5.30), (5.31);
and (5.33) and (5.34)]. Thus the reduction of the
single-pair spin-density excitation is compensated

by the collective mode, which results in a relatively
minor change in the mean free path. More specifi-
cally, if we define

=18((3)N ( T/TD ) (6.1)

(1/l)with Fermi-liquid effects

(1/l)without Fermi-liquid effects
'

This is the reason the Riemann g function appears
in Eq. (5.15).

Finally let us compare the mean free paths from
collective excitations at high temperatures

(kii T» tric, q) in the degenerate and nondegenerate
neutrino cases [Eqs. (5.17) and (5.39)]. In both
cases the energy and momentum transfers lie in the
same range ( 2c,q & io (2—c,q and 0 & k (2q), so
that the phonon phase-space factors are the same,
which gives the same expression foI the mean free
path for the two cases.

An additional factor kii T/Pic, q in Eq. (5.15) [de-
generate neutrino case, collective excitations

ks T« Pie, q) relative to Eq. (5.7) [or (5.8)] (degen-

erate neutrino case, single-pair excitations) for
E„-p,may be understood in a similar way: the
energy transfer is the same for both cases
( —kiiT/%&co &kiiT/fi), while the momentum
transfer is 0 & k & 2q for single-pair excitations and
0 & k & kz T/Ae, for collective excitations, which
explains the relative factor kz T/Ac, q.

B. Effects of neutron-neutron interactions
(Fermi-liquid effects)

In this subsection we discuss how Fermi-liquid
effects modify the mean free paths, and compare

we have R -0.6 at low temperatures,

ks T((fRfvp( il ) (6.3)

and R —1.7 at high temperatures,

AT»Rqv~(n) . (6.4)

1

RD -0.51 ——,

and the ratio of the transport mean free paths
(RD, ),

1

3RD' ~0o 34~
3 ~

(6.5)

(6.6)

Therefore, the inclusion of the Fermi-liquid effects
increases the mean free path to some extent.

The contribution from the collective mode is im-

portant in the case when the neutrinos are nonde-
generate. The ratio of the contribution from the
collective mode to that from single-pair excitations

In contrast to this, in the case of degenerate neu-

trinos the temperature dependence of the mean free
paths is such that the contribution from the collec-
tive mode is negligible in general

[(1/lD)„„si,„„,» (1/ID )„»]. We find for the ra-

tio of the mean free paths (RD ) defined similarly
to (6.2) for the degenerate neutrino case
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1s

(I/i), ',Ti /(I/i) si, p„,-0.58 (6.7)

at low temperatures (kii T« iric, q), and

(6.8)

at high temperatures (ks T» iric, q). The
collective-mode contribution is negligible in the

case of degenerate neutrinos.
In the calculations discussed above we neglected

quasiparticle collisions. The collision rate 1/r«s is

of order kri T /ATF(n), ' and zero sound should

suffer little damping provided the phonon frequen-

cy is large compared with I/i.«u. Since the pho-

non frequencies of importance in our calculations

are of order k&T/A or greater, damping is unim-

portant since T « TF(n). Collisions will cause a

first-sound mode to exist at long wavelengths, ir-

respective of the values of the Landau parameters,

but at low temperature the range of wave numbers

for which this mode exists is small.

Let us finally make some remarks on Sutherland

and Flowers's paper. Our calculations support

their conclusion that scattering from phonons can

be significant. However, from our work it is clear

that the phonons of interest for neutron matter at

about nuclear matter density are spin-zero-sound

phonons, rather than ordinary density-zero-sound

phonons. Sutherland and Flowers took into ac-

count only the density fluctuation channel (Fermi

transitions) and did not consider the spin-density

fluctuation channel (Gamow-Teller transitions).

