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Symmetries SU(3), @SU(2)L,g U(1)XU(1) arising from a specific class of models in-

volving the spontaneous breakdown of So{10)are considered. In these, two neutral vec-

tor bosons Z& and Zz arise. The Z& is expected to be very similar to the Zo of the stan-

dard SU(2)L XU(1) model. The most restrictive constraints, arising from the Novosibirsk

experiment on parity violation in atomic bismuth, imply 0.98 &M(Z& )/M {Zo)(1. The

Zz can be as light as (2.5 —3)M(ZO). Its effects in neutral-current interactions, cou-

plings, and production mechanisms are examined.

I. INTRODUCTION

Since the discovery of neutral-current interac-
tions of neutrinos in 1973,' a wide range of
neutral-current phenomena has shown remarkable
agreement with the standard SU(2) XU(l) unified

theory ' of the weak and electromagnetic interac-
tions. Nonetheless, a key feature of this theory
remains to be confirmed: The masses of the vector
bosons are predicted to be

M~+ ——83.0+2.4 GeV/c

Mz =93.8+2.0 GeV/c (1.2)

when radiative corrections at the one-loop level are
taken into account. It is quite conceivable that the
prediction (1.2) could be checked within the next
year or two. In this article we would like to exam-
ine a scheme in which small deviations from the
result (1.2) can point the way to interesting physics
at higher energies which, however, are still accessi-
ble to the present generation of accelerators. Even
if (1.2) turns out to be accurate to within about 2

GeV/c, we will show that there is a natural class
of theories, based on SO(10), permitting a second Z
(Zz) at as low a mass as about 2.5 times the Zo
mass. In this article we examine some of the prop-
erties and consequences of such a boson.

Our starting point is the analysis of Georgi and

Weinberg, in which it was shown that expanded

gauge theories with extra U(1) symmetries can lead

to results for neutral-current neutrino interactions

at Q~=O identical to those of SU(2) XU(1). (Oth-
ers have analyzed models more recently in which
charged-lepton interactions at Q =0 also are simi-
lar to those in the standard model. ) There has
also been. considerable effort in the more general
phenomenology of models with extra neutral vector
bosons. ' What we report here is a result which

appears to go beyond those known previously, and
indicates that extra Z's could be somewhat more
accessible in the 200—500 GeV range, without dis-

torting the picture at lower energies appreciably,
than may have been anticipated earlier.

The present discussion is a particularly conserva-
tive version of two-Z models. First, it is based on
the enlargement of the minimal grand unified
theory [based on SU(5)] to SO(10). This is a rela-

tively modest extension, from a group of rank 4 to
one of rank 5. The extra Z is an immediate conse-
quence of this increase in rank. Any grand unified

group beyond SU(5) will have at least one such ex-
tra Z. We are simply asking how low in mass the
lowest such Z can be. Secondly, in contrast to
some models, ' the "extra U(1)" is the only piece
of new physics in comparison with the standard
SU(2) XU(1) theory accessible at energies up to
several hundred GeV. This is a consequence in the
present model of the assignments of both fermions
and certain Higgs bosons [those breaking SU(2)
X IJ(1)XU(1) down to U(l), ] to the lowest-
dimensional spinor representation of SO(10). As a
result, we find that the neutral-current-to-charged-
current ratio of effective coupling strengths is na-
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SO(10)~SO(6) XSO(4),

SO(6)-SU(4)~SU(3),...,XU(1)~ L, ,

SO(4) —SU(2)L, X SU(2)g ~SU(2)L XU(1)g .

(1 3)

(1.4)

( l.5)

turally the same as in the standard model. Results
of this type also have been obtained by Deshpande
and Iskandar" and Smirnov. ' A consequence of
our approach is that the demands upon experimen-
tal precision are considerably more exacting than
in many other models.

The Georgi-Weinberg analysis can be applied
directly to a class of theories based on SU(3)„~„
XSU(2)L, XU(1)XU(l) derived from the successive
symmetry breakdowns

SO(10}as a grand unified model of the weak, elec-
tromagnetic, and strong interactions. All of our
considerations based on grand unified models will
be confined to this section. Subsequently, we shall
discuss only the SU(2) XU(1}XU(1) structures that
result from various forms of symmetry breaking in
SO(10). In Sec. II, we also estimate coupling con-
stants associated with each U(1) depending on as-
sumed forms of symmetry breaking.

The neutral-boson mass spectrum is analyzed in
Sec. III. Two Z's are discussed, one (Z, ) a few
percent lighter than the standard Z0 of Eq. (2),
and the other (Zz) heavier. In one variant of the
models we consider, we find the relation

(1—M& /M0 )(M2 /MD —1) = —, sin 8=0.34,

We find very similar results also for the chain

SO(10)~SU(5)XU(1),

SU(5)~SU(3)„)„XSU(2)L, XU(1)

(1.6)

There is, in fact, a limit in which the two chains
are equivalent. For properties of neutral weak
currents at Q =0, the results of (1.6) and (1.7) lie
between limits allowed for (1.3)—(1.5). We present
results for both chains which indicate that the
lightest neutral (massive) vector boson (Z&) could
be observed at a mass a few percent below Eq. (1.2)
without violating any constraints based on low-

energy experiments. Moreover, in such situations
there is a heavier boson (Z2) which should appear
at no more than several times the value (1.2).

As an example of the type of constraints we en-

counter, the most restrictive piece of information
in the schemes considered here turns out to be the
magnitude of parity violation in atomic-physics ex-
periments. ' Neutrino interactions at Q =0
provide no constraint whatsoever, as in Ref. 6.
Moreover, the interactions of polarized electrons
with protons and deuterons, while providing an
important constraint leading to the confirmation of
the "standard model", turn out to be affected very
little by the modifications made here for the ob-
served range of sin 8.

One constraint which could in principle be use-
ful with more precise experiments comes from
weak-electromagnetic interference effects in
e+e —+p+p . At present, these experiments
provide less of a constraint than the experiment of
Ref. 19 on parity violation in atomic bismuth.

We discuss some reasons for believing in the ex-
istence of an "extra" U(1) in Sec. II. These are
primarily based on the usefulness of the group

where MD, M~, and M2 stand for the masses of
ZD, Zi, and Z2. Other variants involve Z2 masses
of this same general magnitude: several times a ZD
mass if Zi lies a few percent below the standard
value.

The effective form of the weak Hamiltonian
(both at Q =0 and for nonzero momentum
transfer) is discussed in Sec. IV. Here we show
that very simple results hold at Q =0; these re-
sults can be seen immediately to lead to a form for
neutrino interactions identical (at Q =0) to the
standard SU(2) XU(1) ones.

The most stringent constraint on the present
models comes from experiments on parity violation
in atomic physics. These, and other effects in
charged-lepton —nucleon interactions, are treated in
Sec. V. Weak asymmetries in the process
e+e ~IM+p are discussed in Sec. VI.

The mixing of two U(1)'s can have small but
possibly measurable effects on branching ratios of
the Zi, in comparison with standard predictions
for Z0. The branching ratios for Z2 are quite dif-
ferent; most striking is the prediction

I (Z2 —+dd ) )5I (Z2~uu ),

which holds in most variants discussed here.
These branching ratios are discussed in Sec. VII.
If there exists a right-handed neutrino X and
M(N) «M(Z;)/2, we find an amusing relation

I (Z;~NN+vv+uu) =f'(Z;~ee+dd)

independent of mixing effects. A heavy Z2 also
can decay, via mixing, to 8'+ 8' and we find the
corresponding branching ratio to be surprisingly
large.
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Because of the relatively weak predicted cou-
pling of Z2 to uu, production of Z2 in pp and pp
collisions is expected to be nearly an order of mag-
nitude more difficult than production of a Zo cou-
pled in the standard way, but with comparable
mass. These estimates are set forth in Sec. VIII.

In Sec. IX, we summarize our results and sug-

gest further experimental and theoretical studies.
An appendix deals with technical matters concern-
ing combinations of U(1) symmetries, which may
arise in different reductions of SO(10).

II. GRAND UNIFICATION
AND A SECOND U(1)

A. Why an extra U(1) is likely

singlets, would provide a natural explanation for
the absence of neutrino mass. We reserve judg-
ment on whether this is a liability or an asset,
merely noting that claims exist ' that m (V, )+0,
and further experiments are planned to settle the
question.

The sets (2.1), (2.2), and (2.3), (2.4) can be com-
bined very simply into single representations of a
group of one higher rank. This is the group
SO(10).' The orthogonal groups of the form
SO(4n +2) have two 2 "-dimensional spinors
transforming as complex conjugates of one an-
other. Thus, SO(6) [-SU(4)] has a 4 and a 4~

representation, while SO(10) has a 16 and a 16*.
With the convention adopted in Ref. 37, we may
incorporate the set (2.1},(2.2) into a 16~ and (2.3),
(24) into a 16,

5: (d, e+,v. )R

10*: (d, u, u, e )R,

5*: (d,e-,v, )L,
10: (d, u, u, e+)I .

(2.1)

(2.2)

(2.3)

(2 4)

Here the subscript denotes helicity: P~ I, =(I+y5)
X P/2.

There is no right-handed neutrino or left-handed
antineutrino in the set (2.1)—(2.4). Thus the
minimal SU(5) model, without additional SU(5)

The standard SU(2) X U(1) model of the weak
and electromagnetic interactions ' may be com-
bined with color SU(3) into a minimal grand unify-

ing model based on SU(5). 9 This group, of rank

4, is the only acceptable group of that rank for a
synthesis of the strong and electroweak interac-
tions. The rank counts the number of gauge bo-
sons which do not change diagonal quantum num-

bers of the particle absorbing or emitting them:
two color gluons (corresponding, e.g., to color iso-

spin and hypercharge), the photon, and the Zo.
The SU(S) model has the virtue of simplicity.

