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We study the constraints on the hierarchy of gauge-boson mass scales from low-energy

physics in the maximal grand unification model based on the group SU(16). We show

that for certain values of sin 0~(m~) and o,,t„„g(m~) allowed by low-energy data, the in-

termediate mass scales associated with local 8 —I. symmetry and right-handed gauge in-

teractions may be as low as 10 GeV. We use a previously suggested method to study the

Higgs-boson effects on these mass scales. We also discuss the implications for baryon

nonconservation in this model and point out .hat the most likely b,B+0 processes in sim-

ple versions of the model are the ones obeying 6(8—1.)=0 selection rule.

I. INTRODUCTION

The maximal symmetry associated with the
eight fermions and eight antifermions of each gen-
eration (v,e,u;, di =1,2, 3) is SU(16). An obvi-

ous and perhaps natural candidate for grand unifi-
cation of electroweak and strong interactions is
therefore the broken local SU(16) group' associated
with this symmetry. In contrast to other unifica-
tion groups such as SU(5) and SO(10), SU(16) has
the feature that the baryon and lepton numbers are
exact symmetries of the Lagrangian, to be spon-
taneously broken. Furthermore, a new possibility
in maximal gauging schemes is to allow for a rich-
er variety of selection rules associated with baryon-
and lepton-number violation, which are not present
in other more economical grand unification
schemes. Observability of these different selection
rules at low energies, however, depends on the pat-
tern of the breakdown of local SU(16) to
SU(3), XU(1)EM as well as on the hierarchy of
gauge-boson masses. Several patterns of symmetry
breakdown in this model have been discussed in
Ref. 1, in order to extract the various selection
rules associated with ~@0and &1. +0 processes
Particular scenarios have been isolated where pro-
ton decay and n-n oscillations' may coexist. It is
the purpose of this paper to study the constraints
imposed on the hierarchy of gauge-boson masses in
the SU(16) model allowed by the present values of
low-energy parameters such as sin 8~ and a„„„g
and their implications for baryon- and lepton-
number nonconservation. For this purpose, we
write down the equations for the evolution of the
various gauge coupling constants in different
chains of symmetry breaking of the SU(16) model.
We present our analysis with and without the in-

II. THE SU(16) MODEL

The grand unification symmetry per generation
is assumed to be the SU(16) group' with left-
handed particles and antiparticles belonging to the
fundamental representation of the group as fol-
lows:

V
d.
e
uI.

i =1,2,3,

e+ I.

elusion of Higgs-boson effects. We then discuss
how various M@0 and AL+0 processes could
arise in such models.

The paper is organized as follows. In Sec. II, we
introduce the SU(16) model to fix conventions and
notations and note the various patterns of symme-

try breaking. In Secs. III and IV we write down
the equations for the evolution of various coupling
constants for two patterns of symmetry breaking
and write down the formula for sin 8~ and

a, (m~) and extract the constraints on intermediate
mass scales of the model ignoring the effect of
Higgs bosons for each chain of symmetry breaking.
In Sec. V we introduce the Higgs multiplets neces-
sary for breakdown of SU(16) symmetry and in
Sec. VI, outline the criteria for inclusion of Higgs
multiplets in the evolution equations and study
their effect on the mass hierarchies. In Sec. VII,
the implications of the model for baryon noncon-
servation are discussed.
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where the P~ stands for entry in the 3th row:
A —1. 16

In order to cancel the anomalies, we will intro-
duce' a set of mirror fermions with right-handed
chirality transforming also as the 16-dimensional

representation of SU(16). These mirror fermions
will be assumed to be in the mass range of 100 to
200 GeV. We consider the following chains of
breaking for SU(16) down to SU(3), XU(1)E~..

(I) SU(16)~SU(12)» XSU(4)( XU(1)
~

s
( ~

L,
~

—+SU(3), X SU(2)L X SU(2)s X U(1)s

SU(3), XSU(2) XU(1)r,

(II) SU(16) SU(8) XSU(8)„XU(1) SU(4) XSU(2)L, XSU(2) SU(3), XSU(2) XU(1)

(III) SU(16)~SO(10)~SU(5)~SU(3), XSU(2)L XU(1)r .

The Higgs multiplets necessary for the various breaking chains will be displayed later. In the rest of the
paper, the chain (III) will not be discussed since that leads to the results already familiar for SO(10) and

SU(5) models.
The fermion masses will arise by introducing a 136-dimensional symmetric Higgs multiplet 4(~s), which

couples to 4 as hg& C 'Ps@(" ), and assigning vacuum expectation values to appropriate components of
We will discuss the detailed nature of symmetry breakdown in a subsequent section.

