Predictions of supersymmetric grand unified theories

William J. Marciano and Goran Senjanović Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (Received 19 November 1981)

Renormalization effects are analyzed for a class of supersymmetric grand unified theories which contain the standard $SU(3)_c \times SU(2)_L \times U(1)$ model. Predictions for $\sin^2 \hat{\theta}_W(m_W)$ and the proton lifetime are obtained as functions of $\Lambda_{\overline{MS}}$ (\overline{MS} is the modified minimal-subtraction scheme), N_H (number of relatively light Higgs doublets), and μ (the scale of supersymmetry breaking). For realistic input parameters we find $0.23 \leq \sin^2 \hat{\theta}_W(m_W) \leq 0.26$ and $10^{38} \geq \tau_p \geq 10^{29}$ yr. Loop effects that could render the larger predicted values of $\sin^2 \hat{\theta}_W(m_W)$ consistent with experiment are described.

Grand unified theories (GUT's) of strong and electroweak interactions which break down to $SU(3)_c \times SU(2)_L \times U(1)$ via a single superheavy mass scale m_S [such as the Georgi-Glashow SU(5) model¹] predict^{2,3}

$$\sin^2 \hat{\theta}_W(m_W) = 0.216 + 0.004(N_H - 1) - 0.006 \ln(\Lambda_{\overline{\text{MS}}}/0.1 \text{ GeV})$$
(1)

for the weak mixing angle [defined in the modified minimal-subtraction ($\overline{\text{MS}}$) scheme at mass scale m_W]. In Eq. (1) N_H is the number of relatively light Higgs doublets with mass $\simeq m_W$ and $\Lambda_{\overline{\text{MS}}}$ is the mass scale of perturbative quantum chromodynamics (QCD). For the minimal case $N_H = 1$, and using $\Lambda_{\overline{\text{MS}}} = 0.1$ GeV obtained from Y decay,⁴ Eq. (1) gives $\sin^2 \hat{\theta}_W(m_W) = 0.216$. This prediction is in remarkably good agreement with the average experimental value^{3,5}

$$\sin^2 \hat{\theta}_W(m_W) = 0.215 \pm 0.014$$
 . (2)

Such theories also predict that the proton decays with a lifetime³

$$\tau_p \simeq 4 \times 10^{28 \pm 1} \times 10^{-0.76(N_H - 1)} (\Lambda_{\overline{\text{MS}}}/0.1 \text{ GeV})^4 \text{ yr}$$
,
(3)

where the ± 1 in the exponent represents a conservative estimate of the theoretical uncertainty. For $N_H = 1$ and $\Lambda_{\overline{\text{MS}}} \simeq 0.1$ GeV this prediction is already somewhat below the present experimental bound

$$\tau_p^{\exp} \ge 10^{30} \text{ yr} \quad . \tag{4}$$

A possible way of increasing the proton lifetime is to impose a supersymmetry constraint on the theory. One assumes that every boson (fermion) of the standard model has a supersymmetric fermion (boson) partner which (presumably) has not yet been observed.^{6,7} In such supersymmetric extensions of grand unified theories, coupling-constant renormali-

zations are changed; hence the unification mass $m_{\rm S}$ may be significantly altered.⁸ (The proton lifetime is proportional to m_S^4 and thus very sensitive to changes in m_s .) Indeed, an estimate by Dimopoulos, Raby, and Wilczek⁸ (DRW) found (neglecting Higgs multiplets) $\tau_{p} \approx 10^{45}$ yr while $\sin^{2}\hat{\theta}_{W}(m_{W})$ was essentially unchanged. Since that work first appeared, several groups have tried to construct realistic supersymmetric grand unified theories.^{9,10} In so doing, it was noted that m_S and hence τ_p exhibits a strong dependence on the number of relatively light Higgs isodoublets, N_H , present in the model.^{10,11} Since in realistic supersymmetric theories $N_H = 2, 4, \ldots$ (an even number because of an anomaly-cancellation requirement for their fermionic partners), τ_p generally turns out to be much smaller than the 10⁴⁵-yr DRW estimate and $\sin^2 \hat{\theta}_W(m_W)$ becomes somewhat larger than the nonsupersymmetric prediction in Eq. (1).