Furthermore, it leads to a prediction of sin 0 in ac-
cord with experiment, ' ' and to the successful
prediction ' (if an additional assumption is made)

mb -3m, . However, there are several reasons why
one might expect the SU(5) description to be only

part of the story.
In the SU(5) model, left-handed and right-

1

handed charged leptons or charge ——, quarks be-

long to different representations, so that parity or
charge conjugation has complicated properties
under the group. The lightest quarks and leptons
belong to the representations

5 =(d, e+,v, )g,
16~= 10*=(d,u, u, e )~,

1=Ng,
(2 5)

5*=(d,e,v, )L,
16= 10=(d,u, u, e+)I,

1=Ng,

(2.6)

by merely introducing one additional two-compon-
ent object X. As a consequence, the neutrino can
acquire a mass, though it is plausible that this
mass can be very tiny.

The group SO(10) has rank 5, one higher than
SU(5). Consequently, it has one more neutral bo-
son. The mass of this extra boson is not at all well
known. It could be as heavy as ) 10' GeV, or as
light as a couple of hundred GeV. In the latter
case, which is the one we shall consider here, this
boson could be within reach of experiments con-
templated in the next few years.

The class of models we shall examine here is one
in which the only structure of SO(10) which sur-
vives down to "low" energies is SU(3) X SU(2)
XU(1)XU(1). By low energies we mean values
below —1 TeV. The second U(1) is that associated
with a generator of SO(10) not contained in SU(5}
and reflects the difference in rank of the two
groups. This class of models is perhaps the most
demanding of experiment; there are other versions
of SO(10) with charged vector bosons coupling to
right-handed currents which make much more
spectacular predictions for physics in the several-
hundred-GeV range, and for low-energy
charged-current processes.
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B. SOt10) and its reduction to subgroups

We shall adopt a convenient language for SU(n)
and SO(2n) algebras which makes use of a geomet-
ric representation of generators and representation
members. '

Generators outside the Cartan subalgebra may be
represented by linear combinations of unit vectors
e; pointing along the ith axis in Cartesian n-

dimensional coordinates. These combinations are

members of the Cartan subalgebra) on these vec-
tors is not affected by a shift of these vectors by a
constant amount in each coordinate: -const
)&(1,1, 1, . . . , 1). For the set (2.7) this is readily
apparent, while for members of the Cartan
subalgebra it follows from the property that the
sum of the components of vectors representing
these members vanishes for SU(n). Thus, for
SU(2), the sum of the components in (2.10) van-
ishes, while for SU(3) the corresponding vectors are

+(e;—ej ) (i &j= 1, . . . , n) for SU(n),

(2.7)

I3~( —,, ——,,0),
I 1 2I'~( ————)3y3P 3

(2.13)

(2.14)

and

+(e;+ej ) (i &j =1, . . . , n} for SO(2n) .

(2.8)

I+~+(e)—eg), (2 9)

while the third component of isospin corresponds
to a vector with components

1 1I3~( —,, ——,) .
I

Representation members also may be denoted by
vectors in the n-dimensional Cartesian space.
Their charges may be ascertained by taking scalar
products with the corresponding vectors associated
with members of the Cartan subalgebra.

Members of the fundamental representation of
SU(n) may be denoted by vectors with components

(2.10)

n-(1,0,0, . . . ); (0, 1,0, . . . );;(0,. . . , 0,0, 1),

(2.11)

n~- ( —1,0,0, . . . ); (0, —1,0, . . . );

(0, . . . , 0,0, —1) . (2.12)

The action of all generators of SU(n) (including

Members of the Cartan subalgebra ("charges"} may
be represented by vectors in this n-dimensional
space whose scalar product with an element
changes the corresponding charge. Thus, for ex-

ample, the isospin-raising and -lowering operators
in SU(2) correspond to

and both sums of components vanish.
The group SU(n) is contained in SO(2n) as one

may see by a simple construction. The group
SU(n) preserves the scalar product a* b for com-
plex vectors in n-dimensional Euclidean space.
This product is

a* b =(Rea i lm—a) (Reb +i Imb)

= Rea.Reb+Ima Imb

+i (Rea Imb —.Ima. Reb ) . (2.15)

Now imagine a 2n-dimensional real vector com-
posed of (Rea, Ima). An SO(2n) transformation
preserves the product

(Reb, Imb) (Rea, lma ) =Re(a ~.b ), (2.16)

so every SU(n) transformation preserving (2.15) is
an SO(2n) transformation preserving (2.16). Thus
SU(n )C SO(2n}.

Since SO(2n) is of rank n while SU(n} is of rank
n —1, the Cartan subalgebra of SO(2n} contains
one additional generator in addition to those of
SU(n). This generator may be represented by a
vector proportional to (1,1, . . . , 1), i.e., by a vec-
tor all of whose components are equal.

Spinor representations of SO(2n) also have a
simple geometric interpretation in the present
language. Their members correspond to vectors in
the n-dimensional vector space pointing to vertices
of a hypercube with coordinates

1 1 1

Spinor of dimension 2"

1 1 1 1

( ——,, ——,, —„.. . , —,)+perms. ,
1 1 1 1

( ——,, ——„.. . , ——,, + —, )+perms. ,

(even no. of—signs),

(2.17)
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1 1 1

( p y pp p p }+perms

(Spinor of dimension 2" ')'
+perms. ,

(odd no. of—signs) .

(2.18)

If n is even, the two spinors are inequivalent and
real (equivalent to their complex conjugates). Here
complex conjugation may be thought of as reversal
of sign of all the components, as in (2.11) and

(2.12). If n is odd, the spinors (2.17) and (2.18) are
complex conjugates of one another.

Let us adopt a normalization for generators in
the Cartan subalgebra such that the vectors V;

representing them obey

normalization other than (2.19)]:

V(Q)=( 3 y 3 y 3 tlt0)

= V (I3L ) +V5/3 V( Yg ) . (2.26)

Thus charge conjugation corresponds to inversion
of the first four components of vectors denoting
representation members. The (baryon number)—
(lepton number) may be denoted by

V; VJ ———,5,J (&,J =l, , r), (2.19)
(2.27)

where r is the rank of the group. Then a con-
venient set for SU(5) is

An alternative expression for the charge is

color SU(3): V(I3, )=(—,, ——,,0,0,0), (2.20) V(Q) = V(I3L, )+V(I3g)+, (2.28)
V(8 L)—

2

V( Y, ) = (1,1,—2,0,0),1

2 3
(2.21)

SU(2)L, . V(I3L ) =(0,0,0, —,, ——,), (2.22)

U(1)r . V(Yg )= ( —2, —2, —2, 3,3) .
1

2 15

(2.23)

For SO(10), we may take in addition

(2.24)

Other familiar charges may be expressed in
terms of the vectors (2.20) —(2.24). For example,
with the convention we have adopted,

V(I3a ) =(0,0,0, —,, —, ) . (2.25)

The parity operation thus corresponds here to in-

version of the fifth component of vectors denoting
representation members. The charge may be
represented by a vector V(Q) [the tilde denotes a

well known from the study of left-right-symmetric
models of the electroweak interactions.

As we have mentioned in Eqs. (2.17) and (2.18),
the members of the 16-dimensional spinor of
SO(10) may be represented by alternate vertices of
a hypercube with Cartesian coordinates + —, in a
five-dimensional space. The conjugate 16-dimen-
sional spinor is represented by the other sixteen
vertices of this hypercube. The members, and their
corresponding charges, are shown in Table I.

The decomposition of SO(10) spinors into a
five-dimensional space may have deeper signifi-
cance in terms of composite models. These
models envision quarks and leptons as composed of
five distinct objects, each of two varieties, which
can be identified with the five coordinates in the
Cartesian space.

The decomposition SO(10)~SU(5)XU(1)z has
been performed in Table I. Notice that 2V 10X
just counts the number of positive signs minus the
number of negative signs in the spinor
—,(+ 1,+ 1,+ 1,+ 1,+ 1). Different SU(5) representa-

tions have different values of 7, and the sum of 7
over all members of an SO(10) representation van-
ishes as it should. SU(5) has the further decompo-
sition

SU(5)~SU(3), XSU(2)L, XU(1)r
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TABLE I. Members of the 16-dimensional representation of SO(10). Shown are left-handed spinors. The CP opera-
tion reverses all coordinates in the five-dimensional weight space and all charges.

SU(5)
representation 2v 10+ Particle

Signs in

weight vector
—(+1,+1,+1,+1,+1)

10 2

3

1

2

2

3

1

2

1

3

e+

1

3

eL,
1

2

&eL.
1

2

a breakdown which should occur around 10'
GeV.

The decomposition SO(10)~SO(6) XSO(4) also
is immediate in terms of the five-dimensional vec-
tor space utilized here. We simply take the first
three components to represent SO(6) and the last
two to represent SO(4) in accord with (2.8). The
Cartan subalgebra of SO(6) contains Ii, (2.20), F,
(2.21), and 8 I. (2.27). The C—artan subalgebra of
SO(4) contains I31 (2.22) and IM (2.25). We note
that SO(6)-SU(4) has the further decomposition
SU(4}~SU(3)XU(1)ii L, and SO(4)-SU(2)l.
X SU(2)ii is expected to break down to no higher a
symmetry than SU(2)L XU(1)ii by energies of
several hundred GeV.

Thus, whether SO(10) breaks down initially via
SU(5) XU(1) or SO(6) XSO(4), the structure surviv-

ing at an energy of several hundred GeV should be
no richer than SU(3) XSU(2) XU(1)XU(1).

C. Higgs-boson representations

We now discuss the specific choices of patterns
of symmetry breaking which led to a very simple
form of the effective neutral-current Hamiltonian
at Q2=0. As a result of this choice, we shall find
that neutrino neutral-current interactions at Q =0
turn out to be identical to those in the standard
model.

The group SO(10}could be broken all the way
down to SU(5) at a mass scale M if gauge bosons
are coupled to a 16-dimensional representation of
SO(10) whose SU(5) singlet piece acquires a large
vacuum expectation value ( )M). We shall not
consider this possibility further; it leads to the
standard model at low energy.

A Higgs-boson multiplet belonging to the adjoint
(45-dimensional) representation oF SO(10) has the
decomposition
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SO(10)~ SU(5)
45 = 1+10+10*+24

The SU(5) singlet may be used to break SO(10)
down to SU(5) XU(1)r, and the 24-piet has a
member which can break SU(5)~SU(3), X SU(2)L,
XU(l)r .

