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Magnetic dipole transitions of narrow resonances
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We examine the relativistic corrections to the M1 decays of charmonium and find that
additional terms are present which have not yet been calculated. These arise as a conse-
quence of the recoil of the composite system and are of the same order of magnitude as
terms already calculated, contrary to what was previously believed.

In recent years the narrow resonances of the cc
system have been investigated extensively both
theoretically and -experimentally. ' The interaction
potential must consist of a Coulombic term 1/r
due to gluon exchange at short distance as well as
a confining term which can be chosen to be linear
in r. Thus the potential ar 4cts/3r—+b has be-
come popular for use in fitting the gross features
of the spectrum while additional relativistic in-
teractions provide calculable corrections. The
parameters are fit to the spectrum, but additional
information, such as the widths of the states, is
also known and can provide further tests of the
theory.

Several years ago Feinberg and Sucher, Sucher,
and others studied M 1 transitions of charmonium.
We have reexamined these decays by another
method, which in itself would not reveal anything
new. In the process of the reexamination, however,
we have evaluated an important contribution, pre-
viously considered negligible, due to recoil of the
final-state composite system. Contrary to what

was previously believed, this correction is of the
same order of magnitude as the leading contribu-
tions to M1 decay.

In this short paper, which precedes a more ex-
tensive analysis of these decays, we first discuss
our approach to M1 transitions based upon ap-
propriate coupling to the electromagnetic field.
Next we examine and evaluate the recoil effect
mentioned above using two methods. The first
employs relativistic center-of-mass operators while
the second utilizes Lorentz boosts of the internal
wave function. We then show that except for this
recoil term our expression for the M 1 decay agrees
with that of Sucher. Finally, we briefly examine
he numerical contribution of this new correction

to decay rates of charmonium.
We shall assume as a working model that at the

relativistic level the quark-quark interaction is
simulated by the exchange of vector particles and
scalar particles. Thus, in the presence of the quan-
tized radiation field the Hamiltonian is

H=ai (pi eiAi)+—pimi+a2 (p2 —e2A2)+pzm2+ stoa a

We wish to stress at the outset that this is not the Hamiltonian we shall use, rather it is the reduction of it
to the two-component space of each particle which will be utilized. This procedure has been standard in the
literature for many years and it gives correct results even though the exact Hamiltonian of Eq. (1) (in the
absence of the A field) is known to have serious defects. These defects have led Sucher to separate the
field-theoretic Hamiltonian into no-pair and pair terms, treating the latter perturbatively. We show that to
the desired accuracy, our approach, based on the u /c expansion of (1), agrees with this method for the M 1

decay (i.e., ignoring recoil).
From (1) we can carry out a Barker-Glover-Chraplyvy reduction to a transformed approximate Hamil-

tonian,
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In this expression 8'EE, 8'OE, 8'Eo, and 6'00 are, respectively, even-even, odd-even, even-odd, and odd-odd
Dirac operators obtained from Eq. (1). The procedure leading to Eq. (2) is analogous to the Foldy-
Wouthuysen (FW) transformation for the one-particle system. The resulting Hamiltonian H«may also be
arrived at by an alternative procedure which avoids the objection to Eq. (1). This involves carrying out a
FW reduction at the level of field theory, as originally suggested by Lin, and then deriving a two-particle
Hamiltonian. We shall discuss this in greater detail in a more complete article.

Whichever approach is used, we find that we obtain
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l Pl l l

There are four M 1 decays of interest. These are

(a) 2 'Sii ~ 1 Si +y or rj,'~ g+ y,
(b) 2 Si~ 1 'Sp+ y or i''~ 21, +y,
(c) 2 Si-+2'Sp+y or f'~rk+y,
(d) 1 Si~ 1 'Sp+ y or 1(—+ 2), +y .

The first two, (a) and (b), can only occur due to re-
lativistic terms in the Hamiltonian, because the
leading M1 operator will have zero matrix ele-
ments between nonrelativistic radial wave functions
of the n =1 and n =2 states. The last two decays,
(c) and (d), do occur nonrelativistically.

e) e2
Pi Ai — p2 A2

m& m2

lead to M 1 contributions, as will be demonstrated
later.

2 ([Vs, m'i ]++2m i Vsm i) 2([Vs, m'2—]++2tr2 Vstr2), (3)
8m) 8m22

We shall separate the transition matrix element
into two terms. The first of these arises when we
ignore recoil for the final-state composite system.
When this is done only spin-dependent operators in
Eq. (3) can lead to transitions between the triplet
and singlet spin states. These states are character-
ized by a conventional direct product of two-
component spinors for each of the particles. The
second type of correction, which to our knowledge
has not been evaluated, arises from the Lorentz
boost of the composite wave function. When this
boost is taken into account, the interaction terms
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Consider now the explicitly spin-dependent
terms of Eq. (3) which are linear in the radiation
field. When the matrix element is taken between
the initial photon vacuum and a final one-photon
state of momentum k what remains is an interac-