To ascertain more precisely the predictions of the class of supersymmetric GUT's outlined above, we have carried out a detailed investigation of coupling-constant renormalizations in such theories. Because most of our formal analysis is the same as the nonsupersymmetric case which has been described in detail elsewhere^{2,3} and the full supersymmetric two-loop β functions which we employ have been given in a recent paper by Einhorn and Jones,¹¹ we will merely outline our assumptions and present the final results.

We assume that the standard $SU(3)_c \times SU(2)_L \times U(1)$ model with N_H relatively light weak isodoublets and n_g generations of quarks and leptons is the correct low-energy theory. Supersymmetry is imposed on the spectrum of particles by requiring the gauge bosons to have spin- $\frac{1}{2}$ fermion partners, the ordinary spin- $\frac{1}{2}$ quarks and leptons to have scalar partners, and the Higgs scalars to have spin- $\frac{1}{2}$ fermionic partners. To simplify our analysis, we assume that all the added supersymmetric partners have equal mass $\mu \ge m_W$ and allow μ to vary.

Given the above assumptions, we compute

<u>25</u>

3092

BRIEF REPORTS

 $\hat{\alpha}_i(\mu)$, i = 1, 2, 3 (the effective low-energy couplings defined by $\overline{\text{MS}}$) for $\mu \ge m_W$ by integrating the standard $SU(3)_c \times SU(2)_L \times U(1) \beta$ functions^{3,11} up to μ . Then the supersymmetric two-loop β functions are employed to evolve the couplings from μ to m_S , the unification mass scale. We obtain

$$\hat{\alpha}_{1}^{-1}(\mu) = \hat{\alpha}_{1}^{-1}(m_{S}) - \frac{1}{2\pi} (-2n_{g} - \frac{3}{10}N_{H}) \ln \frac{m_{S}}{\mu} + \frac{1}{4\pi} \left[\frac{-\frac{88}{15}n_{g}}{9 - 2n_{g}} \ln \frac{\hat{\alpha}_{3}(m_{S})}{\hat{\alpha}_{3}(\mu)} + \frac{-\frac{6}{5}n_{g} - \frac{9}{10}N_{H}}{6 - 2n_{g} - \frac{1}{2}N_{H}} \ln \frac{\hat{\alpha}_{2}(m_{S})}{\hat{\alpha}_{2}(\mu)} + \frac{-\frac{38}{15}n_{g} - \frac{9}{50}N_{H}}{-2n_{g} - \frac{3}{10}N_{H}} \ln \frac{\hat{\alpha}_{1}(m_{S})}{\hat{\alpha}_{1}(\mu)} \right] , \quad (5a)$$

$$\hat{\alpha}_{2}^{-1}(\mu) = \hat{\alpha}_{2}^{-1}(m_{S}) - \frac{1}{2\pi} (6 - 2n_{g} - \frac{1}{2}N_{H}) \ln \frac{m_{S}}{\mu} + \frac{1}{4\pi} \left[\frac{-8n_{g}}{9 - 2n_{g}} \ln \frac{\hat{\alpha}_{3}(m_{S})}{\hat{\alpha}_{3}(\mu)} + \frac{24 - 14n_{g} - \frac{7}{2}N_{H}}{6 - 2n_{g} - \frac{1}{2}N_{H}} \ln \frac{\hat{\alpha}_{2}(m_{S})}{\hat{\alpha}_{2}(\mu)} + \frac{-\frac{2}{5}n_{g} - \frac{3}{10}N_{H}}{-2n_{g} - \frac{3}{10}N_{H}} \ln \frac{\hat{\alpha}_{1}(m_{S})}{\hat{\alpha}_{1}(\mu)} \right] , \quad (5b)$$

$$\alpha_{3}^{-1}(\mu) = \hat{\alpha}_{3}^{-1}(m_{S}) - \frac{1}{2\pi}(9 - 2n_{g})\ln\frac{m_{S}}{\mu} + \frac{1}{4\pi} \left[\frac{54 - \frac{68}{3}n_{g}}{9 - 2n_{g}}\ln\frac{\hat{\alpha}_{3}(m_{S})}{\hat{\alpha}_{3}(\mu)} + \frac{-3n_{g}}{6 - 2n_{g} - \frac{1}{2}N_{H}}\ln\frac{\hat{\alpha}_{2}(m_{S})}{\hat{\alpha}_{2}(\mu)} + \frac{-\frac{11}{15}n_{g}}{-2n_{g} - \frac{3}{10}N_{H}}\ln\frac{\hat{\alpha}_{1}(m_{S})}{\hat{\alpha}_{1}(\mu)} \right] .$$
 (5c)