III SU( 16) BREAKING TO SU(12)q XSU(4)& XU( 1)
(
p

AND EVOLUTION OF COUPLING CONSTANTS

In this section, we propose to study the relation between the SU(3)„SU(2)L, U(1) coupling constants and

the grand unified coupling gz via the Gell-Mann —Low equations. We wish to investigate the symmetry
breaking pattern (I) of the previous section, where SU(16) first breaks down to SU(12)» X SU(4)~

X U(1) ~s
~

~L ~. The SU(12)» is the maximal symmetry of quarks and antiquarks and SU(4)E operates on

the leptonic space. At the next stage, we may have two possibilities:

SU(12) XSU(4)i XU(1)
i
a

i i
L

i

SU(3), XSU(2)L XSU(2)g XU(1)s

SU(3), XSU(4) XSU(4)i XU(1) ia i
iL.

i

where SU(2)L R operates both on quarks and lep-
tons. The left-right-symmetric group is broken
down in the usual manner to SU(3), X SU(2)L
XU(1). We will use the method of Georgi, Quinn,
and Weinberg as appropriately extended to include
models with intermediate mass scales. To write
down the general formula relating the gauge cou-

pling constants at'two different energies, we simply
have to integrate the Gell-Mann —Low equation
between successive mass scales with appropiate
values for the P function and appropriate normali-

zation factor for generators. To state the general
formula, let us assume breaking of a group as fol-
lows:

Gx~Gw —i~G
with associated mass scales p~,p~ j,p~

I

and where 6"=g 8 6"; i.e., it may be a direct

product of simple groups, with associated coupling
constants denoted by g" corresponding to group
G". The relevant formula relating the coupling
constants at two mass scales is then given by

2gz 1
™+

PZ

This formula is a somewhat modified form of
the formula given by Dawson and Georgi, s the
difference being that in Eq. (2) P"j'+' are not nor-
malized to add up to 1. This is because all our
coupling constants g" will represent physical cou-
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plings and therefore, the generators at each stage
defined in the 16-dimensional space are not neces-
sarily normalized, i.e., Tr(T~T~)+ —,5~p. The sim-

plest way to construct the P"~p is to choose a con-
venient basis for the diagonal generators for G and
find the diagonal generators for the subgroups G~p

in the same basis and express it in terms of those
for G". We will give the explicit construction for

P ~p for the SU(16) breaking. We normalize all our
SU(16) generators by

Tr(T, Tb)= i 5gb ~

T, will be 16X 16 matrices in the space of %. We
first give the SU(12) generators (0 stands for the
null 8X 8 matrix):

T]W')(c

2

f"0

T~xc
2 2

(4)

T3
8')(c

2

These are the SU(2)s, generators for particles. The corresponding generators for antiparticles are obtained by
interchanging the upper and lower 8~ 8 block matrices:

T8'xc
1

2
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and similarly T2 and Tq. Next, we define the diagonal generators for chiral SU(3), color:

—cT5—

(6)

-cT4—

The color- and flavor-singlet diagonal generator —the last diagonal generator of SU(12)—is
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I
~11

The SU(4)~ generators are given by

0

0

0
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The 8 —I. generator is given by

—3

—3

—3

The above generators are part of the Lie algebra
of both Go ——SU(16) as well as G~ ——SU(12)»
XSU(4)& XU(1) ~z

~
~L ~. Therefore, if the grand

unification mass is taken as Mv and the scale at
which GI breaks down is taken as M„ the relation
between coupling constants in this region is simply
given by

~B—L,SU(12) B—L,SU(4)I (12)

gg Xc+T~Xc+T&Xc+T~ (13}

coming to the case of SU(2)L ~, note that, at the
SU(2) level, the physical T3L a generator is given
by

1 MU
+2b12ln

g(~2(M, ) gv (Mv) M,

1 1 MU
+2b41n

g, '(M, } gv'(Mv) Mc
'

(10)

This implies that

1 3 1

gL a (M, ) g(2 (M, ) g4 (M, )

or, in the language of "probabilities, "

where 6 12 and b4 stand for the one-loop contribu-
tions to the P function for SU(12) and SU(4).

To consider the breaking of SU(12)» XSU(4)L
XU(l)~s

~
~L ~

to SU(3)~XSU(2)L
XSU(2)R XUs I (1), we must express the diagonal
generators of G2, in terms of those of G~ ..