The breakdown SO(10)~SO(6)X SO(4) can uti-
lize a 54- or 210-dimensional Higgs representa-
tion. ~ At this point our symmetry [SU(4)
X SU(2)LX SU(2)z] must be broken down to
SU(3), XU(1)s L, XSU(2)L, XU(l)g. We assume,
in accord with constraints derived in Refs. 45 and
46, that this occurs somewhere above 10 GeV.
The 210-dimensional representation contains a
(15,1,3) of SU(4) X SU(2)L, X SU(2)~, which is capa-
ble of performing the necessary breaking.

At a mass of several hundred GeV, then, we
have either the symmetry

& (A) =SU(3), XSU(2)L, XU(1)r XU( I )r (2.30)

or

S(&)—=SU(3), X SU(2)g XU(I)s, XU(1)g .

(2.31)

To break the symmetry down further we may
choose a Higgs field belonging to the 16-dimen-
sional representation of SO(10). We wish to
preserve SU(3), XU(1), , so this member must be
colorless and neutral. From Table I, we see there
are two candidates analogous to v and W. We may
denote them by

P,~—,(1,1, 1,1,—1)c5 ~,

the 16-dimensional SO(10) spinor, the field P~ is
taken to have charge 2U 101=3. This is a very
specific assumption which we can only motivate by
reference to SO(10) at present.

The Higgs field Pq has I3L ——0 and Ys ——0, so it
does not affect charged-current phenomenology.
Its charge 2V 10' is taken to be —5, as is ap-
propriate for an SU(5) singlet belonging to the
SO(10) 16-spinor.

In the decomposition

SO(10) SO(6) X SO(4) -SU(4) X SU(2), X SU(2),

which leads to manifest left-right symmetry, the
16-spinor reduces to

SO(10)~ SU(4) X SU(2)L, X SU(2)g

16 = (4,2, 1) +(4', 1,2)

(2.34)

The boson P~ is the only neutral particle belonging
to (4,2,1), while Pz is the only neutral particle be-

longing to (4~,1,2). The left-right symmetry be-
tween P~ and Pz is apparent from a comparison of
their I3L, and I3+ assignments in Table II.

One could ask whether Higgs bosons belonging
to another low-dimension representation of SO(10)
could have been chosen in place of 16-piet mem-
bers to break SU(2)XU(1)XU(1) down to U(1), .
We have not performed an exhaustive study, but
find that the simplest alternative, members of the
vector 10-dimensional representation of SO(10),
will not be satisfactory, as the end result of this
choice remains an unbroken U(1) XU(1) symmetry.

(2.33)
D. Symmetry breaking, mass scales,

and coupling constants

We shall examine four limits, two based on the
breakdown of SO(10) to S(A) =SU(3), X SU(2)L
XU(i)r XU(1)r and two based on the breakdown

to S(B)=SU(3), XSU(2) XU(1) XU(1)„.
These proceed via the chains (1.6) and (1.7) and

We denote the corresponding vacuum expectation
values by v~ and vq. The quantum numbers of
these fields are shown in Table II.

The Higgs field in the "standard" SU(2) XU(1)
1

model is P&. It has I3r ———,, Y~ =2(Q I3L)—
= —1. By virtue of its belonging to the 5*-
dimensional representation of SU(5) contained in

TABLE II. Assumed Higgs bosons leading to SU(2))&U(1)&U(1)~U(1)

Field P;

1+—
2

0 1

2
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SU(3) ()C~U(1)g, 2~SU(2)1., 3~ c.
B.2. Here ~:.-SU

(a)
I

M„
I

I

Mx

A. I

MU™x

46, 48or '

'(2M' ) =128.3,a =a

Mw ——80 GeV,

'(2M' )=10,a3 =a3

and

a-'
~ 1 5 0x =sin 0= +

(2.36)

(2.37)

IOID

(GeV)

IPI5Ip

Q/2
ou ling-constant behavior as funnction of

SU(3).XSU(2)'XU( 'w a

re the first and secon
(.. 2

C se A. 1 noted in
h same mass).lace at t e sabreakdowns take p

Here 5~SU(5).

MU ——Mz,
2a — '= —a 'cos 8,a~a -'=a, —= —,a-

A. 2 [Fig. 1(b)]

MU ——=Planck mass

= 1.2X 10' GeV,

(2.38}

(2.39)

(2AO)

re a plication of radi-

chain
use

fhWe examine two
'

leading to S(A):

A. 1 [Fig. l(a)]
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2
55 MU

ay =al + ln
12m.

(2A1)

Here a; =g; /4n. (i =X,1), where g; are the cou-

plings associated with U(1}z and U(1)r as normal-

ized in Eqs. (2.24) and (2.23), measured at

Q =2M' . The resulting coupling constants are
shown in Table III.

The breakdown to S(A} illustrated in Fig. 1,
leads to two U(1)'s, both of which contribute to the
electric charge. The initial breakdown of SO(10) to
SO(6) X SO(4) can occur at a unification mass MU
confined within the limits

Mii exp (a ' ——as ') =3.2X10' GeV &MU &M+exp (a 'x —as ') =2.6X10' GeV .
11 11

(2.42)

2MU

6w Mg M4I
(2.43)

and

2
8 I 11 MU M/I——,aq —— ln

3m
(2.44)

They are hence correlated. If we eliminate MU
from (2.43) and (2.44), we find

2
(MziM4i)' '=Ms exp [a '(1—2x) ——a, ']

22 3

[The limits here are somewhat different than those
quoted in Refs. 46 and 48 as a result of the choice
(x3 '(2M+ ) = 10, motivated by a .recent analysis
of Y decays. ] The mass scales M4i, Mqi of the
subsequent breakdowns SU(4) ~SU(3)„~„
XU(1)s L and SU(2)ii~U(1)z are governed by
the constraints

22 21M
ag ——a x + ln

12m
(2.47)

(2.48)

where the factor of 20 comes from uncertainties in
the t-quark mass, Higgs meson structure, phase-
space effects, and the value of

~

%(0)
~

for two
quarks inside a proton. Present limits are

Ug] p & 10 —10 ' yr, very close to the
upper limit based on (2A8} and (2.35).

III. MASS MATRIX

The unification mass in case B.2 [and also in the
SU(5) cases, Eq. (2.35)] is low enough to cause
detectable proton instability. We summarize previ-
ous calculations by the expression"

P 4

r„„,ieo„=(5X 10 yr)(20)+-'
6)(10' GeV

=3.6X10' GeV. (2.45)
A. Formalism

The upper bound in (2.42) comes from (2.43)
with M4i ——MU (the largest value of M4i). Then

M&I is as small as possible. This case, which we
call (B.l), is illustrated in Fig. 2(a).

The lower bound in (2.42) comes from (2.44)
with Mzi ——MU (the largest value of Mq&). Then
M4I is as small as possible. The corresponding
behavior of coupling constants for this situation,
denoted (B.2), is shown in Fig. 2(b).

We may summarize the behavior of coupling
constants in cases B.1 and B.2 in Table IV. The
couplings shown in this table are related to masses

by

TABLE III. Couplings az ' in SO(10)~SU(5)
x U(1)g.

Case MU

The source of gauge-boson masses in an
SU(2) XU(1), XU(1}b Lagrangian with two Higgs
fields Pi and Pz is a kinetic term of the form

~x=(D"Pi) (D„gi)+(D"Pg)t(D„gp) . (3.1)

Here DI' is a covariant derivative, expressed
in terms of SU(2) and U(1) generators T, T„'rb and

] I 33 4IM
a4] ——ay + ln

12~ M~2
(2.46)

A. 1

A.2
M~ ——3.2 &(10' GeV

Mp] k = 1.2)& 10 GeV
59.3
90.0
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TABLE IV. Masses and couplings in SO(10)~SO(6)XSO(4)~SU(3) X SU(2)L X
U(1)g I. X U(1)g.

Case MU (Gev) m4, (Gev) M2~ (GeV) +41

B.1
B.2

2.6X 10"
3 2X10'

2.6X 10'
3 9X10

4.8X 10"
3.2X 10'4

68.5
53.1

53.1
63.4

couplings g2,g„gb as

D"= r}"+i (g T W"+g, T B,"+gb TbBg ) .

(3.2)

2
V1

g
2 —g2ga —I.

gz R0 —gaga —z, R
—g2gs I, gags—IR gs 1. (1+R)

The fields W", B,", and Bt' are the SU(2), U(l)„
and U(l)b gauge fields.

(1) For the symmetry chain S(A) based on
SU(5) XU(1), we obtain a mass matrix of the form

in the basis space

(3.10}

M =Mop2 2 2

where

Mp=(g +g' )' u /2

is the mass of the standard Zp,'

) 1/2g

(3.3)

(3.4)

(3.5)

is the conventionally normalized coupling associ-
ated with U(1)r 'and

I3R

(B —L )/2

(3.11)

The coupling constant g4i
—= ( —,)' gs L is associ-

ated with a generator of SO(10) normalized in the
manner (2.19). The subscript denotes the origin of
the corresponding U(1) in the breakdown SU(4)
~SU(3), XU(1). We have already discussed the
behavior of a4i '=4m/g4i in Eq. (2.46).

cos 0 —sin8 cos8 cos83g
10

p = —sin0cos0 sin 0
—3g~ sin8

10

Here

and

g —=gx/(g2'+g'}'" (3.7)

3g
10

cos8 sin8 g (»+ —,R)
—3g ~ ~p 9 5

10

(3.6)

B. Eigenvectors and eigenvalues

L

sing cos8

~
Zz) = —sing sin8

cosP

(1}For the symmetry S(A), the normalized
eigenvectors of (3.6) may be written

sin0 cos((}cos8

~
y) = cos8;

~

Zi ) = —cosP sin8

0 —sing
(3.12}

R=—u2 /ui

The matrix (3.6) is expressed in the basis space

(3.8)
The photon

~ y) corresponds to zero eigenvalue.
If we define e and g by

I31.