Finally, using the relationship

$$\hat{\alpha}^{-1}(\mu) = \hat{\alpha}_2^{-1}(\mu) + 5\hat{\alpha}_1^{-1}(\mu)/3 \tag{6}$$

and the boundary conditions^{3,12}

٢

$$\hat{\alpha}_1^{-1}(m_S) = \hat{\alpha}_2^{-1}(m_S) - \frac{1}{6\pi} = \hat{\alpha}_3^{-1}(m_S) - \frac{1}{4\pi}$$
(7)

we find

$$\frac{\hat{\alpha}(\mu)}{\hat{\alpha}_{3}(\mu)} = \frac{3}{8} \left[1 - \frac{\hat{\alpha}(\mu)}{2\pi} (18 + N_{H}) \ln\left(\frac{m_{S}}{\mu}\right) + \frac{\hat{\alpha}(\mu)}{2\pi} + \frac{\hat{\alpha}(\mu)}{4\pi} \left[\frac{144 - \frac{384}{9}n_{g}}{9 - 2n_{g}} \ln\frac{\hat{\alpha}_{3}(m_{S})}{\hat{\alpha}_{3}(\mu)} + \frac{-24 + 8n_{g} + 5N_{H}}{6 - 2n_{g} - \frac{1}{2}N_{H}} \ln\frac{\hat{\alpha}_{2}(m_{S})}{\hat{\alpha}_{2}(\mu)} + \frac{\frac{8}{3}n_{g} + \frac{3}{5}N_{H}}{-2n_{g} - \frac{3}{10}N_{H}} \ln\frac{\hat{\alpha}_{1}(m_{S})}{\hat{\alpha}_{1}(\mu)} \right] \right] . (8)$$

Given a value for μ , we compute $\hat{\alpha}_i(\mu)$, and then determine $\hat{\alpha}_i(m_s)$ and m_s/μ by iterating Eqs. (5)-(8). Having obtained those parameters we next compute $\sin^2 \hat{\theta}_W(m_W)$ by iterating the formulas^{3,13}

$$m_W = 38.5 \text{ GeV}/\sin\hat{\theta}_W(m_W) \tag{9}$$

and

$$\sin^{2}\hat{\theta}_{W}(m_{W}) = \frac{3}{8} \left[1 - \frac{\hat{\alpha}(m_{W})}{2\pi} (10 - \frac{1}{3}N_{H}) \ln \frac{m_{S}}{m_{W}} - \frac{\hat{\alpha}(m_{W})}{2\pi} \left(\frac{20 + 2N_{H}}{9} \right) \ln \frac{\mu}{m_{W}} + \frac{5\hat{\alpha}(m_{W})}{18\pi} + \frac{\hat{\alpha}(m_{W})}{4\pi} \right] \right] \times \left\{ \frac{-\frac{32}{9}n_{g}}{9 - 2n_{g}} \ln \frac{\hat{\alpha}_{3}(m_{S})}{\hat{\alpha}_{3}(\mu)} + \frac{40 - \frac{64}{3}n_{g} - \frac{13}{3}N_{H}}{6 - 2n_{g} - \frac{1}{2}N_{H}} \ln \frac{\hat{\alpha}_{2}(m_{S})}{\hat{\alpha}_{2}(\mu)} + \frac{\frac{32}{9}n_{g} - \frac{1}{5}N_{H}}{-2n_{g} - \frac{3}{10}N_{H}} \ln \frac{\hat{\alpha}_{1}(m_{S})}{\hat{\alpha}_{1}(\mu)} \right] + \frac{-\frac{16}{9}n_{g}}{11 - \frac{4}{3}n_{g}} \ln \frac{\hat{\alpha}_{3}(\mu)}{\hat{\alpha}_{3}(m_{W})} + \frac{\frac{680}{9} - \frac{236}{9}n_{g} - \frac{19}{9}N_{H}}{\frac{22}{3} - \frac{4}{3}n_{g} - \frac{1}{6}N_{H}} \ln \frac{\hat{\alpha}_{2}(\mu)}{\hat{\alpha}_{2}(m_{W})} + \frac{\frac{16}{9}n_{g} - \frac{1}{5}N_{H}}{-\frac{4}{3}n_{g} - \frac{1}{10}N_{H}} \ln \frac{\hat{\alpha}_{1}(\mu)}{\hat{\alpha}_{1}(m_{W})} \right] .$$

$$(10)$$

The relationships given in Eqs. (5)-(10) include all leading and next-to-leading logarithmic corrections. In addition they contain all ordinary $O(\alpha)$ corrections.