1'a-L =(Tit —v 3Ti4)

which leads to the following values for relevant
"probabilities, "

~SU(2)1,'SU(12) ~ SU(2)1,SU(4) (14)

SU(3)~;SU(12) ~ (15)

Using Eqs. (11)—(15), we can write down the ex-
pression for the gauge coupling constants at the
mass scale MR, whose 62 breaks down:

The same relation holds for the SU(2)a group also.
Similar considerations for SU(3), lead to

1 4 MU
+2 4b12ln +b3ln

g, '(M„) g'(Mv ) M, MR

1 4 MU M,
+2 (31 12+b4}ln M +b2L/Rln Mg2Lzz'(M~ } g'(Mv ) c R

1 4 MU M,+2 (b j2+3b4)ln
M

+bs Lln M—
gs L'(M~ } g'(Mv -} c R

Using a similar procedure and noting that for SU(2)L XU(1)z,

(16)
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Y=v'3/5 T3a +v'2/5 Ys

we can write down the expression for gauge coupling constants at p =ML where the symmetry
SU(2)L XU(1)r is broken down to U(1)EM. They are

1 4 MU M,
+2 4bi2ln +b3ln

gzz(Mz ) gz(MU) M, ML

1 4 M,
+2 (3biz+b4)ln +bzLln

gzi'(Mi) g'(MU) C L

4 1
MR

+2 —,( lib, z+9b4)ln + —,(3bza+2bs)ln +brin
gr (ML) g (MU) M,

Let us recall that the value of b~ for a group SU(N ) is

1 '» 4

16' N ——f T—N——

(17)

(18)

(19)

where f is the number of fermion multiplets transforming as the fundamental representation of the group

SU(N ), and TN is the value of the second-order Casimir operator on the representation of Higgs mesons.

Using this, we obtain the following formulas for the sin Hs (ML ) and a, (ML ) for chain I of symmetry

breaking (ML,
——Ma, the conventional Wboson mass):

3 11a(M, )
sin Ha (ML ) =—— 4[4——(T,z

—T4)]ln
8 24m. 22 M,

M)2+[2——„(5TzL 3Tzg —2T—g ) ]ln +5[1——„(Tzz, —Tr)]in
R L

(20)

TABLE I. Allowed intermediate mass scales (in GeV) for the symmetry-breaking chain
SU(16)~SU(12)q XSU(4)I XU(l) (p i tL, (

vrithout the effect of Higgs bosons.

Mass 8'&

1.5X10"
1.8 X 10'
1.8X 10"
2.8X 10'
2.8X 106

2.8X 10'
4.1X10'
4.1X10'
4.1X10'
4.1X10'

6.3 X 10»
7.7X 10
7.7X 10'
1.2X 10
1.2X 1o'
1.2X10'
1.7X 102

1.7X10'
1.7X 10
1.7 X 10'

Mass Mc

6.7X 10'
4.9X 10"
9.5X10"
5.1X10'
2.6X lO'4

5.1X1O"
5.2X 10'
2.7X10'
1.4X 1O"
2.7X10"

5.6X 1O"
4.1X1O'4

7.9X lp'6

4.2X 10
2.2X 10'
4.2X 10'6

4.3 X 10'
2.2X 10'
1.2X 10'
2.2X10"

a, =0.11

a, =0.12

Unification mass

1p15

1015

1O"
1O"
1O"
1017

1O'

1O"
lo"
lp17

1015

1O"
1017

1010

j p15

1p17

1O'

1O"
lp15

1O"

sin28g

0.22
0.23
0.23
0.25
0.25
0,25
0.27
0.27
0.27
0.27

0.22
0.23
0.23
0.25
0.25
0.25
0.27
0.27
0.27
0.27
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1

a, (ML )

3

8a(ML )

11 3 MU Mc
~ 4[12——„(Tiq—T4)]ln +[6——„(8T3—3Tql —3Tqa —2T~)]ln

24~ 22 M 22 Mg

1 Mg
+[9 pp (8T3 3T/L, 5Tr)]in

ML
(21)

Using a range of values of sin Oii (Ml ) from
0.22 to 0.27, in Table I, we give the allowed values
for the various intermediate mass scales without
taking into account the effect of Higgs bosons. In-
terestingly enough, we find that, there do exist
solutions with rather low mass parity restoration,
if we accept sin Hs ——0.26 —0.27. As has been
shown, by Rizzo and Senjanovic, such "large"
values of sin 8a are allowed once the right-handed
current effects are taken into account. Thus,
SU(16) grand unified theory provides another class
of models in which a low-Wz SU(2)1 X SU(2)z
X U(1)ii I electroweak theory ' can be embed-
ded. Phenomenological implications for such
models have been discussed in Refs. 7—9. We
note that the value of the unification mass
MU ——Mz in this case can be as low as 10 . One
therefore has to be careful in introducing baryon-
number violation in this situation.