~w/2

x

(3.9)

p IZi)=(1—&) ~Zi)=(Mi /Mp') ~Zi), (313)

p'
i Z~ ) =(1+i})

i Z, ) =(M, '/M, ')
i Z, ), (3.14)

(2) For the symmetry S(B) based on SO(6)
X SO(4), the mass matrix takes the form

then

tang =i/10m/3g, (3.15)
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so

cot/ =V 10'/3g,

2
9 gx

~ I= ]pg =
1o g '+g'

(3.16)

(3.17)

mass for not very large values of' R, while the mass
of the heavier one grows only as v R . As we shall
see, present experiments (parity violation in atomic
bismuth is the most restrictive) exclude values of R
below about 10. This implies typical values of

g —e=g [—„+—,R]—1. (3.18)

The masses resulting from Eqs. (3.17) and (3.18)
are shown in Fig. 3(a) for the two choices of gr
noted in Table III. Also shown are tick marks
corresponding to values of R. For large R we have

g= —,g R +const. and hence e= —„R, independent

of g . Thus, for large R, in the S(A) scheme, we
have

9M)/Mp-1 ——,pR . (3.19)

The masses of Z~ and Z2 hence are correlated with
one another. Moreover the trace of p is equal to
the sum of its eigenvalues, so that

Mi/Mp &0.98,

M2/Mp )2.5 —3

(3.20)

(3.21}

and

M)1—
Mp

2

Mp 2 2
—1 =eq=-x 0 34.

(3.22)

There is a particularly simple limit of (3.17}cor-
responding to case A.l. When SO(10) breaks down
to SU(5) XU(1)r at the same mass at which SU(5)
breaks down to SU(3) XSU(2}XU(1), we have

gr =gi =( , )'"-g', so

g = —,g' /(gq +g' )= —,sin 8= —,x

The lighter Z can be very close to the standard

4

0

Ol

CASE A.2

a

N
X

20

Thus, when Mi/Mp &0.98, M2/Mp&3. 1. For
smaller values of gr (as in case A.2), er1 may be
smaller and the Z2 mass need not be quite as high.
Nonetheless, in many of our applications we shall
take nominal values Mi/Mp=0. 98 M2/Mp=3. 1

as examples to determine the precision of experi-
ments needed to detect the second Z.

An extreme limit (outside the bounds set in
Table III}occurs when g~0, so that e~1——,g R,

]p g . This leads to a solution ' with Z
~ very

light and Z2 just above the standard Zp mass.
(2) For the symmetry S(B), diagonalization of

the mass matrix (3.10) leads to the eigenvalues de-
picted in Fig. 3(b). Two limits are shown, corre-
sponding to the coupling constants a~=4mjgs i. and az. 4njg~ enu——mer. ated in

2 —1

Table IV. The qualitative behavior of the masses
resembles that in the previous two cases.

For case S(B), a simple relation [reducing to
(3.22) in case A. l] which holds in general is

2
3 g4i

p'g = x (3.23}2 g

2.2

.90

2.5
I

.92 .94
I

.96
Mi /Mo

I

.98

FIG. 3. Relations between M2/Mp and M~/Mp as
functions of R:—(v2/v] ) (labels on curves). (a) Cases A
[SU(5) X U{1)]. {b) Cases 8 [SO(6)X SO{4)].

IV. NEUTRAL-CURRENT COUPLINGS
AT Q2=0

The standard SU(2)z XU(1)r model has a weak
neutral-current —current effective Hamiltonian of
the simple form
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, [yy (I3L, —sin'8Q)y]
V)

X [fy„(I3L—sin 8 Q)1(t), (4.1)
$(B): X

4

g
2 2

4

gZ V2
2 2

(4.11)

when we assume only the Higgs field Pi is present.
Georgi and Weinberg have shown how to gen-

eralize (4.1) to SU(2)L, XU(1), XU(l)b models. Let
U(1), be a U(1) contributing to the electric charge

The specific forms of the weak neutral-current
Hamiltonian (4.5) are then found to be

$(A): A b =A jv+ z [gy"(I3ji ——,cos 8Q)g]
V2

Q =I3I +Co To +Cb Tb ~ C~+0 .

Specifically for $(A),

~w
Q =I3L+ , (choose a = Ys ),

2

(4.2)

(4.3) and

X [gy„(I3~——,cos 8Q)g]
(4.12)

~br y (ey n'e)(ey nje)(~ )'j
ij =2,b

where

(4.5)

while for $(B),

B —L
Q =I31 +I3ji+ (choose a =8 L) . (—4.4)

2

Then, let X;j denote the submatrix of M corre-
sponding to SU(2)L, XU(1)b. At Q =0 the weak
neutral-current effective Hamiltonian takes the
orm

2

$(B): Ab' ——An+ q gy" IM — ~Q g
V2

2

Qy„ I3z —
~ Q (t'

(4.13)
Equation (4.13) also follows immediately from the
manifest left-right symmetry of the model based
on SU(4) X SU(2)L, X SU(2)s. To derive (4.12), it is
helpful to use the relation

, (I3I —sin 8—Q)—( —, )'~
2

nz gz Iu—— Q=g—~(I3L —sin 8Q) (4.6)
g

2

3 2=—2(I,j, ——,cos 8Q) (4. 14)

a11d

2

nb gb Tb
p CbQ

gb

The specific forms of (4.7) are

$(A): nb ——grX

and

2

$(B): nb=gji I3ji ~ Q
gz

(4.7)

(4.8)

(4.9)

to combine terms which appear at intermediate
stages of the calculation. The identity (4.14) can
be easily verified with the help of expressions given
in Sec. II. [We thank C. N. Leung for showing us

this simple way to derive Eq. (4.12).]
In the limit in which SO(10) breaks down at a

single mass all the way to SU(3), X SU(2)L, XU(1)
X U(1), the schemes $(A) and $(B) are equivalent,
and the Hamiltonians (4.12) and (4.13) should coin-
cide. They do, since in this limit all the U(1) cou-
plings are equal,

The submatrix X;j has an inverse X ', which is —2 —2 & —2 —2 2/1
gg —g] = gg = 5e cos 0. (4.15)

$(A): X
5g2 A' V1 V2

»i g2gX
2

4v 10

(4.10)

or

2
5 2 2 1 g2gX

(~Ui + SU»gr

g 2V 2

4

The schemes $(A) and $(B) are not equivalent
when the couplings gz, g4~, g~, and g& are not all
equal. This may be shown by an application of
Schur's lemma, noted in the Appendix.

An immediate consequence of Eqs. (4.12) and
(4.13) is that the low-energy neutral-current in-

teractions of neutrinos are not affected by the addi-
tional U(1). This has been known for some time
for theories based on SU(2)I XU(1)ji XU(1)s
but it does not seem to have been noticed for
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SU(2)L XU(1)r XU(1)&, and some contrary results

appear in the literature.
The form (4.12) based on S(A) may be thought

of as lying between extreme limits specified by
(4.13) and S(B). These limits are depicted in Fig. 2
(cases B.l and B.2). Notice that the form (4.12) is
independent of g&, and hence applies for cases A. 1

and A.2, and all intermediate versions of S(A).
The derivation of Eqs. (4.12) and (4.13) is a ma-

jor result of this paper. We reiterate that their
form follows from specific choices of fermion and

Higgs representations set forth in Sec. II. In the
next section we apply the results at Q =0 (and in
Secs. VI—VIII also at Q & 0) to several reactions
using standard phenomenological analyses.

V. COUP LINGS
IN ELECTRON-NUCLEON EXPERIMENTS

The parity-violating electron-quark neutral-
current Hamiltonian at Q =0 may be written as

GF~iP = f(el'")'se)[ci (&7&»+Cid(dl~d)]+(e)' e)[cz (~)'p75&)+C2d(d'Yp'Ysd)]] .
V2

(5 1)

Isovector and isoscalar combinations can be de-
fined as

&—=C]u —Cid

P= C2. C2—d, —

7=Clu +Cld &

5=C2u+C2d .

For theories based on the Hamiltonians (4.12) and
(4.13), we find

A. Parity violation in heavy atoms

Parity-violation experiments in heavy atoms
measure, after many arcane atomic-physics calcula-
tions, the so-called "weak charge"

Q~(Z, X)= —[a(Z —N)+ 3y(Z +IV)], (5.5)

which depends on the number of protons Z and
neutrons X in the nucleus used.

A series of experiments on bismuth' (Z =83,
E =126) yields the result

a= —1+2x+(1—2x)/8,
P= —1+4x +(1—4x)/R,

y=2x /3 —(2x/3)/8, (5.3)

Qg (Bi)= —135+17.5, (5.6)

while a more recent experiment on thallium finds
that

5=0, Q~(T1)= —155+63 . (5.7)

where x =sin O=e /g2, II =(u2/u& ), and

—,cos 8 for $(A) [SU(5)XU(1)],

The model predictions are readily found to be

Qg (»)=—(43+332x)+—(43+332x ),

(5.&)X=,
e

for S(B) [SO(6)X SO(4)] .
(5.4)

Q~(T1)= —(42+ 324x) +—(42+ 324x ) .
R

(5.9)

Using one-loop renormalization arguments we
found in Sec. II that a~ ' was allowed to lie be-
tween 53.1 and 63.4 (see Table IV). This forces
e /g~ to lie in the region 0.414—0.494, with the
SU(5) XU(1)x value at x = —,cos 0=0.462 comfort-
ably in the middle. In the SU(5) XU(1)x case, the
eN couplings (in fact, all the Q =0 couplings) are
seen to depend solely on sin 8 and R and not at all
on g~, in fact consistent with a theorem due to
Kim and Zee. '

For the SU(5) X U(1) case [S(A)], the values of
these quantities are

Q~(Bi)= —119+196/R,

Qg".(Tl) = —117+192/R .

(5.10)

(5.11)

A value

R &10 (5.12)

allows Eq. (5.10) to agree with (5.6) to within two
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standard deviations. The bound on R based on
Eqs. (5.7) and (5.11) is less restrictive at present:
at the 20 level, R & 2.2. A bound based on the
bismuth experiment of Ref. 21 is consistent with
Eq. (5.12).