Carrying out the iterative analysis described above for $n_g = 3$, $\mu = m_W$, $N_H = 2$ or 4, $\alpha^{-1}(0) = 137.035993$, and a range of $\Lambda_{\overline{\text{MS}}}$ values, we find the numerical results given in Table I.¹⁴ The proton-lifetime predictions in Table I were obtained by slightly modifying the standard SU(5) prediction³ to take into account the increase in $\hat{\alpha}_i(m_S)$, i.e., we used

$$\tau_n \simeq 3 \times 10^{-29 \pm 1} \times (m_S \text{ in GeV})^4 \text{ yr}$$
 (11)

Of course in specific supersymmetric models, τ_p may be substantially smaller than our estimate if superheavy-Higgs-boson-mediated amplitudes are significant. Also, as pointed out by Weinberg,¹⁵ there may be higher-order amplitudes of effective dimension 5 which give rise to proton lifetimes proportional to m_S^2 rather than m_S^4 (a potential disaster). We assume that such amplitudes are forbidden by some additional symmetry.¹⁵

What if $\mu > m_W$? In the leading-logarithmic approximation, one finds for $\mu > m_W$ that $\sin^2 \hat{\theta}_W(m_W)$ decreases by

$$\Delta \sin^2 \hat{\theta}_W(m_W) = -\frac{\hat{\alpha}(m_W)}{\pi} \frac{8N_H}{54+3N_H} \ln \mu/m_W \qquad (12)$$

and τ_p is reduced by a factor

$$(m_W/\mu)^{(48-8N_H)/(54+3N_H)} . (13)$$

So we see that for $N_H = 4$, varying μ has a more substantial effect on $\sin^2 \hat{\theta}_W(m_W)$ (about twice the $N_H = 2$ case); but it is less important for τ_p .

We have also examined the $n_g = 4$ case (assuming that the charged-particle members of the fourth generation have mass $\approx m_W$). We find that m_S increases by about 25% relative to the $n_g = 3$ case. However, because the unification coupling $\hat{a}_i(m_S)$ increases by almost a factor of 2, the final $n_g = 4$ prediction for τ_p is actually $\approx 30\%$ smaller than the three generation result. The extra generation is found to increase $\sin^2 \hat{\theta}_W(m_W)$ by about +0.001.

From the above numerical analysis we learn that supersymmetric GUT predictions are very sensitive to the Higgs content of the theory but not very sensitive to changes in μ (unless it is >> 1 TeV) or whether $n_g = 3$ or 4 (for $n_g \ge 5$ and $\mu \simeq m_W$ the couplings diverge before they can reach a unification point). If $N_H = 2$, τ_p is potentially observable (in planned experiments which will probe up to $\approx 10^{33}$ yr) if $\Lambda_{\overline{\text{MS}}}$ is near (or below) the Mackenzie-Lepage value of 0.1 GeV. It also helps somewhat if $\mu > m_W$. On the other hand, for $N_H = 4$, the τ_p predictions are very similar to the ordinary SU(5) predictions in Eq. (3). Hence the observation of proton decay in the range $\tau_p \approx 10^{30}-10^{33}$ yr can be compatible with supersymmetry.

Perhaps a more definite prediction of supersymmetric GUT's is that $\sin^2 \hat{\theta}_W(m_W)$ is larger than the standard SU(5) prediction in Eq. (1). Indeed, one might conclude that the experimental constraint in Eq. (2) already rules out $N_H = 4$ and disagrees somewhat with the $N_H = 2$ results (see Table I) if $\Lambda_{\overline{\text{MS}}} \simeq 0.1$ GeV. Those of course are the interesting cases in which τ_p is small enough to observe. There is, however, a possible way to circumvent the constraint in Eq. (2) which we now explain.