IV. SU(16) BREAKING
VIA SU(8)1.XSU(8)g SYMMETRY

In this section, we consider the breaking of
SU(16) via the chain SU(8)L XSU(8)~ XU(1)z.
This subgroup has already been discussed in litera-
ture as a candidate for the grand unification
group. ' It is clear, that the physics above the
SU(8)L, XSU(8)z breaking scale is not of impor-
tance to us here. We therefore concentrate on the
breaking pattern below the mass scale Ms where
SU(8)I XSU(8)a is broken down to
SU(2)L X SU(2)& XSU(4), XU(1)~, etc., i.e., chain
II of Sec. II.

For completeness, we present the basis and the
diagonal generators to obtain the evolution equa-
tions for the gauge couplings:

T]8'Xc
2 y ~Xc

2

(22)

T~X~ 1
2 2

+%ye
2

0
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1
T6

(23)

7 1
T7

—3

1

4v2

For the antiparticle sector the null 8X 8 matrix and the first 8)& 8 matrix in T; are interchanged with a neg-
ative sign.

For the next stage of SU(2)I X SU(2)~ X SU(4)„we can write down the "probability" functions as

( )L, ( )L,
——, ( )~ ( )~

——, ( )~s (8)L,
——2~ PsU( )~ ( )~

——2. (24)

At the next stage, we break the group down to SU(3), X SU(2)L XU(l)„so that, only two nontrivial proba-
bility functions arise, i.e.,

3 2

Pr, sU(2)„= 5 ~ PY,sU(4) —
s

(25)

Using all these results and following exactly the same procedure as in Sec. III, we obtain the following
formula for sin 8~(ML, ) and a, (MI. ):
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11a(ML ) 1 Mg Mg
sin Ogr = 8— [—4——„(5Tql —3Tzz —2T4) ]ln +5[2——„(Tzl —Tr )]ln

48m M Ml

1 3 11 Mg Mg
[12——„(6T4—3Tzz —3Tql )]in +[18——„(8Tq+5TzL —13T&)]in

~,(~L, ) «(ML, ) 487r M~ ML

(26)

Again as in Sec. III, we will defer the inclusion
of Higgs contributions to a subsequent section and
present in Table II the mass scales without their
effect. In this case, we do not find any solutions
with low-energy parity restoration even for "large"
values of sin Os. .

V. HIGGS BOSONS IN SU(16)

We will assume that the symmetry breaking of
the SU(16) madel is implemented by including ex-

plicit Higgs scalar multiplets into the theory and

giving nonzero vacuum expectation values to ap-
propriate components. We first discuss the Higgs
multiplets necessary for breakdown of SU(16) sym-
metry to SU(3), XU(1)EM. We discuss their impli-
cations for neutrino masses and in the next section
study their impact on the gauge-boson mass hierar-

chy.
We will consider the following Higgs multiplets:

one belonging to the 255-dimensional adjoint repre-
sentation denoted by 4q,' a second one belonging to

I

the 18 240-dimensional representaiton denoted by
where the curly bracket stands for sym-

metrization with respect to the indices within the
brackets; a third one belonging to the 16-
dimensional representation 4z and finally the
136-dimensional symmetric Higgs field +I& &I.
Symmetry breaking discussed in Ref. 1 is different
from ours. We, therefore, describe it below.
will be used to implement the first stage of the
symmetry breaking in the chains II. Note that it
cannot be used to implement" the first stage of
symmetry breaking in chain I, i.e., SU(16)
~SU(12) XSU(4)~ XU(1) ~s

I

—~l. ~. We will use
the 4 z'z multiplet to implement this stage o the
symmetry breaking. Let us first concentrate on
chain I. For this purpose, we need the representa-
tion contents of the Higgs multiplets under the
various symmetry groups involved at different
stages in this chain. We use two 4,pz multiplets
to implement the first and second stages of the
symmetry breaking. We first display the represen-
tatian content of 4 c'nI under SU(12)~ XSU(4)~
X U(1)s