Equation (5.12), as mentioned earlier, restricts
the mass Mi of the light Z to be within about 2%
of the standard value Mo as one can see from Fig.
3(a) or Eq. (3.19). The corresponding lower bound
on M2 ranges from 3.2 Mo (case A. l} to 2.6 Mo
(case A.2), as one sees from Fig. 3(a).

Allowing a range in x as in the SO(6) X SO(4)
cases B.1 and B.2 changes the results very little.
The bounds on R range from R & 9 for case B.l to
R & 11 for case B.2. The Z~ continues to be
within 2%%uo of the standard Zo, as in cases based on
SU(5) XU(1)», while the lower bound on M2 ranges
from 2.9 Mo (B.l) to 3.4 Mo (B.2).

The bound R & 10, arising from the Novosibirsk
experiment on parity violation in atomic bismuth,
is the most restrictive source of information on R
at present. In view of the sometimes contradictory
results and interpretations in such experiments [for
a discussion, see Ref. 14], we wish to look further
for constraints on R, even though they will turn
out not to be as tight as Eq. (5.12} at present.

For the isoscalar deuteron, a i(x} is given by

1 3G
a) =—

2 (3a+y),
2e2

with the experimentally determined value

a p =( —9.7+2.6) X 10 (GeV/c)

giving the constraint

3a+y= —1.8+0.48 .

(5.14)

(5.15)

(5.16)

=( —9.7+2.7}X10 (GeV/c) (5.17)

so that including the estimated distribution func-
tions, we find the constraint

Cq
——2.76a+ 1.24y+0. 278P+0.1675

= —1.71+0.48 .

The model predictions are

(5.18}

For the proton, x-dependent quark distribution
functions are required in the definitions of a &(x)
and a2(x) and their values can be estimated at the
values of the kinematic variables appropriate to ex-
periment. The SLAC ep experiment finds

A (x=0.2,y=0.21)
2

B. Polarized-electron scattering
on deuterium and hydrogen

3a+y=( —3+—,x)+ (3——,x)/R

for deuterium, and

(5.19)

The asymmetry in the scattering of polarized
electrons on deuteron and proton targets measures
parity-violating effects in electron-quark interac-
tions and can provide further information on a, P,
y, and 5. The asymmetry in the inelastic cross sec-
tion for electrons polarized parallel and antiparallel
to the beam is given by

A(x,y, g ) 1 —(1—y)2
(5 13)

Cp ———3.04+ 7.46x + (3.04—7.46x ) /R (5.20)

for hydrogen. These expressions are evaluated for
the various cases of interest in Table V. As a re-
sult of the very small coefficients of 1/R, the con-
straints (5.16}and (5.17) are not very restrictive.

In other words, present polarized electron-
deuteron and electron-proton deep-inelastic scatter-
ing data provide very little constraint on the
models presented here. Indeed, the coefficient of
1/R in 3a+y vanishes identically when x =—„.

TABLE V. Constraints on R from parity violation in deuterium and hydrogen. Here
x =0.23 is taken.

Case 3a+y C~ [Eq. (5.18)]

A
B.1
B.2

Expt.

0.462
0.414
0.494

(Ref. 26)

—1.467—0.080/R
—1.467+0.240/R
—1.467 —0.293/R
—1.8 +0.48

—1.323—0.408/R
—1.323—0.050/R
—1.323—0.647/R
—1.71 +0.48
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This corresponds in SU(5) )&U(1)r to x = 1
—(5x/3) = —,, a situation very close to the true

value of x.
It has been suggested' that more precise mea-

surements of they-dependent terms in Eq. (5.13)
could yield some additional information on the
types of models suggested here. At present these
measurements are too crude to provide much of a
constraint.

We have begun preliminary investigations of the
behavior of the asymmetry at much higher values
of Q [=10 (GeV/c) ], such as would be probed
with colliding electron-proton beams. This asym-
metry is sensitive to the structure of the exchanged
bosons and should in principle be different for the
class of two-Z models considered here. Asym-
metries for e p scattering which are about —0.5
in the standard model are modified by about 10%
of their value in case A. l. The effects are consid-
erably less dramatic than those encountered in the
model considered in Ref. 59.

C. Parity violation in atomic hydrogen

Experiments have been proposed, ' but not yet
performed, to detect parity violation in atomic hy-

drogen. The effective parity-violating electron-
nucleon neutral-current Hamiltonian may be writ-
ten6~

Gp~eX,P violating) [ C (
—

)(
—

~pep)
2

In the present model one finds the results shown in
Table VI. The coefficient of 1/R is much larger
in hydrogen than the R-independent term, which
would vanish if x =

4 . For a value R = 10 not ex-

cluded by other experiments, one could envision a
doubling of the effect in comparison with that
predicted by the standard model. However, ex-
treme care must be taken with regard to this pre-
diction, since it is very sensitive to the precise
value of X. The value of x extracted from deep-
inelastic scattering experiments is only affected by
a little more than +0.01 by weak radiative correc-
tions, but this is enough to make a substantial
difference in predictions of the standard model for
C~, C2, and C2„.

D. Summary of charged-lepton —nucleon
constraints

In Fig. 4 we show the constraints on cz and y
that arise from the measurements described in
Secs. V A —V C. [For parity violation in atoms we
imagine Ci~ ———(2Ci„+Cid) = —(a+3y)/2 is
measured. ] Parity violation in heavy atoms and in
polarized electron-deuteron scattering give almost
orthogonal information. Also shown are predic-
tions of the SU(5) XU(l)z model, with tick marks
denoting values of R. As mentioned, the trajectory
in the a-y plane of these predictions lies almost
parallel to the lines defined by polarized-elec-
tron —deuteron scattering. Parity violation in hy-
drogen can provide constraints lying midway be-
tween the other two types of experiment.

+(p —+n)] . (5.21)

VI. WEAK EFFECTS IN e+e ~p+p
We shall discuss three types of experiment. At

low energies, the angular asymmetry in e+e

TABLE VI. Predictions for parameters in Hamiltonian (5.21) affecting parity violation in atomic hydrogen and deu-

terium. We take x =0.23.

Quantity Expression A (x =0.462)
Value

B.l (x =0.414) B.2 (x =0.494)

Clp

C2p

C2n

gw

1 —4x 1 —4x
2 2R

1 —4x 1 —4x
2 2R

1 1
1——

2 R

1 —4x 1 —4x
2 2R

0.04+0.42/R

gg (0.04+0.42/R)

—0.5 +0.5/R

—g„(0.04+0.42/R)

0.04+0.33/R

gg (0.04+0.33/R)

—0.5 +0.5/R

—gg (0.04+0.33/R)

0.04+0.49/R

g (0.04+0.49/R)

—0.5 +0.5/R

—g„(0.04+0.49/R)
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~p+p grows with s. At higher energies the s
dependence is governed by the position and cou-
plings of the Z pole(s) in the amplitude. One can
also measure polarization effects as a function of
energy.

A. Low-energy limit

The weak neutral-current interaction Hamiltoni-
an for leptons at Q =0 may be written

6
[ hvv(ey&e+Py&P)(eye'e +P y "P)+2hvq(ey&e+Py&P)(ey"yqe +Py "y5P)

2

+hgg(eyqyse +p yqy5p)(ey "yse +py"ysp )] . (6.1)

hvv ——( ——, +2x) +—
( ——, +2x)1 2 1 1

(6.2)

1 1 1 1
hyq ————( ——+2x)+ ——( ——+2x),VA R 2

In the models described by the Hamiltonians (4.12)
and (4.13), we find

1
~AA 4

1+—
R

where x was defined in Eq. (5.4).
At energies where weak effects begin to be

detectable the differential cross section for
e+e ~p+p behaves as

(6.4)

(6.3) 2

(e+e ~p+p )= [(1+2hvvp)(1+cos 8)
4s

.2
+4hqqp cos8], (6.5)

-5

-.6

I & If where

p=— v2GFs/e' . —

Thus hvv is measurable in terms of deviations of
the total cross section from its expected value,
while hAA is probed by forward-backward asym-
metries.

A recent experiment at PETRA in the range
30&~s & 36 GeV finds

-7

—9

h vv ——0.01+0.08,

hAA
——0.18+0.16 .

At the 1o level, for x = —, cos 8, Eqs. (6.6) and

(6.7) imply only

R &2 (hvv)

and

(6.6)

(6.7)

(6 g)

FIG. 4. Constraints on weak-neutral-current parame-
ters K and y from parity violation in atomic bismuth
(dashed hnes: Ref. 19; dash-dotted hnes: Ref. 20), and in
polarized-electron —deuteron scattering (solid lines: Ref.
26). The asterisk shows the prediction of the standard
model ~ The solid line emanating from this point shows
the predictions of the present class of models (cases A. 1,
A.2), with tick marks denoting the allowed values of
E. —:(U2/U] ) .

R &2.8 (hing), (6.9)

when combined with (6.2) and (6.4). The numeri-
cal value of the hvv constraint is slightly different
in models based on SU(6) X SO(4), but the hqz con-
straint is unchanged. Both constraints are consid-
erably less severe than those imposed by parity
violation in atomic bismuth or thallium.
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B. Energy dependence of cross section
and of forward-backward asymmetry

in e+e ~p, +p

Future e+e accelerators might well attain ener-

gies beyond the standard Zp mass. Direct searches
for additional Z s are then possible. In addition,
forward-backward asymmetries in e+e ~p+p
typically exhibit variation over a wider energy
range than cross sections, and could in principle be
used to search for Z's beyond the highest attain-
able energy at a given accelerator.