$\Lambda_{\overline{MS}}$ (GeV)	m _W (GeV)	$\sin^2\hat{\theta}_W(m_W)$	$\hat{\alpha}_3(m_W)$	$\hat{\alpha}^{-1}(m_W)$	$\hat{\alpha}_i(m_S)$	m _S (GeV)	$ au_p$ (yr)
$N_H = 2$					· · · · · · · · · · · · · · · · · · ·		
0.05	78.2	0.242	0.093	127.68	0.040	2.1×10^{15}	$6 \times 10^{32} \pm 1$
0.10	78.8	0.239	0.102	127.65	0.041	4.8×10^{15}	$2 \times 10^{34} \pm 1$
0.20	79.4	0.235	0.113	127.62	0.042	1.1×10^{16}	$4 \times 10^{35} \pm 1$
0.30	79.7	0.233	0.122	127.59	0.043	1.7×10^{16}	$3 \times 10^{36} \pm 1$
0.40	80.0	0.232	0.128	127.58	0.044	2.4×10^{16}	$1 \times 10^{37} \pm 1$
$N_H = 4$							
0.05	75.0	0.263	0.093	127.75	0.042	1.3×10^{14}	$8 \times 10^{27} \pm 1$
0.10	75.5	0.260	0.103	127.72	0.043	2.6×10^{14}	$1 \times 10^{29} \pm 1$
0.20	75.8	0.258	0.114	127.70	0.045	5.5×10^{14}	$3 \times 10^{30} \pm 1$
0.30	76.1	0.256	0.122	127.67	0.046	8.5×10^{14}	$2 \times 10^{31} \pm 1$
0.40	76.3	0.255	0.129	127.66	0.046	1.2×10^{15}	$5 \times 10^{31} \pm 1$

TABLE I. Supersymmetric GUT predictions for $\mu = m_W$, $n_g = 3$, and $N_H = 2$ and 4.

Deep-inelastic ν_{μ} scattering experiments measure $R_{\nu} \equiv \sigma(\nu_{\mu} + N \rightarrow \nu_{\mu} + X)/\sigma(\nu_{\mu} + N \rightarrow \mu + X)$ which in the standard SU(2)_L × U(1) model depends on two parameters ρ and $\sin^2 \hat{\theta}_W(m_W)$. A two-parameter fit to R_{ν} and $R_{\overline{\nu}}$ data gives¹⁶

$$\rho = 1.010 \pm 0.020 \quad , \tag{14a}$$

$$\sin^2\theta_W(m_W) = 0.236 \pm 0.030$$
 . (14b)

A one-parameter fit to R_{ν} data alone holding ρ fixed (and near 1) yields^{3,5}

$$\sin^2 \hat{\theta}_W(m_W) = 0.226 \pm 0.014 - 0.49(1 - \rho^2) \quad . \tag{15}$$

Since radiative corrections in the standard model reduce ρ to ≈ 0.99 , the quoted result in Eq. (2) follows. In a bigger, more complicated theory there may be new unaccounted for contributions to ρ . If one takes the view that they may be present at the level of a few percent [as allowed by Eq. (14a)], then only the much less stringent constraint in Eq. (14b) is applicable and it is certainly compatible with the predictions for $\sin^2 \hat{\theta}_W(m_W)$ given in Table I.

What could cause a small increase in ρ and thus raise the experimental value of $\sin^2 \hat{\theta}_W(m_W)$? New higher-dimensional Higgs multiplets are a potential source; however, since Eq. (14a) tells us that ρ is close to 1, new unaccounted for radiative corrections would seem to be more natural candidates. For example, one generally assumes in the radiative corrections that $m_t \approx 20$ GeV (or at least that $m_t^2 << m_W^2$).^{3,5} A very large *t*-quark mass would in-