18240= (924;4)+(78;10)+(12;4)+(12,36)+H.c. +(5940;1)+(1;84)+(143;1)+(143;15)+(1;15)+(1;1),

(27)

where H.c. stands for conjugate representations to the ones preceding it. It is, therefore, clear that by giving
a nonzero vacuum expectation value (VEV) to the (1;1) component of 18240, we break the group down to

SU(12), XSU(4)»&U(1) ~s
~

~L ~. We note that in Eq. (27), the representation (78,10) and (143;15) represen-

tatians contain singlets under SU(3), X SU(2)L, XSU(2)z XU(1)s L. We assume that these components

develop VEV's which break the group down to SU(3), X SU(2)l X SU(2)~ XU(1)s
To achieve the final stages of the breaking, we use the fundamental and the symmetric Higgs multiplet

136 which has the following representation content under SU(3), XSU(2)l. X SU(2)gU(1)s

16=(3,2, 1)I+(3,1,2) I+(1,2, 1)+g+(1,1,2) 3,
136=(3 1 1)~+(6 3 1)g+(1+8 2 2)p+(3q 1~ 1) p+(6 1 3) p+(1 3 1) 6+(1 2 2)p+(1 1 3)s . (29)

We may use 16 to break the SU(2)r. XSU(2)~
XU(1)s I symmetry down to SU(2)L, XU(1) and
136 to break the group down to SU(3), XU(1)FM.

It is necessary to point out the neutrino mass is
sensitive to the multiplets used in breaking left-

right symmetry. If we use 16 to break
SU(2)L XSU(2)g XU(1)s I, at the tree level the
neutrino has only a Dirac mass. However, it can
have a Majorana mass arising in higher order by a
mechanism originally discussed by Witten. ' We
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Mass M& Mass M, sin 0~

1.2x 10'
4.0x10"
1.3x 10'
4.4x 10"
1.5x10"
4.9X 10"

6.3x10'4
1.1 x 10"
1.9x 10"
3.3x 10"
5.7x10"
9.9x 10"

0.22
0.23
0.24
0.25
0.26
0.27

show the relevant graph in Fig. 1. Noting that 136
gives mass to the light fermions, we can estimate
the Majorana mass of the right-handed neutrino to
be

2
mU Mg

m A,M,166 ML, MU
(30)

where kM stands for the dimensional 16)&16)&136
Higgs coupling. A natural choice for M is MU
since 16)& 16)& 136 coupling is likely to be a low-
energy remnant of the 4~4~4c4~ ~ coupling on
setting (4c )+0. Thus, we expect

o. mU
m

16m

Mg
Mg .

U

For Mit-10 GeV, MU-10' GeV (a choice al-
lowed by sin 8~ and a, ) we expect m„=l eV. In

Vg

this case, the Dirac mass is much bigger than the
Majorana mass. However if we have MU-Mii
=10' GeV, this leads to m =10 GeV which is

quite an interesting prediction. This predicts the
light left-handed Majorana neutrino mass to be
around =1—10 eV.

TABLE II. Allowed intermediate mass scale (in GeV)
for the symmetry-breaking chain SU(16)~SU(8)L
XSU(8)~ XU(1)~ without including the effect of Higgs
bosons. u, =0.1.

Thus, if we accept the low-mass-Wz solutions,
the left-right symmetry as well as the SU(2)L,

X U(1) symmetry must be broken by 136 dimen-

sional representations. The Majorana mass for v~
is then given by -M& and mv =—mU /M&. For
the sake of completeness, we mention that the
chain II of symmetry breaking via the
SU(8)L, X SU(8)R route is affected by using at the
first stage the adjoint representation 4z. It has
the following representation content under

SU(8)L XSU(8)ii XU(1)F.'

255= (1,1)o+(63,1)II+(1,63)o

+(8,8)2+(8,8) (32)

Giving (1,1)o a nonzero VEV breaks SU(16) to
SU(8)L, X SU(8)a. The rest of the breakdown is
achieved by the 4 CD)i, C&q, and 4(zs) and the dis-

cussion is similar to that just given.

VI. EFFECT OF HIGGS BOSONS
ON HIERARCHY OF GAUGE-BOSON MASSES

In this section, we will describe how to include
the Higgs-boson effects consistently in the
renormalization-group equations in grand unified
theories. ' The main problem is to find what the
masses of the various components of each Higgs
multiplet are likely to be. Then, it is straightfor-
ward to include their effect in the equations for the
evolution of the various gauge coupling constants.