At this point we make explicit use of the in-
teraction Lagrangian based on the covariant
derivative introduced in Eq. (3.2):

W";„',"'=—Pyq( g2T W"+g, T,B,"

+gb TbBb 4' (6.10)

where W", Bf, and Bf are the SU(2), U(1)„and
U(1)b gauge fields. We may rewrite this Lagrangi-
an in terms of physical fields for neutral particles
by diagonalizing the mass matrix (3.6) or (3.10).
Convenient parametrizations for doing this are

S(A):
~

%~3 & =sin8
~
y&+ cos8 cosP

~
Z~ &+cos8 sing

~
Zq &,

~
B$& =cos8 [ y &

—sin8 cosP
~

Z& &
—sin8 sing

~
Z2 &,

(
B~» & = —sing

(
Z& & +cosP

(
Z2 &

(6.11)

or

S(B):
I ~3 & =»n8

I y&+ cos8cos&
I
Zi &+cos8»ny

~ » & *

~
Bg & = cos8 cosg

~ y &
—(cosp sin8 cosp+ sing sing

~
Z~ & + (cosp sing —sing sinO coslit) ~

Z2 &,

(6.12)

~
Bg I, &

= cos8 sing
~ y & + (sing cosP —cosP sin8 sing)

~

Z, &
—(cosP cosP+ sing sin8 sing)

~

Z2 & .

The angle P was introduced in Sec. III. By com-
bining Eqs. (3.15) and (3.16) we see in case S(A) tan g= —

z [S(B)],
3 84&

(6.16)

M —M
tang =V'e/ri = p 1

M2 —Mp

where we recall

a= 1 —(Mi/Mp)

ri=(Mp/Mp) —1 .

(6.13)

(6.14)

(6.15)

as one may verify by combining (6.12) with the
mass matrix (3.10) and demanding that the photon
correspond to zero eigenvalue. In the limit

gz ——g4&, tan P= —,. This is just the limit in which

S(B) is a special case of S(A). In this limit, it may
be verified that (6.12) reduces to (6.11).

The rewritten Lagrangian takes the form

It turns out that the parametrizations (6.13)—(6.15}
also may be applied to case S(B).

The angle g in Eq. (6.12) is found to satisfy

fy„(eQA I'+ A)—Z~(+ A2Z~2 )g . (6.17)

A general form for the couplings valid for both
S(A) and S(B) schemes is

sin0cose

M.
z 2 z(I3& —Qsin 8)+ —1 (I3~sec 1( —Qcos 8}

M2 —M) Mp Mp

(i =1,2 ~j=2,1), (6.18)

where

S(A): sec f= 5

2

S(B): sec $=1+—2 Sz
3 84'

(6.19)

(6.20}

I

Equations (6.18) and (6.19) are valid for all cases
of S(A), not only the one which is a special case of
S(B).

With the interaction Lagrangian (6.17) and
(6.18), we may now calculate cross sections and
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asymmetries in e+e ~p+p . Let z denote
cos8, for this section. Then

2

[(1+z')( IF I
+ IF+ I'+ IFo I

+2z( —IF I'+ IF+ I'+ IFo I')],

so that

(6.21)

( IF- I'+ IF+ I'+ IFo I') (622)

and the forward-backward asymmetry is given by

1 ' do. 0 do.J dz —f dz

2'-o sec fgg', ————, tan P+
M;

(6.29)

(6.30)

When M& ——Mo, and sec P= —,, these reduce to the

standard model predictions

~i)
fv, e 4 ++~ SA, e 4 (6.31)

~if'"(gV f+gA fY5)fzip

here, where f denotes the fermion field. The cou-
plings in Eqs. (6.24) and (6.25) in the present class
of models are given by

3—sec f Mo sec P2 2 2

Rve 4 M2 4+ —(1—x)

—IF- I'+ IF+ I'+ IFo I'
4 IF I'+ IF I'+ IF, I'

(6.23)

We present sample calculations of the total cross
section and forward-backward asymmetry for
several cases, each chosen so that

[(gv,.)'+(g~,.)']
F+(s)=1+

e 1 (M; —iMiI—'; )Is

(6.24)

.2 l
28 V, eÃA, e

Fo(s) =
e 1 (M; —iM;I;—)/s

(6.25)

where

(6.26)

(6.27)

GF M 1 M2 MO

~2 Mo'

8GF M2 MP —M
&

~2 Mo M22 —M)

(.ziff )
The interaction Lagrangian W ' takes the form

M) ——0.98M0 . (6.32)

As mentioned in Sec. VA, this choice avoids con-
fiict with the Novosibirsk experiment on parity
violation in atomic bismuth. It will be very hard
to see deviations of the Z~~] mass by 2% from the
standard model predictions, at least in initial ex-
periments.

The corresponding Z2 mass may be deduced
from the relations noted in Sec. III. A useful ex-

pression is

2

S(B): eri=sin Hcot g= —,x' gR'
(6.33)

which also holds for case A. l [which is a special
instance of S(B)]. We shall examine four possibili-
ties, listed in Table VII. (The widths are calculat-
ed in Sec. VII.) In this calculation, the decay
Z2~W+W was omitted. It adds several percent

TABLE VII. Parameters of Weinberg-Salam (WS) and two-Z models used in cross-

section and asymmetry calculations for e+e ~p+p

Case WS A. 1 A.2 B.l B.2

m, (GeV)
I g (GeV)
W, (GeV)
I"2 (GeV)'

88.59
2.486

86.82
2.430

276.1

3.016

86,82
2.424

230.0
1.678

86.82
2.440

246.6
2.636

86.82
2.424

299.1

3.469

'Neglecting width to W'+W; see Table IX.
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to the total Z2 width, as will be shown in Sec. VII.
We have used a Zo mass based on x =0.23,
Mo ——88.6 GeV, which is somewhat below the
value expected if one-loop weak radiative correc-
tions are taken into account.

The resulting cross sections and asymmetries are
shown in Figs. 5 and 6.

The forward-backward asymmetry indeed shows
evidence for the second heavier Z at energies well
below its pole. However, the deviations from the
standard model (and the distinctions among
models) are most pronounced in the energy range
in which the cross section is quite low. Both the
dip in o. and the details of A~z may be hard to see

(a) (b)

C—IOI IO'

A2
Al

I
II

I

II
II
I

OJ

IO~—

b

T
I

Io

b

I

IOO

E (Gev)
200 300

I

100
E (Gev)

200
I

300

(c)

—IO'

Bl

B2

II

II
lI
l[
II
I[
I I

I

I
l

QP

~ Io

b

I

IOO

F (GeV)

I

200

l

l
I
I

I

I

300

FIG. 5. Cross sections for e+e ~ p+g . (a) Dashed line: point cross section; solid line: standard model (one Zo). (b), (c) Two-Z
models with M, =0.98M, fixed. (b) Cases A [SU(5)XU(1) I; (c) cases B [SO(6)XSO(4)].
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as a result of practical limitations on e+e in-

teraction rates. In Fig. 6, there is no dramatic sign
change in AF~ between the first and second Z, in
contrast to the behavior in some other models.

The heavier Z in the present models thus is best
seen by finding a peak in o.(e+e ~p, +p ). The
magnitude of the cross section at the peak is

oak(e+e —+p+Ii, }= [8(Z; —+l+l )]+ 2

(6.34)

The heavier Z hides itself remarkably well at ener-

gies below the peak.

C. Polarization effects in e+e —+p+p

One can discuss the energy dependence of the
muon helicity in e+e ~p+p in a manner very
similar to that used to discuss the forward-
backward asymmetry. ' An identical discussion

Opplies to polarized initial beams.
The average positive muon longitudinal polariza-

tion PL (p, +), for example, may be expressed as

2 Re(F+F0 )

I
F+ I

'+
I
F-

I

'+
I
Fo

I

'

(6.35}

0.8

0.4—

which reduces at a Z; peak to

—2 (~) (~)

(
(i) )2+(g(i) )2 (6.36)

do do

A(e+)=1 A(e+)= —1

2

(1+z) Re(F+Fo)
25

and the angular-averaged cross section obeys

(6.37)

The energy dependence of the p+ polarization for
one two-Z example is compared with that of the
standard model in Fig. 7. Muon polarization at
the Z; peaks are shown in Table VIII.

At the Z1 peak the polarization is sensitive to
the exact value of x, since g~'e is very nearly zero
in the standard model. This behavior requires a
more exact treatment, in which one-loop weak ra-
diative corrections to x and to Zo properties are
taken into account. Once this is done, we would
expect a measurement of PL (p+) to within a few

percent to give very useful information.
At the Z2 peak, the different cases yield polari-

zations ranging from & 60% to 90%%uo. Here useful
measurements distinguishing among models can be
considerably more crude.

It may be easier to polarize one or both initial
lepton beams than to measure final-muon polariza-
tion in e+e ~p+p . A very similar discussion

then applies. For a fully polarized e+ beam, for
example, with helicity A, =+1,

-0.4

o(A(e+) =1)—cr(A(e+) =—1)
o(A(e+) =1)+o(A(e+)=—1)

—2 Re(F~+F, )

I F+ I

'+ IF- I
'+ IFo I

' (6.38)

I

(b)

I
0.4— I

I

I
I

cl 0 I

I

I
I

-0.4— I

I

I I I

-0.8
0

I

100
E (GeV)

I

200
I

300

FIG. 6. Forward-backward asymmetry in
e+e ~p+p . Solid line: standard model. (a) Cases A
[SU(5)X U(1)]; dashed line, A. 1; dash-dotted line, A.2.
(b) Cases B [SO(6)X SO(4)]; dashed line, B.1; dash-
dotted line, B.2.

+
0 -===

I CL

-]
0

Zp

I

IOO

I

200
E (GeV)

I

I p
I 2
I

I

I

I

I

I

I
\ I
\ I

I
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FIG. 7. Average longitudinal p+ polarization in
e+e ~p+p as a function of energy. Solid line:
standard model; dashed line: case A. l (two-Z model).
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TABLE VIII. Values of gz'„gq"„and p+ polarizations [Eq. (6.33}]at the Z; peak. Here
x =0.23 has been assumed.

8.2

(1)
gv

(1)

~c(p'}
l z,

(2)

(2)
ga
PdP+)

I z,

—0.02
0.25
0.16

—0.035
0.267
0.25

0.297
—0.124

0.71

—0.035
0.267
0.25

0.281
—0.105

0.66

—0.033
0.269
0.24

0.246
—0.155

0.90

—0.036
0.266
0.26

0.327
—0.106

0.58

the same expression as (6.35).