- ¹H. Georgi and S. Glashow, Phys. Rev. Lett. <u>32</u>, 438 (1974).
- ²H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).
- ³W. Marciano and A. Sirlin, in *Proceedings of the Second Workshop on Grand Unification, Ann Arbor, 1981*, edited by J. Leveille, L. Sulak, and D. Unger (Birkhauser, Boston, 1981).
- ⁴P. Mackenzie and G. P. Lepage, Phys. Rev. Lett. <u>47</u>, 1244 (1981).
- ⁵A. Sirlin and W. Marciano, Nucl. Phys. <u>B189</u>, 442 (1981);
 C. H. Llewellyn Smith, and J. F. Wheater, Phys. Lett. 105B, 486 (1981).
- ⁶P. Fayet and S. Ferrara, Phys. Rep. <u>32C</u>, 249 (1977).
- ⁷E. Witten, Princeton University report, 1981 (unpublished).
- ⁸S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D <u>24</u>, 1681 (1981).
- ⁹S. Dimopoulos and H. Georgi, Nucl. Phys. <u>B193</u>, 150 (1981); N. Sakai, Z. Phys. C <u>11</u>, 153 (1981).
- ¹⁰L. Ibanez and G. Ross, Phys. Lett. <u>105B</u>, 439 (1981).
- ¹¹The two-loop supersymmetric β function can be obtained

crease ρ by¹⁷

$$\Delta \rho \simeq \frac{3\alpha}{16\pi \sin^2 \theta_W} \frac{m_t^2}{m_W^2}$$

[For $m_t \approx 240$ GeV one finds $\Delta \rho \approx +0.017$ which shifts the central value for $\sin^2 \hat{\theta}_W(m_W)$ in Eq. (2) up by about +0.017. Of course a fourth generation of fermions with large mass splittings among doublet partners would also add small positive corrections to ρ .¹⁷ Furthermore, in the supersymmetric theories we are considering there are assumed to be a sizeable number of additional fermions and scalars with mass $\mu \geq m_W$ (the supersymmetric partners of ordinary particles). Mass splittings between weak-isodoublet members (so far we have taken them to be degenerate¹⁸) will also contribute positive increments to ρ . In total, all such mass-splitting loop effects may add up and shift ρ by $\approx +(2-3)\%$.

In conclusion, our main result is that GUT's with supersymmetry breaking at $\mu \simeq m_W - 1$ TeV predict a proton lifetime in the range $10^{38} \ge \tau_p \ge 10^{29}$ yr and a weak mixing angle $0.23 \le \sin^2 \hat{\theta}_W(m_W) \le 0.26$. The actual predictions depend rather sensitively on the Higgs content of the theory. The lower (experimentally observable) lifetimes correspond to larger values of $\sin^2 \hat{\theta}_W(m_W)$ which disagree with deep-inelastic ν_{μ} scattering results unless $\rho > 1$. A more precise determination of ρ or an independent precise measurement of $\sin^2 \hat{\theta}_W(m_W)$ is clearly required to clarify the validity of supersymmetric GUT's and pinpoint their predictions.

from D. R. T. Jones, Phys. Rev. D <u>25</u>, 581 (1982). M. B. Einhorn and D. R. T. Jones [Nucl. Phys. <u>B196</u>, 475 (1982)] have also carried out a two-loop analysis of supersymmetric SU(5). Where numerical comparison is possible, our results are in complete agreement with theirs.

- ¹²W. Marciano and A. Sirlin, in *Weak Interactions as Probes of Unification*, proceedings of the Workshop, Virginia Polytechnic Institute, 1980, edited by G. B. Collins, L. N. Chang, and J. R. Ficenec (AIP, New York, 1981).
- ¹³W. Marciano, Phys. Rev. D <u>20</u>, 274 (1979).
- ¹⁴For $N_H \ge 6$ the predictions for τ_p are far below the experimental bound in Eq. (4) and hence not illustrated.
- ¹⁵S. Weinberg, Phys. Rev. D (to be published).
- ¹⁶J. Kim *et al.*, Rev. Mod. Phys. <u>53</u>, 211 (1981); I. Liede and M. Roos, Nucl. Phys. <u>B167</u>, 397 (1980).
- ¹⁷M. Veltman, Nucl. Phys. <u>B123</u>, 89 (1977).
- ¹⁸If m_1 and m_2 are both >> m_W [i.e., if any doublet receives an SU(2)_L × U(1) invariant mass], then we expect $\Delta m^2 = m_1^2 - m_2^2$ to be small and their modification of ρ to be insignificant, see G. Senjanović and A. Šokorac, Nucl. Phys. B164, 305 (1980).

.