In Ref. 13, a set of rules has been given to iso-
late which components of a given Higgs multiplet
are important at a given mass scale. We summa-
rize them here:

(i) Minimal fine tuning In the .Higgs potential,
we will do no more fine tuning than is required to
obtain the hierarchy of gauge-boson masses. Also,
we will assume all Higgs self-couplings to be of or-
der unity.

(ii) Spontaneous symmetry breakdown and in
tramultip/et mass sp/itting. Let the grand unifica-
tion group 60 breakdown be as follows:

{l6}
/

/
{I56}t

I

J L
1t
II

I

I

I

I

I

II
II

)I
,

I

{i~} {ie}

GONG) D62D (33)

Let the associated mass scales be po,p~,pz, . ... Let
4 belong to an irreducible representation of Go
and be used to break the group 6 to 6 +~. Let
4 have the following representation content under
Gm:

FIG. 1. The two-loop graph that generates the Ma-
jorana mass for v&.
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If (C&k ) =p is responsible for the breaking of
G~ to G + i, we postulate that' the whole sub-
multiplet 41 has mass of order p and will con-
tribute only above Q)p

(iii) Survival hypothesis T.o discuss this, let us
discuss the above example. The question is what is
the mass of 4J, j+k. We postulate that, of @J. ,
any set of multiplets which constitutes a full ir-
reducible representation under any of the groups
G~ „,n=0, 1,2,. . . m —1, will acquire a mass
corresponding to the mass scale breaking the group
6 „ i to G „,i.e., p „ i, unless any sub-

multiplet happens to be a pseudo-Goldstone boson.
This is similar to the survival hypothesis discussed

by Georgi' for the case of fermions.
We will now apply these criteria to the SU(16)

Higgs multiplets. Let us take each multiplet one

by one for case I. It is obvious that, since 4'cz is
involved in the first stage, all its submultiplets
have mass of order MU and, therefore, do not con-
tribute to coupling-constant evolution. Let us next
consider the multiplet 4 cD that breaks
SU(12), XSU(4), XU(1) ~s

~
~1. ~. Since it is the

(78;10) component which acquires a nonzero VEV,
its mass will be of order M, and will therefore
contribute to b ~2 and b4 above M, . A11 the
remaining multiplets in Eq. (26) are superheavy
and are not relevant to us. Now, let us assume

that 16 breaks SU(2)L X SU(2)z XU(1)s I . Under
SU(12)q XSU(4)I,

16= (12;1)+(1;4), (35)

where, under SU(3) X SU(2)L X SU(2)~ XU(1)s

(1,4)=(1,2, 1)+(1,1,2) . (36)

136= (78, 1)+ (12,4)+(1,10) . (37)

To break SU(2)L XU(1), we use (1,10) and (78,1).
Therefore, by the survival hypothesis, (12,4) will

acquire mass of order MU. Now, under
SU(3), XSU(2)l XSU(2)g XU(1)g

(78, 1)= (3, 1,1)2+(3, 1,1) 2+ (6,3, 1)2

+(6,1,3) 2+(1+8,2,2)p, (38)

It is the (1,1,2) which breaks SU(2)~ XU(1)s
therefore, (1,1,2) has mass of order Mz and will
contribute b2R and b~q L ~. On the other hand, the
multiplet (1,2, 1) will also have a mass of order Mz
by left-right symmetry. On the other hand, the
(12,1) part of the multiplet will be superheavy by
the survival hypothesis (iii) above.

Let us, finally, consider the multiplet 136 that
breaks SU(2)1 XU(1) to U(1)EM. Under
SU(12)q X SU(4)I,

TABLE III. Allowed intermediate mass scale (in GeV) for the symmetry-breaking chain
SU(16)~SU(12)q XSU(4)I XU(1) ~z

~
~z ~

with the Higgs-boson effect taken into account.

