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Magnetic fields and spontaneous neutron-antineutron transitions
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The effect of a constant-plus-time-periodic magnetic field on neutron-antineutron oscil-
lations is considered. The underlying self-adjoint system of linear differential equations
and the corresponding Hill*s equation are studied. An approximate analytic solution is
found for all times. By optimizing the growth of the antineutron probability, two free
parameters of the time-varying field are determined automatically.

In a recent paper by Amdt, Prasad, and Riazud-
din' the phenomenology of neutron-antineutron os-
cillations in the presence of magnetic fields was
developed. They determined by numerical methods
the optimum experimental conditions for these
fields. Here we solve this problem analytically.

Let the neutron be in a homogeneous time-
dependent magnetic field of the form

8(t) =Bo(1 rsincot—) .

In the presence of a fundamental baryon-mixing
force, parametrized in terms of a small frequency
co~, the time evolution of the neutron (antineutron)
wave function is found by solving the following
self-adjoint system of linear differential equations
with periodic coefficients,

dn ldt =ri = icots(t)n —i co n, —

where cos(t) =cott(1 rsincot) a—nd c =Pi= l. Ap-
plying unitary transformations,

n =Nexp i —cots(t')dt'
0

and

n =Nexp i cots(t')dt'
0

the system is reduced to

N =ico~F+ (t)N,
and

N = i co~F (t)N—,
where

t
F+(t)=exp +2i f cols(t')dt'

(4)

and

n= ico n+icos(t)n—,

At t =0 the beam contains only neutrons, so
n(0)=N(0)=1 and n(0)=N(0)=0. Thus the im-
plicit solution of Eq. (4) is

and

t)
N(t) —1+( ico ) f dt, F+(t, ) f dt~F (t2)N(t2),

The basic system (2) may be transformed into the corresponding second-order differential equation in
terms of dimensionless time x =cot,

n "(x)+Q(x)n(x)=0,
where

Q(x)=)I. +ia cosx —(2a Ir)sinx —(a l2)cos2x, A, =(co +co& )lco, a =cosrlco .
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= J"dx d' d—2vi exp(ivx +izcosx )
dx

=i (v+z sinx )exp(ivx +iz cosx) ivexp(iz) —.
(9)

Since Q(x) is periodic, the solutions will be Hill s
functions.

With the system represented by a Hill's equa-
tion, many powerful theorems may be brought to
bear on its solution. In particular, the Floquet-
Lyapunov theorem requires that the general solu-
tion of Eq. (6) has the form

n(x) =e pi(x)+e ™p2(x),
where pi and pq are bounded functions whose
periodicity is the same as that of Q. The generally
complex characteristic exponent a determines the
stability of the solutions. Conservation of the sum
of neutron and antineutron probabilities [the self-
adjoint property of the matrix of coefficients of the
system of Eq. (2)] causes the characteristic ex-
ponent to be purely imaginary, so the solution will
be double oscillatory. The trivial periodicity is
that of Q, namely, 2ir/c0.

The nontrivial periodicity is due to the charac-
teristic exponent a. Its deteimination is as diffi-
cult as finding the explicit solution of the Hill
equation. We expect

~

a
~

-2m/co~ —10 sec. As
will be seen later, the frequency c0 must be of the
order of the static-field frequency co&. In the
earth's magnetic field co& —10 sec ', and therefore
(2ir/co)-10 4 sec. We will refer to those two
kinds of oscillations as those of large and small
Hill's periodicity. They will become manifest in
our approximate solutions for large and small
times, respectively.

Let us first consider the small-time region and
calculate the antineutron probability to the lowest
order in (co t). By taking the first term of Eq. (5),
after straightforward manipulations we obtain

P~(t)=(co t)
i
I(x,z, v)

i
(8)

where

xI(x,z, v) = dx'exp(ivx'+iz cosx'),
0

with x =cot, z=vr, and v=2cos/co. The frequen-
cies co and co~, co~ &&co~, are considered as
known, while v and z [r and co in Eq. (1)] are con-
sidered as free parameters.