VII. TOTAL WIDTHS
AND BRANCHING RATIOS

We can explicitly calculate the decay rates for
both neutral bosons Z&, Z2 into fermion-
antifermion pairs. The Lagrangian (6.28) yields
the expression

r(Z, ff)=rpN; [gv'f'+g„"f'.

where

Mo&
I p= ——r(Zp~vv)

24x (1—x)

(7.1)

(7.2)

(7.3)

The vector and axial couplings are

(i)
gV, v gA, v= —

4 (7.4)

and for quarks or charged leptons with weak isos-
1 1 1

pin Is(u)—:+ —,, I3(d) = ——,, and I3(e)—:—2,

is the partial width for a standard Zo to decay to
vv. With the parameters chosen here (x =0.23),
we have I o ——152 MeV. The normalization con-
stants N; are given by

N. =8 ' ~ (i =1,2 ~j=2, 1) .M,
'

IM,
'—Mp'

I

o M

and (7.7)

B(Z2~dd)
&5.

B(Zz~uu)

The suppressed Z2~uu decay is a peculiar feature
of a boson which couples mainly to the X charge
[the charge of the U(1} in SO(10)~SU(5}XU(1)»].
In the limit of a very heavy Z2 in schemes based
on SU(5) )&U(l )», the decays of Z2 are in the ratio

The resulting branching ratios are shown in
Table IX. (The total widths already have been
quoted in Table VII.) We have assumed three fer-
mion generations and have neglected the decays
Z;~NN; presumably the N's are too heavy to be
seen, though the argument is not airtight. (We
shall discuss some consequences of detectable

Z; ~NN decays presently. ) The masses of all fer-
mions (including t quarks) are neglected in com-
parison with M;.

The Z& differs very little from the Zp in its
branching ratios for the range of mixing parame-
ters considered here. Its total width also is not
very different from that of the standard Z, as not-
ed in Table VII.

The branching ratios of the Zz are distinctly dif-
ferent from those of the Z~. Note in particular the
contrast between

B(Z) ~dd) =1.2—1.3
B(Z}~uu)

M
gv =I3+gw —Q 1 — cos 8(i) (i) 0

M;

g„"'=I, tan g — sec g /2 .

(7.5)

(7.6)

I (Z2~vv) cc3 =9,
I (Zz~uu)~3(1 +1 )=6,
r(Zz~ee) ~3 +12=10,

I (Zz —+dd) o:3(3 +1 )=30,

(7.8}

Here the angle g is the same one defined in Sec.
VI.

where the squared integers in the brackets are just
proportional to the charges listed in Table I. If
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TABLE IX. Branching ratios (in percent of total width to fermions) of Z s in various models. (See Table VII for
other parameters. ) Values calculated for M~ ——Mzcos8=77. 7 GeV. Branching ratios for the value (1.1) will be some-
what lower.

WS A. 1 A.2 B.1 8.2

Z) ~vv
QQ

ee
dd

6.1

10.6
3.1

13.6

5.6
11.0
3.3

13.4

5.6
11.0
3.3

13.4

5.6
11.0
3.3

13.4

5.7
11.0
3.3

13.4

Z2 ~vv
QQ

ee

6.7
2.5
5.5

18.6

7.3
2.0
5.3

18.8

5.6
3.6
3.8

20.3

7.3
2.0
6.9

17.1

Z2~g +g 5.1 5.1 4.1 5.5

8(Zq~uu)= =3.6%,6
(3)(55)

8(Z2 —+ee) = =6.1%%uo,
10

(3)(55)

(7.10)

the N were light enough, we would have

I (Z2~NN) o:5 =25 .

Taking the decays in (7.8) and assuming three gen-
erations, we find the branching ratios for a very
heavy Zq coupled to X:

8(Zg~vV) = =5.5%,9
(3)(55)

10 or 20 GeV for each generation. However, if as-

trophysical bounds on neutrino masses are to be
taken seriously, m~g) & 100 eV, the corresponding
N masses for the second and third generations are
considerably larger, and only the decays

Z& 2 +N(e)N(e) —remain possible. As mentioned
earlier, the Z2 should then have a prominent NN
decay.

It is also possible that astrophysical lower

bounds may apply directly to N masses. These
tend to be in the 10-GeV range.

For reference we note that (6.17) and (6.18) im-

ply

8(Z2~dd)= =18.2% .30
(3)(55)

M(i) (i) 2
gv, x=gw, z= ~ sec 't{' 1 —

z
l

(7.12)

The suppressed coupling of Z2 to uu is a dis-
tinct disadvantage in hadronic production experi-
ments, as we shall see in Sec. VIII. On the other
hand, the leptonic branching ratio is actually ex-

pected to be a little bigger than that of Z&.
It is unlikely, but still possible, that the right-

handed neutral leptons N are light enough to per-
mit the decays Z& z~NN. I.et us imagine the N
mass in a generation g =—e,p, v to be constrained by
the relation

An interesting feature of the standard model is
that, in the limit of zero fermion mass, the Zo de-

cays half the time to vv+uu and half the time to
ee+ dd, independent of the value of x =sin 8:

I {Zo~(vV+uu))=I (Zo~(ee+dd)) . (7.13)

This relation is no longer satisfied exactly in the
present class of models if the N is heavy. Howev-

er, if the N is light in comparison with either Z,
we find that for both Z's,

2
mi (g)

M~(g) ——0
mug)

(7.11)
I {Z;~(NN+vv+uu))=l'{Z;~(ee+dd)),

(7.14)

where l and v are the corresponding charged lepton
and neutrino. Direct experimental bounds on
neutrino masses then permit N masses as light as

a generalization of (7.13). The relation (7.14) holds
independent of mixing. To derive it one may use
the explicit forms of the couplings (7.5), (7.6), and
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(7.12). Alternatively, when N and v masses may be
neglected, we may replace X and v by an ordinary
Dirac fermion vD. In that case all partial widths
take the form I -gz +gz, where

g p aI3——+bQ,

ga
——(a —1 }I3,

where I3(vD) =I3(u) =——,, I3(e)=I3(d) = ——,, and

the magnitudes of a and b need not concern us.
The relation (7.14) then holds because

[I3(vn)] +3[I3(u)] =[I3(e)] +3[I3 ]

I3(vD)Q (vD)+ 3I3(u)Q (u)

=I3(e)Q(e)+3I3(d)Q(d),
(7.17)

[Q(&D }1'+3[Q (u }l'= [Q (e)]'+3[Q (d}l' .

Because after diagonalization of the mass matrix
the physical Z2 field has a small 8'3 component,
the decay Z2~8'+8' is allowed as long as

M2) 2M~. The decay is governed by the usual
SU(2) three-gauge-boson vertex weighted by the ex-

pansion coefficient cos8 sing in Eqs. (6.11) and
(6.12). We find, in our notation, that

&(Z2 8 +W )=I pN2(1 —x) (Mp/Mp) (1—g ) (g —1)(4( +20(~+3) (7.18)

where g=Mq/2M~. The factor (1 —g )'~ com-

ing from the one-body decay phase space drives the
rate to zero when Mz ——2M~ as it must. The zero
at g =1 in the additional factor comes from angu-

lar momentum conservation in the fundamental

gauge coupling. The contribution of the channel

to the total rate is tabulated in Table IX for the
usual four cases and is seen to be roughly equiva-

lent to an additional leptonic width. This decay to
8'+8' pairs would be seen as a small additional
peak in the dilepton (e+-e+, p~p+, or e ~p+) spec-

trum, broadened by the motion of the 8"s.

VIII. Zi 2 PRODUCTION IN pp
AND pp COLLISIONS.

u=u„+g; d=d„+g, (8.1)

where u„and d„denote valence quark distributions
and ( denotes the sea distribution. We assume that
u =-u =-d =d =s =s in the sea, and that the
neutral-current interactions of ss are the same as
those of dd. Then (we omit X)

The photoproduction of the standard Zo in pp
and pp collisions is eagerly anticipated. Many esti-
mates exist for the rates. These may be adapted
with little difficulty to the present situation.

A simple parametrization of the cross section for
( —)

p p~jM+p X has been given in terms of the ra-
pidity y and mass m of the IM+p system and the
proton structure functions. Let the quark distribu-
tions be denoted by

p'p ) l, =p
dp dm

2x
[(u +g )o(uu~p+p )

3m

+(d +3/ )o(dd~p+p )], (8.2a)

Vv p'p ) l, =p
dg dm

2x
[ 2uga(uu ~p+p )

3m

T

12~ ~qq
crpk(qq~p p, )= x +

M;
(8.3)

The branching ratios x and x + are given in
P II

Table IX. We then find

d0 p'p
dg

=x [A(u +g )+B(d +3/ )], (8.4}

d0
(pp~Z; ~p p )

=x [A(2ug)+B(2dg+2( )], (8.5)

+(2d(+2( )o(dd ~p+p )], (8.2b)

where the structure functions are evaluated at
x =rn/V s We may. integrate these expressions
with respect to mass over a resonant peak, recall-
ing that
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where

4./r. ..x +

3M; +dZ
(8.6)

x (u„+d„)=2.5x (1—x)

xd„= 1.06x (1—x)

x)= 0.02(1 —x) ' +0.139(1—x)' '

58 —37.3X

(8.7)

(8.8)

(8.9)

The structure functions are assumed to be those
of Ref. 70. We evaluate them for simplicity at a
fixed value of Q =10 GeV and A=500 MeV,
and find

In Fig. 8 we show the values of do/dy for Z
production as a function of vs /M in two cases:
(a) Weinberg-Salam Zo, and (b) heavy-Z (Zz) pro-
duction in the case A. 1, which is common to both
SU(5) XU(1) and SO(6) XSO(4) models.