Mass 8'& Mass Mz Unification mass sin Hg

4.1X10"
6.6x10'
5.3X10'
1.2x10'
7.ox 10'
1.1x 10
8.6x 10
70X10
1.6x 10

1.7X10"
2.7X10'
2.2X10'
5.1X10'
2.9x10'
4.4x10'
3.6X10'
2.9x 10'
6.6X 104

9.6X 10'
4.3x 109

7.9X10"
1.0X10"
1.7x 10'
1.9x104
3.5x 10'
6.4X 1O"
8.2X10"

8.1 x 10'
4.1X10'
7.4x10"
9.4x 10'
1.6x 103

1.8X104
3.3x10'
6.OX 1O"
7.7x 1O"

u, =0.11

a, =0.12

1O"
1p10

1O"
1O"
104

1O'

1O"
1P15

1O"

1015

1p10

1015

1o"
1O4

1o'
1O"
1O"
1017

0.23
0.25
0.25
0.25
0.27
0.27
0.27
0.27
0.27

0.23
0.25
0.25
0.25
0.27
0.27
0.27
0.27
0.27



3024 R. N. MOHAPATRA AND M. POPOVIC

(1,10)=(1,3, 1) s+(1,1,3)g+(1,2,2) . (39)

The (1,2,2)o parts in both Eqs. (38) and (39) will

acquire VEV's of order rn~ and will give Dirac
L

masses to quarks and leptons. It is clear that the
multiplets (3,1,1), (3,1,1), (6,3,1), (6,1,3), (8,2,2),
(1,3,1), and (1,1,3) will acquire mass of order M,
and will therefore contribute to b&2 and b4. There
are two left-handed doublets with mass of order

Mii and two left-handed doublets with mass of or-

der ML. Thus, above Mz, two (1,2,2) multiplets

contribute to b2L and b2z whereas above ML, two

left-handed doublets contribute to b2L.
We illustrate their effect only for the symmetry-

breaking chain I and the resulting mass scales are

given in Table III. We have presented this simply

as an illustration and in subsequent discussions, we

will not use the particular numbers reported. We
will in the subsequent section discuss phenomeno-

logical implications of this model including dif-

ferent kinds of Higgs multiplets. The main point,
we wish to make, however, is that the Higgs-boson

effects on mass scales are not completely negligi-

ble.

VII. SPONTANEOUS SYMMETRY BREAKING
AND PREDICTIONS

FOR BARYON NONCONSERVATION

In this section, we wish to include some com-
ments on the detailed mechanism for spontaneous
breakdown via the SU(12)» X SU(4)i XU(1) ~z

~

route and its phenomenological implications. We
remind the reader that, in this chain, we will tem-

porarily use two symmetric-adjoint multiplets
to break the group from SU(16) to

SU(12)» XSU(4)i XU(1)
~

z
~ ~

z
~

and then to
SU(3), XSU(2)L XSU(2)ii XU(1)z L. To imple-
ment the first stage, we assign

(40)

where a runs over the quarks and antiquarks, i.e.,
a= 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15 and a
goes over the leptons and antileptons: a =4, 8, 12,
and 16.

We want to discuss which gauge bosons acquire
mass at a given stage. For that purpose, we fix the
following notation:

Color gluons: VJ——, $ V, i,j =1 .

Left —and right- handed weak gauge bosons: 8'I ~&, p =1,2,3;
U(1)z I gauge boson: B;
Leptoquark bosons: X~ =4,8, 12, 16, +=1,2, 3,5,6,7,9, 10,11,13,14, 15;

Diquark gauge bosons connecting quarks and antiquarks: F~, P=1,2, 3,5,6,7, a=8, 10,11,13,14,15;
Dileptons: Yb', a =4,8, b =12,16 .

(pi, i+8) (@4 i, 12+i)+ M,

g
(41)

This gives mass to 144 gauge bosons including
Y,Y,'. But it does not give rise to any mixings
between X, Y, and Y' type gauge bosons since Eq.
(41) conserves baryon and lepton number. In fact,

Owing to Eq. (40), the 96 gauge bosons X' ac-
quire mass of order MU. Note that since the
gauge bosons connecting quarks and leptons of
each flavor acquire mass of order MU & 10' —10
GeV, it is consistent with the present data on
El ~pe.

At the second stage of symmetry breaking, we
assume that a second 4,ca with the following
VEV exists (summation over color indices i under-
stood):

we find that using this multiplet, it is difficult to
get any baryon nonconservation. The point is that
the only interesting VEV that leads to M+0 pro-
cesses and breaks the symmetry appropriately is of
type

(42)

where we have used explicit fermion labels instead
of numerical indices. Note that we needed a mul-

tiplet with antisymmetrical indices. If we had used
symmetric indices, then I uL, ,dL I would have given
rise to an SU(2)q triplet and could not have a scale
more than ML/10 or so. This conflicts with our
previous requirement that

&@cD )=
8
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ud CdC

CdCO cdc
/

/I
Yqq i & X C C

I q

8 —L symmetry is broken by

(44)

FIG. 2. (B—L)-conserving proton decay p~e+m .

