
PHYSICAL REVIEW D VOLUME 25, NUMBER 11 1 JUNE 1982

Partially conserved axial-vector current condition in the quark model:
GA /Gi for vector mesons and the nips coupling constant
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The PCAC (partially conserved axial-vector current) condition is implemented at the
quark level for hadrons considered as bound states of constituent quarks. Using the
Goldberger-Treiman relation and the cope coupling constant, it is shown that G~/G y for
the e~p Gamow-Teller transition is lower than the quark-model prediction by 20fo.
This supports the current view that G&/G& for bound quarks is reduced by confinement
effects. With this reduction, the decay rates I (D~~Dm. ) are calculated and found to be
more or less in agreement with measurements.

I. INTRODUCTION

It is a well-known fact that SU(3)X SU(3) is an
approximate symmetry of strong interactions. 'z
This can be realized in a most simple way by giv-

ing a small mass for the current quarks which ap-
pear in the QCD Lagrangian. In the limit of zero
current quark masses (mo ~0, q =u, d, s) the
axial-vector currents associated with the symmetry

group SU(3) XSU(3) are conserved, but the appear-
ance of an octet of massless pseudoscalar Gold-
stone bosons implies that the symmetry is spon-
taneously broken. In particular, for mc„——mod«mo„SU(2) XSU(2) is an almost exact symme-

try. This seems to represent the physical situation
where the pion has a very small mass compared to
other pseudoscalar-meson masses. Thus the isovec-
tor axial-vector current is almost conserved and for
all practical purposes we have, to a good approxi-
mation,

B„A;q——0, i =1,2,3.
Since Eq. (1) is an operator relation one should get
a relation between the form factors (at q =0) for
the axial-vector current and the pion-hadron cou-
pling constant for any hadron. This is the general-
ized Goldberger-Treiman (GT) relation; the most
familiar such relation is naturally the GT relation
for Gz/Gi in neutron P decay. This in turn im-
poses strong constraints on the coupling constants
between the Goldstone bosons and the bound
states. In this paper we shall first implement the
PCAC (partially conserved axial-vector current)
condition at the quark level for confined quarks in

hadrons and then apply the GT relation to low-
lying vector-meson states. Using a nonrelativistic
quark model to calculate the Gamow-Teller transi-
tion matrix elements, we obtain a value for the
cope coupling constant in agreement with experi-
ment. We discuss also the case of transitions be-
tween vector and pseudoscalar mesons (1 -+0
transitions).

II. GOLDBERGER- TREIMAN RELATION
FOR HADRONS IN THE QUARK MODEL

The success of the nonrelativistic quark model in
describing hadron spectroscopy shows that quarks
confined in hadrons acquire an effective mass

i
about —, of the nucleon mass (the so-called consti-
tuent quark mass) and that their motion is nonrela-
tiavistic to a good approximation. Starting from
this approximation, static quantities such as mag-
netic moments, radiative transitions, P-decay ma-
trix elements for low-lying states as well as finer
details of hadron mass splitting (i.e., hyperfine
splitting) can be calculated from the QCD interac-
tions and are found to be in good agreement with
experiments. In particular, the axial-vector
currents can be approximated gbr the Gamow-
Teller transition operator (g,. , r,+cr;). In this—
case the PCAC condition can be implemented at
the quark level. Consider now the isovector axial-
vector current. In the limit of mo„, m~~0 to-
gether with the absence of QCD anomalies for the

1isovector currents A;„(A;„=q, r;y„ysq, i=1,2,3)—
are conserved and Eq. (1) is a strong operator rela-
tion which must be satisfied by all the matrix ele-
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ments of (1) between any hadron. The existence of
massless pseudoscalar Goldstone bosons follows
from this condition, which gives also the general-
ized GT relation applied to any hadron considered
as a bound state of constitutent quarks. This con-
straint is automatically met if it is satisfied by
quarks confined in a QCD potential. Let g«& be
the coupling constant of pion with quarks. Since
the motion of quarks in the QCD potential is as-
sumed to be nonrelativistic, we have in the limit

q —+0 and for the charged pion,

2m, (y, &+ "(y, ) =0, (2)

where f is the inverse of the pion decay constant

f (f ' =f =m ), ms is the constituent quark
mass, and (y5) is the expectation value of the

single-particle quark field operator qysq in this po-
tential. From (2) we have the GT relation at the

quark level,

g + =—2mqf.
qq

(3)

f g &+(m„+md)=0,

f»g + +(m„+m, )=0.
(3')

Furthermore, if one assumes the SU(3)-symmetry
relation between the dimensionless meson-quark

coupling constants, i.e.,

& +ud=&X+:

one gets

Note that g + is the m+qq vertex function when

the quark momenta are on the mass shell

(pi ——p =ms). Thus if condition (3) is met and a
nonrelativistic description of the bound states is
valid, then the GT relation for hadrons can be ob-
tained easily.