The integral of Eq. (8) becomes resolvable if we

apply the Bessel differential operator with respect
to the parameter z,

z +z +(z —v ) I(x,z,v)
dz2 dz

For integer values of v but arbitrary z, the inhomo-
geneity in Eq. (9) vanishes whenever x =2irN,
where N is any non-negative integer. Therefore the
solution, up to a multiplicative constant, is a Bessel
function,

I(n, z,x)=C(n, x)J„(z) . (10)

Comparing this result with the exact solution of
the integral of Eq. (9) in the limit of small z, we
find C=i "x, so that we have

I(n, z,x)=i "xJ„(z) . (11)
Thus, for a sequence of times tz (2'/——co)N
=(nn/co+). N, where n is the integer to be deter-
mined, the antineutron probability becomes

P„(t)=(co-~t) J„(z) .
It will be maximal for the choice n =z =0 (zero
external field), which is of no interest. Since

~
J„(z)

~

falls off rapidly with increasing n, the best
choice is, clearly, n =1, where Ji(z) assumes the
extremal value of 0.68 at z =nr =1.86, in agree-
ment with the values found by a numerical
analysis by Amdt, Prasad, and Riazuddin. ' Ac-
cording to Eq. (9) the ratio of the static-field fre-
quency to the time-varying frequency, v=2cos/co,
may propitiously be an integer. If this is the case,
the solution (11) of Eq. (9) is sufficient for practi-
cal purposes. The inhomogeneity just adds small
oscillations around the time-varying quadratic
growth in Eq. (12). The complete solution of the
inhomogeneous equation was obtained in the form
of a series of Bessel functions and we do not in-
clude it here. It is represented by the wiggling
curve in Fig. (1). The oscillations seen are those of
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FIG. 1. Antineutron probability for small times. The
wiggling curve is the complete evaluation of the integral
by means of a series of Bessel functions of Eq. (8). The
smooth curve is the integral approximated Qy Eq. (11).
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N(t) = y %2k+ i(t),
Ic =0

(13)

the small Hill's period and are the only oscillations
that exist in the perturbative solution to the lowest
order in (co~ t).

To obtain an approximate solution valid for all
times, we iterate Eq. (5) to get

N(t) = g N, k(t) .
k=0

(14)

Making use of the expansion of exp(+inr cosx} in
terms of Bessel functions, we obtain

N,„+,=( i co—/co)'"+'e'""
1 2k+1

i ' ' '' ''"+'Ji, ( nr) J—
~,(nr) Jt, ( —nr) J&,„,( nr)—

1 11 ~ &&2(l2+
X dX Ie dX2e

~ ~

0 0

~

~ ~ ~

X2 ix3(13—n) 2kX
2k+1 2k+1X dx3e . dx2k+ Ie0" 0

We note that when the integers li, 12, . . . ,12k+i run from —cc to + ao, and lm+n, the product of the ex-

ponential functions oscillates wildly but averages to a value roughly equal to zero. The essential contribu-
tion to the integral comes from the resonant configuration when all exponents vanish. The integrals thus
reduce to

[x "+ /(2k+1)!]5~i,n5i2, n5t&, n —' '~i&&+&„

so that we obtain

N, =i "e'""J "+'(nr}[( ico t) "—+'/(2k+1)!] . (15}

Now the absolute convergent series of Eq. (13) may
be summed to give

N(t) =e'"'" ' 'sin[co J„(nr)t] .

By the same procedure we obtain the neutron wave
function

I

varying configurations:

(n, r)=(1,1.85), (2, 1.55),(3, 1.40), . . . .

The corresponding ratio of Eq. (18) and the free-
oscillation probability, sin co~t, at small times is

N(t) =cos[co~J„(nr)t] . (17)

In the zero-field limit co& ——0, solutions of the
equations reduce to i sin(co —t) and cos(co t),
respectively. These are precisely the solutions of
Eq. (2) for the case cos =0. The sum of the neu-

tron and antineutron probabilities is manifestly
time independent and equal to 1.

We see that the antineutron probability at any
time (shown in Fig. 2)

O
cn.

0

t (C)
t

P„-(t)=sin [co J„(nr)t], (18)

is optimized by the same parameters, n =2'~/co
and r, determined at small times. Further, the an-
tineutron probability does not depend on the
static-field frequency explicitly; only on its ratio to
the frequency of the time-varying field. Having in
view the numerical properties of Bessel functions,
there is, of course, a series of extremal time-

OoOO ~43 e 86 1o29 1o73 2o16 2o59 3e03 3.46 3e89 4@33

TIME (10 4 sec)

FIG. 2. Antineutron probability for (a) zero magnetic
field, (b) constant-plus-time-periodic magnetic field, and
(c) small-time solution, Eq. (12).
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given by

J„(nr)=(0.58),(0.49),(0.43), . . . , respectively .

We should also like to point out that the solu-
tion to Eq. (18) does not allow a static-field limit,
which might be compared with the exact solution
of the basic system of Eq. (2) for B(t)=Bo, name-

ly,

P„(t)=(ro~/coo)~sin (coot), coo co~——+roti

This is obviously a consequence of the fact that the
solution depends only on the ratio n =2coii /co; the
static field gets "absorbed" into the average value

of the time-varying field. Thus within the neu-
trons lifetime the time-varying magnetic field can
shield the static field such that the antineutron
probability can be as large as one third of that for
the field-free case.
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