A way to avoid this problem is to replace the
symmetric-adjoint multiplet at the second stage by
the antisymmetric-adjoint Higgs multiplet in addi-
tion to the symmetric one. This will induce
(B—L)-conserving proton decay via the diagram
of Fig. 2. This amplitude is given by

aM, e2

M(p —+e+m )=
M, MU MU

(43)

where e is the mixing parameter between the di-

quark and leptoquark gauge bosons. For
MU-=10 —10 GeV, this gives a proton lifetime

z =103 —10 yr.P

Unless e is chosen unnaturally small, proton life-
time would constrain MU&10' GeV. So, from
this point on, we will discuss physics for these
values of MU.

Let us now look for ~+0 processes with other
selection rules. Note that up to the scale Mz,
B L is an exact sym—metry: therefore,
h(B —L)+0 selection rules must be proportional
to M~. Once we are below the scale Mz, local

which obeys the selection rule b,(B—L)=2. The
combination of h(B —L)=2 and 6(B —L)=0
operators produce both ~=2 processes such as
n nos-cillation and h(B +L)=0 processes such as
n —+e m+ decays. It appears that the dominant
contribution to n-n oscillations comes from the
graph in Fig. 3. This graph is similar to the one
noted in Ref. 15 and as already noted this leads to
an extremely slow n-n oscillation time, z„„--=10
yr. Thus in this model n-n oscillation is
suppressed. In fact, it appears to use that n-n os-
cillation will always be suppressed in simple
SU(16) models being considered for the following
reasons. The only b,(B—L)=2 VEV allowed by
charge conservation is that due to v~ v~ conden-
sate. But this obeys ~~-=2;~=0. So, to obtain
~=2 processes, we must insert two b, (B —L)=0
VEV's that break ~ and only such VEV's allowed

by color and electric charge conservation are
(4"",d, ), which also gives rise to p~e+m. o decay.
So, roughly speaking, one obtains M„

~M ++~ as an order of magnitude estimate.
p e+m

This means ~„„-& 10 yr. One way to avoid this,
of course, is to introduce very complicated Higgs
multiplets with six SU(16) indices, 4&zcDE~, and
choose low unification mass. Then, there will be
allowed Higgs-boson self-coupling of the form

ucl6
](

C C
v cI6 &f„c c&

C C

v cI

"----- &4 c c &
C P V

lip

&gaud )
CdC

I Ne

p cl

)I

r

CdC

(I

)I

)I
I

I

,

", WR

FIG. 3. Feynman graph for n-n oscillation in the
SU(16) model.

FIG. 4. The one-loop graph leading to (B +L)-
conserving decay mode n ~e ~+.
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+ABCDEF. Then giving (4„dd„ii& )+0
will lead to large n-n oscillation amplitude.

The other h(B —L)=2 process which respects
the b,(B +L)=0 selection rule arises from the
Feynman diagram in Fig. 4, and leads to decays
such as n ~e m.+. But these appear to have a
strength

mpM„+=-GFae
2
-10 GeV . (45)

U

It thus appears that in the model discussed here,
the dominant proton decay mode is the (B L)-—
conserving mode p~e+mo which has a lifetime of
10 yr. Finally, we note that in the cases with a
low-mass 8'~ scale, an outstanding signature will

be provided by the existence of neutrinoless
double-p decay transitions in a manner similar to
that discussed in earlier papers. Other processes
in the leptonic domain will be processes like

p ~e y, m~3e, etc., as already discussed. '
To summarize, SU(16) has the following predic-

tions for baryon and lepton nonconservations: For
high-mass unification, the dominant &+0 pro-

cess is b, (B —L)=0 process p~e+m, where for
low-mass unification (i.e., MU & 10 GeV), the only
possible M+0 process is n-n oscillation with

7~ ~
1o' —10 sec. In either case, if

sin 8~-0.27, and a,=0.1 —0.2, one obtains a low

value for m~„, the scale of right-handed interac-

tions. This has many interesting implications as

already discussed in the literature, ' for example,
neutrinoless (ppo) decay (|suey, p~3e, etc.

Note added. After this paper was completed, we

were informed that a similar detailed analysis of
mass scaled in the SU(16) model has been carried
out by J. C. Pati and A. Mohanty, Maryland re-

port (unpublished).
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