In the presence of chiral-symmetry breaking, the
pseudoscalar mesons acquire masses which are re-
lated to the current quark masses. The axial-
vector currents are no longer conserved, but Eq. (3)
is still valid if one makes the usual PCAC assump-
tion:

2
e

8~A;p —— P;, 1 =1,2,3,
V2

2

Bp;~ —— p;, i =4,5,6,7.
2

We then have for q ~0,

f» m„+m,
f m„+m„

for m„=md ——350 MeV, m, =500 MeV, Eq. (4)
gives

(4)

= 1.2,f (5)

which agrees well with the experimental value of
1.28. A probable explanation for the success of
this prediction is that SU(3) relation can be used
for the dimensionless meson-quark coupling con-
stants even in the presence of SU(3) breaking.

It is easy to see that Eq. (2), when applied to nu-

cleon matrix elements, reproduces the usual GT re-
lation for G~ /G~. In fact, the pion-nucleon cou-
pling constant is defined by the following relation:

where , r+o—and —,g,. r,+ o; are t. he nucleon and

quark Gamow-Teller transition operators, respec-
tively. Since

'T 0 = 'T 0'
Gv

(7)

we have

&~+ps
= Gg 2m~

Gv f
which is the GT relation for Gz/Gv in terms of
the a+pn coupling constant. Using the nonrela-
tivistic quark model [SU(6)] value for Gz/G„

5
(Gq/Gi ————,), we get

2
&~+pn =42,

4m.

which is bigger than the measured value by 40%%uo

(g ~~ /4n =15). This discrepancy could be attri-
buted to a renormalization due to QCD interac-
tions for Gq/Gv of confined quarks and/or possi-
ble configuration mixing of the nucleon wave func-
tion as discussed in the literature. '

Similar relations can be obtained for any bound
states with nonvanishing Gamow-Teller matrix ele-

ments. In particular, the matrix elements of the
axial-vector current between vector-meson states is
another example in which the dynamics can be
described by a nonrelativistic constituent quark
model which is successful to some extent in
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='&p pAppv&p&c g„o~(q )

(e and e~ are the polarization vector for vector
mesons and q =p —p' the momentum carried by
the neutral pion). j3(0) is the source of the pion
field defined as

( &+m ')y3(0) =j3(0) .

The GT relation for vector mesons can be ob-
tained either from the PCAC condition or from
the analog of Eq. (6) applied to 1 states. For
q2 —+0, we have then

2EA(0)+ ~ g 0~=0 (9)

On the other hand, in a nonrelativistic quark
model, Fz (0) is given by the Gamow-Teller transi-
tion matrix element for a 1 ~1 transition,

( (p) ) &;(0)
~

p'(p') )

describing radiative transitions between low-lying
meson states.

The covariant matrix element of the axial-vector
currents between co(p, d') and p (p', e~) is defined
as

(co(p)
~
&3„(0)i p (p') )

=ie„„(p„+p'„)~
we~ +A(q') . (8)

The cop n. vertex is defined similarly as

( (p)
~ j (0)p'(p'))

which gives [using (9)]

2'
g~poa =

This corresponds to a value of 0.6/m for
g p~ /4n, wh. ich is only 30% larger than the ex-

perimental value of (0.41+0.09)/m obtained
~P

from co~3m decay. '

The agreement with experiment is rather good
considering the crude approximation for Eq (0). To
produce a ~p~ coupling constant close to the mea-
sured value, as with the case of GA/Gz for the nu-
cleon, one nods an effective EA (0) lower than the
nonrelativistic-quark-model value by 20%. Con-
figuration mixing of the qq wave function and re-
normalization of GA /Gz for bound quarks may be
responsible for this reduction. Since GA /Gy for
current quarks are found not to be renormalized
(i.e., GA /G~= 1) in deep-inelastic neutrino hadron
interactions, renormalization of GA/Gz for consti-
tuent quarks would probably come from confine-
ment effects associated with transverse motion of
quarks in a QCD potential. Standard quark-model
and MIT-bag-model calculations seem to obtain
such a reduction of the right order of magnitude. '

We believe that this reduction of the single-quark
matrix element (qy&y5q ) is more important than
configuration mixing since it reduces also the
SU(6) value for the nucleon GA /G~ by the same
amount. Assuming that (qy&ysq ) for a single
bound quark is renormalized by gz, we have in-
stead of (11)

2po ~u oui +p lco 2 Nt P

X„and Xz are the spin-coordinate wave functions
which are identified with the polarization vectors
in the nonrelativistic limit (we have assumed that
the vector mesons are in a triplet S state according
to the qq bound-state picture of low-lying mesons).
In terms of the quark field operator, A3; is given
by

2v2
g~ 0+ f gA

From the nucleon Gq/GY, we have

3 3
X ———

GY 5 4

Hence

(12)

A3~(0) = —,(uypy5u —dypy5d) .