We note that they did not make specific assump-

tions about the properties of the matter, but as-

sumed that the density fluctuation mode exhausts

the f-sum rule, and calculated the dynamic form

factor from a hydrodynamic model. Our calcula-

tions show that for degenerate neutrons the f-sum
rule is not exhausted by the collective mode (in

fact, for the density channel a collective mode is

unlikely to exist at all at nuclear densities), and the

hydrodynamic model is a poor approximation.

One interesting conclusion from our calculations

is that in general one must consider scattering

from both quasiparticles and collective modes.

When the quasiparticle interaction is such as to

give rise to a collective mode, the scattering from

single-pair excitations is reduced. In fact, for de-

generate neutrinos the total scattering is reduced if
the interaction is such as to produce a collective

mode, since the collective mode itself gives little

scattering while the scattering from single-pair ex-

citations decreases.
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APPENDIX A: EVALUATION
OP EQ. (5.13)

In this appendix we evaluate the integral IF [Eq.
(5.13)] in the following limiting cases:

(1) low-temperature limit ku T« Pic,q (ux » 1)
and

(2} high-temperature limit kii T» Pic,q
(ux « 1). (In the latter case, it is to be under-

stood that the temperature is still much lower than

the Fermi energy [T« TF(n)].)
(1) Low-temperature limit kii T« Pic,q

(ux » 1). Introducing a dummy variable u along

with a 5 function in the integral representation,

one has

2/(1+ u) co 1 1
IE ——f dy f du 5(u+x —uxy —Pp, } f (y)

0 00 l +eU 1 e
—QÃP

2/( &+~) dt i(u +r —uxy —Pp„)t
dV ~ ~ ~

0 CO 2'
dh i (x —Pp„)t

e " I)I2,2'
(Al)

where
iu(t —i 0)eI)= dv——00

(A2)

I

and

f(y)=y uy'+ , (1—u )y——(A4}

2/( j++) —iuryt

f, —dy „ f(y), (A3}
The integrand of (A2) has poles at u =(2n +1)ni
with residues —e ' "+" ' (n =0, +1,. . .). The
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contour of integration with respect to v may be
modified such that the poles in the upper or lower
halves of the complex v plane are encircled accord-
ing to whether t &0 or t &0. Then we have

I~ —— 2—erie '/(e ' 1—) . (AS)

Since ux » 1 in the present case, we may omit the
function e """in the integrand of (A3). Then the
integral is straightforward and to leading order in
QX

where g(3) =1.20. . . is the Riemann g function.
(2) High-temperature limit kii T» Pic, q

(ux « 1). In this case we approximate

1 1
—x+uxy+Pp . —x+Pp1+e 1+e

—uxy

g( 1 )
2iuxt/—(1+u)

I2- 2 3+ux (ux) t (1+u)

(A6)

in Eq. (5.13) and find

9—5Q 1 1IE—
3(l+u)3 ux 1+e

—"+t'i'» (A9)

The function It [Eq. (AS)] has poles at t =ni with

residues i ( ——1)" (n =0, +1,. . .). Modifying the
t-integration contour in (Al) in order to encircle
some of these poles, we have

IE- '

(A7)for
~

x —Pp„~ && 1
g(3)
(ux)

e "" for ~x —Pp ~

&1, (Ag)
(ux)

APPENDIX B: CALCULATION
OF EQ. (5.29)

Dividing the z integral into four parts,
—oo &z &0, 0&z &QFxy, —oo &z &0, and
0&z &2x(1—y/2) in (5.29), one has

2/(1+ u+) u+xy 2 2x (1—y/2)

1+ 4g z — —
4

X

IL i(x)+It 2(x)—+IL 3(x) . (81)

2X QF
2 2

IL 2(x) = (16+.10uF
—3uF ),

1S(1+uF)
(B2)

These integrals are straightforward and one finds

4 1
IL i(x)- —,H+0 — (x » 1),

»

(B4)

and for x » 1, which is of particular interest to
us,

2x Qp
IL 3(x)= 5

(20+ 15uF —2uF ),
15(1+uF)

(B3) which turns out to be negligible compared with

It 2(x) and IL 3(x).
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