The cross-section estimates are very sensitive to
the exponential term in (8.9) above Vs /M =10.
We thus show estimates both with and without this
term. For 3& vs /M &10, the cross sections for
(pp or pp) —+Z2 —+p+p have the same shape as
those for (pp or pp) —+Zo~p+p, , but are about a
factor of20 40 lowe—r at the same value of Vs /M.
This factor arises from the suppression of the uu
branching ratio and from the lower value of I /M
for the higher resonance.
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FIG. 8. Values of do/dy as function of /g/N for pp or pp-+ Z ~p+p. . Solid line: with exponential term in sea quark structure
function (8.9); dashed line: without this term. (a) Standard model, Z, production; (b) case A.l, Z, production (M, =276 GeV).
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The production of the standard Zo in pp col-
lisions at CERN (Ws/M=540/89=6) may be
compared very closely with that of a heavier Z at
the Fermilab pp collider. Thus, for M2 ——276 GeV
and v s =1.9 TeV, V s /M=6. 9. The resulting
cross sections are

do' +,=o(p ~Zowie V ) ~,~„v
=1.5X10 cm, (8.10)

=7X10 cm (case A. 1) . (8.11)

Uncertainties in quark distributions should largely
cancel out in the ratio between Eqs. (8.10) and
(8.11). Thus the observation of Zo at v s =540
GeV may provide a very useful calibration in the
near future, indicating how easy it may be to
detect a heavier Z at Ws =2 TeV.

A typical pp collision experiment at Fermilab is
expected to involve an integrated luminosity of
=10 cm . ' The cross section (8.11) thus is
only marginally detectable there, unless the lumi-

nosity exceeds present projections of W= 103o
cm-'s-'.

For pp interactions at ~s = 800 GeV, the obser-
vation of Zz (in case A. 1) may be just barely possi-
ble in an experiment of integrated luminosity

fddt=10 cm . We estimate in Fig. 8(b)

der

dy
P~ 2 ~ ~ v =sooov

=4X10 cm . (8.12)

If the Z2 is somewhat lighter than the value
considered above (=3Mo}, its observation becomes
easier. As M2 decreases, the situation improves
more rapidly for pp than for pp collisions. Howev-
er, one soon encounters difficulty (within the con-
text of the models discussed here) with the con-
straints discussed in Sec. V 8 arising from parity
violation in heavy atoms. There is thus a narrow
window of heavy-Z masses [=(2.5 —3}Mo] arising
naturally in the context of SO(10), which is both
experimentally accessible (in the next few years)
and not ruled out by any other experiment.

IX. CONCLUSIONS AND DISCUSSION

We have examined some properties and conse-
quences of a second neutral heavy vector-boson

that arises naturally in various SO(10) theories.
The discussion has involved both the chain starting
with SU(5) XU(1) and that starting with
SO(6) X SO(4).

We have found that a second Z arising in these
theories has minimal effects on the low-energy
behavior of neutral-current interactions, since neu-
trino interactions at zero momentum transfer are
not affected at all. Polarized-electron deep-
inelastic scattering near Q =0 is affected very lit-
tle. The main information that restricts the second
Z to be above about 2.5 times the standard Zo
mass comes from one experiment' on parity viola-
tion in heavy atoms.

There have been numerous other investigations
of two-Z models. ' The present discussion is a
particularly conservative version of such models in
that very little of the standard picture is altered.
The small effect of the boson coupled to U(1)r in
SO(10)—+SU(5) XU(1)r on phenomena up to ener-

gies of a couple of hundred GeV, even when that
boson is only three times the mass of the standard

Zo, comes as a particular surprise to us. The
models we consider here are thus particularly
demanding alternatives to the standard one;
nonetheless they were not constructed with any ar-
tificially sm. all couplings. All the couplings follow
from the group structure and the symmetry-
breaking pattern.

Notable among the properties of a gauge boson
coupled mainly to U(1)r is its small coupling to
uu. This makes its production in pp and pp col-
lisions difficult. It should couple strongly to pairs
of right-handed neutral leptons NN if these leptons
are light enough. Finally, the physical Zz boson
should have a small 8'3 admixture, enabling it to
decay to W+ W with a surprisingly large (several
percent) branching ratio.

Many of our illustrative calculations were per-
formed for a light Z (Z~) mass only two percent
below the prediction (1.2) of the standard model.
This choice was based on constraints from atomic
parity violation in bismuth. ' (Our "one-loop"
standard-model Zo weighs 88.6 GeV/c, but its
corrected mass —when x =sin 0 is lowered to
=0.21 by radiative corrections and other correc-
tions are taken into account —should be about 5
GeV/c higher .) Thus if experiments in
pp~Z~p+p in the next year find a peak below
about 90 GeV/c, either more radical alterations of
the standard picture must be considered, or the
atomic-physics results of Ref. 19 must be wrong.
If the lowest peak is aboue the value (1.2), even the
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rather general assumptions of Ref. 6 will have to
be reexamined, and the present discussion certainly
will be moot. For example, a model based on
SU(2) XU(1)X SU(2)', but with couplings not relat-
ed to our schemes (B), can accommodate masses of
all the lightest gauge bosons larger than their
values in the standard picture.

If the Zo mass is found to be within about 2
GeV of the prediction (1.2), we have shown that
there are still many interesting possibilities for a
heavy Z above a mass of a couple of hundred
GeV. These are best addressed by direct experi-
mental search. We have considered the possibility
that the second Z alters weak effects in such pro-
cesses as e+e ~p+p or deep-inelastic ep
scattering, but in the class of models considered
here there seems to be little alternative to actually
producing and detecting the second Z. This ap-
pears to be in contrast to some left-right-
symmetric models in which more radical modifica-
tions of couplings are made in comparison to those
of the standard model ' ' '~'

An early motivation for the present work was to
gain some idea of the magnitude of the coupling

gx in SO(10)~SU(5)XU(1)r. The results of Sec.
IV indicate that the low-energy behavior of the
theory is remarkably insensitive to this coupling.
The mass of the second Z provides some informa-
tion, but only if the light-Z mass (Mi) is known

very well. The best information on g& is provided

by the total decay width of the second Z.
What if a heavy Z is not found around

(2.5 —3)MO? Certainly nothing in the SO(10)
theory requires it to be so light. Searches in e+e
annihilations at higher energies (e.g., E, & 1

TeV) are conceivable in the next twenty years.
This is a very small range compared with the pos-
sibility that the second Z we consider here could be
as heavy as the grand unification mass, & 10'
GeV/c, or need not exist at all if SU(5) is the ulti-
mate step in grand unification. In this last context
it will be interesting to watch the results of forth-
coming experiments on proton stability. These
have the capability both of demonstrating the va-

lidity of SU(5) as an intermediate stage in grand
unification, and of telling whether a symmetry
beyond SU(5) is valid. The first question will be
answered in the affirmative if rz & 10 ' yr (Ref.
48); the second, if branching ratios differ from the
SU(5) predictions. If proton-decay experiments
show there is grand unification physics beyond
SU(5), the existence of a second Zo is almost a cer-
tainty, and the only question is whether we can be
so fortunate as to observe it.
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APPENDIX

In this appendix we consider the question, dis-
cussed in Sec. IV, of when the efflux:tive neutral-

current interactions of gauge models with addition-
al U(1) factors derived from the same larger group
through different breakdown schemes, are equiva-
lent. We will find that the condition that various

U(1) coupling constants be equal, Eq. (4.15), can be
generalized.

We consider two different breakdown schemes of
a single larger group whose neutral currents are
described by couplings, diagonal generators, and
neutral fields g;, D;, A&, and g, D, A&, respec-
tively. The D;, D are taken to be orthonormal
vectors in their group space (as in Sec. IIB) so that

(Al)

The interaction Lagrangian for the unprimed case
can be written as

(A2)

where

Aq ——(Ai, . . . , A~),

& =(giDi, . . . , givDx),

with a similar expression for the primed case,

Wj =fy"&TAg—

(A3)

(A4)

(A5)

If the primed and unprimed fields are to be re-
lated by an orthogonal transformation,

d'Ap ——A~ (A6)

then demanding that the effective interactions be
equivalent,

We are grateful to V. Barger, M. A. B. Beg, J.
D. Bjorken, S. Dawson, G. R. Farrar, N. Fortson,
H. Frisch, E. Henley, C. N. Leung, F. Schrempp,
M. Shochet, R. Slansky, L. Wolfenstein, and A.
Zee for useful discussions, and C. N. Leung for
comments on the manuscript.

This work was supported in part by the U. S.
Department of Energy under Contracts Nos. EY-
76-C-02-1764 and DE-AC0276ER00881. Part of
this work forms the Ph.D. thesis of one of us
(R.R.) submitted to the University of Minnesota.
J.L.R. wishes to thank the Aspen Center for Phys-
ics and Professor H. Fritzsche of the University of
Chicago for hospitality during part of this work.



3062 RICHARD W. ROBINETT AND JONATHAN L. ROSNER 25

W—f =fy"(& 6' 6'A„)f

=fy"(&rP A„')f

(A7)

with both d' and A orthogonal. Equation (A13)
gives

gJgJ gg gJ

requires

(AS)

or

6'G =O'A,

(A14)

where

gJDJ ——g Dg' . (A9) (A15)

Multiplication (in the group space) by Dk on both
sides~

6'gJgJ. DJ Dk ——g; Dg' Dk

or

Using (A14), we find that

ol (A16)

gives

J'gJ 2 5Jk ——gg Dg Dk

I
gg

2D .DJ .
gJ

(Al 1) l.e.,

~ikgk lskj hagi fiikAkj
2 .= .'2 .

k k

AgJ
——2D DJ,

so that

(A12)

gg
PgJ AgJ

gJ
(A13)

The D are linear combinations of the D;, so defin-

ing the transformation A by

Dg' ——AgJ.DJ,

we find that A is orthogonal and

.. .2 — '2
~gJgJ gJgg (A17)

so that gJ =g if A;j@0. Thus, any two diagonal
operators in the different breakdowns that are con-
nected, i.e., for which A;j =2D/ Dj+0, must have
their coupling constants equal in order to rotate
the various U(1) factors among themselves and still
have the same interactions. Furthermore, the ma-
trix A can be made block diagonal for an appropri-
ate ordering of the labels. We note that this dis-
cussion is just a restatement of Schur's lemma.
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