Since the axial-vector current is euen under charge
conjugation, the Gamow-Teller matrix element for
an anti-quark is the same as for a quark,

Evaluating (10) for co and p in an M= 1 state (spin
parallel) and comparing (8) with (10), we get

FA(0) =1,

2
gcopoe 0.36

4m m2
is in good agreement with the measured value men-
tioned above.

Note that provided that gz for uy„y5d and
uy&yes currents are the same the ratio fx/f~ is
unaffected by the renormalization effects and is
still given by Eq. (4).

We now turn to the transitions between vector
meson and pseudoscalar meson (1 ~0 transi-
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tion). For bound states of unequal masses, the GT
relation in general involves more than one form
factor. For the matrix elements between bound
states with a small mass difference, the soft-pion
limit (p'-+p, q ~0) can be used to eliminate terms
proportional to (p —p' ' in the GT relation. The
mRn contribution is given by the Gamow-Teller
transition matrix element. As an example, consid-
er the matrix element of A3„(0) between D'+ and
D+. These states are known to be well described

by S= 1 and S=O S states of the cd system. The
matrix element is given by

(D'+(p)
( As„(0)

~

D+(p') )

=&„Gi+&q[(p+p')„G~+q„G ] .

Using PCAC, we have as q —+0

f g~, +D+~ — ——[Gi(0)+(p p' }6+—(0}],v2 2 &2

Further measurements on D*~Dm. would provide
a direct check on our essentially model-indepen-
dent prediction for r(D~~Dm ) obtained from
(14). Note, however, the calculated values of
Eichten et al. "for r(D~~Dm ) are smaller than
our rates by a factor of 2.

It is doubtful whether Eq. (14) can be applied to
E*~Em and p—+mw transitions since the contri-
bution to g, 0 (or g~~) from G+(q ) in Eq. (13)
cannot in general be neglected H.owever, if one ig-
nores 6+ (qz) as usually done in nonrelativistic
quark-model calculations, then Eq. (14) can be
used to obtain g,k+. This gives a decay rate

2
' 2

r(E + E+n }=
12m f

=15 MeV,

M
ga~+D+a— (14)

3
%ith g& ———,, we get

r(D +~D+m )=42 keV.

Similarly, for D' ~D n. ,

I'(D' ~D n }=86keV .

For the radiative decays of D~, we have after a
straightforward calculation,

r(D'+ D+q) =20 o
I (D'+ +D+m )—
r(D ~D+y)
I (D' ~D+n )

Both these calculated branching ratios are more or
less in agreement with measurements" on D*.

(13)

where the D +~D+~ transition matrix element
is defined as

M(D'+~D+n }=2ieqg, +n+& .

In the soft-pion limit (p'~p, q~O}, the cou-

pling constant g~++z++ is determined completely

by 6~(0). The nonrelativistic quark model gives

G&(0}=pago .
Hence

in good agreement with the experimental value of
17 MeV (the measured width of E'+ is SO MeV}.
It appears that 6+ (q ) gives a negligible contribu-
tion to g, +. It follows than that 6+(q~) for

p ~+n. +transitions is also small [using SU(3)] and

g~ can now be obtained in terms of G&(0) only.
Applying (14) to the p +em transit—ion, we get

2mS~ S~ m,
4m 4n f i

in good agreement with the value 2.86 obtained
from the p-meson width. The expressions for g~~
and other coupling constants discussed above are
identical with those obtained with the nonrela-
tivistic quark model in which the pion-hadron cou-
pling constant is defined as in Eq. (6) and g~e& can
be obtained from g~N&.

Despite the apparent success of the above calcu-
lation, it is not clear to what extent these results

can be trusted. The main problem is how to recon-
cile the constituent qq-bound-state picture for the
pseudoscalar-meson octet (n.,E,ri) with the special
role that these mesons play in the spontaneous
breakdown of SU(3) XSU(3). Because of this spe-
cial role, the coupling constants g~ and gz.z„
should be treated by an effective-Lagrangian ap-
proach which incorporates the chiral symmetry in
a simple manner. ' Thus Eq. (14), when applied
to g~ and g~~~, serves only as a qualitative indi-

cation on how these coupling constants are related
to f, the fundamental constant which character-
izes the spontaneous breakdown of chiral symme-

try.
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