I

tion Hamiltoniin acting between composite states
presumed to be at rest. The spin-dependent part of
this Hamiltonian, for the case of particles of equal

mass m and opposite charge (let e i ——q) is

o i ( —i)kXe'e i i' rl2+ q oq ( i—)kxe ~e'k 'r'2
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Since the initial and final states have the same parity, only the even-parity part of Eq. (4) can contribute.
We expand exponentials keeping at most the quadratic terms in k r. This yields

(4)
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To proceed further we now carry out an angular average utilizing the fact that initial and final states are S
states. Correction terms of order k /m are dropped since they are too small. In the fourth term we re-
place ~ multiplied by the operator by a commutator with the nonrelativistic Hamiltonian. This can be done
since co is the difference between the initial- and final-composite-energies. We then find

qi k r p2 rVv rVv rVs
(cr, —cr, ).(kxe') 1 — — + +

2m 24 2m 2 ]2m 4m 6m ]2m

24m
(o i

—o2) (kXe')[r p,H ] .

We now use

~2
[r p,H&]= r p + Vv+ Vs = p' ir(Vv+Vs)—

m
(7)

Substituting Eq. (7) into (6) we find
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Except for the small factor of c0/4m which is of
the order of terms deliberately dropped (e.g., in
Ref. 3), this expression will agree with previous re-
sults (2)—(4). It should be noted that the leading
term in Eq. (8) will give I»;„of (6.73) of Ref. 3
when spin-dependent interactions are incorporated
into the unperturbed wave functions. This c0/4m

term is negligible when nonrelativistic initial and
final radial wave functions are orthogonal. This
occurs for transitions (a) and (b). On the other
hand for transitions (c) and (d) the frequency co is
quite small and colm is less significant than the
other corrections.

As mentioned earlier Eq. (g) is not the whole
story and we must now examine the effect of recoil
of the final state. This can be accomplished in a
variety of ways. When the isolated Hamiltonian of
Eq. (3) (with A=O) is written in terms of conven-
tional nonrelativistic relative and center-of-mass
coordinates, it is found that internal coordinates
and center-of-mass coordinates do not separate,
and therefore knowledge of the internal wave func-
tion does not immediately provide the total wave
function for the moving composite system. Many
authors have discussed this problem and have
found that constituent particle variables can be ex-
pressed in terms of relativistic relative and center-
of-mass variables. After this is done the total
wave function is easily determined from the inter-
nal wave function.

To extract the corrections, consider the terms

m
and now use the relations between constituent and
center-of-mass variables as given by Kracjik and
Foldy. Let us at first ignore any dynamical ef-
fects contained in the Lorentz boost and concen-
trate only on kinematics. We can then write
x ~

——p ~+R+5x ~ and x2 ——p2+R+5x2 where p;
are the center-of-mass relative variables and R is
the position operator of the center of mass. We
readily find that 5xi and 5xz contain spin-
dependent terms (5x i),„and (5xi)»,

(o,—cTi) X p (o,—cTz) XP
(5xi)» —— , (10)

8m 16m

(o'i —cry) X p (o'i —cTp) XP
(5xi)» —— + . (11)

8m 16m

The constituent momenta do not have spin-
dependent kinematical corrections. Expanding the
exponentials in Eq. (9) and setting P=0 in Eqs.
(10) and (11) we now find

icI g k
l(ol o2) X Pl

X2
m Sm

which upon angular averaging gives

(12)

(13)

Hence we find a new correction.
Let us now arrive at this correction from a dif-

ferent point of view. Again consider Eq. (3) with
the radiation field turned off and imagine express-
ing the individual-particle position and momentum
operators in terms of conventional nonrelativistic
variables, that is xi ——R+r/2, xz ——R—r/2,
p, =p+P/2, and pi ———p+P/2. After this is
done the Hamiltonian contains an internal part as
well as a part which depends in some manner on
P, call it Hp. If Hz is treated as a perturbation it
will lead to important wave-function corrections
needed to evaluate transitions from a composite
state at rest to one with final momentum —k.
Another way of accomplishing the same end is to
perform a Lorentz boost on the final wave func-
tion. Recall that this wave function is a two-
component spinor for each particle.

The easiest way to do this is to go back to the
Dirac representation and use approximate kinemat-
ic boost operators to get approximate two-
component wave functions. Suppose we write the
boosted wave function as

~'

a)-k
2M

Q2 k1—
2M

—i k R.).
'arel ~

(14)

where M =2m. The upper components of g are
now modified by the presence of boost operators.
If we write g„i in terms of upper and lower com-
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e
—i k. Ry (15)

ponents, and if we express the lower components
of g„i in terms of the upper components we will

find that
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The leading terms of 5$ have spin-dependent
terms,
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which upon angular averaging yields

lq (o.i
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in agreement with the result obtained earlier [Eq.
(13)] by an alternative method.

Adding Eq. (18) to Eq. (8) gives an M 1 decay
operator

(18)

X you i k—~ R (16)

where uu stands for the upper components of the
wave function. Returning to the matrix element of
Eq. (9), we find that the inclusion of the above
correction to the upper components of the final-
state wave function implies the additional term

We might now wonder whether dynamical modifi-
cations of the boost operator can also lead to addi-
tional corrections of the sam. e order as those al-
ready given. We have looked at this question and
have convinced ourselves that such terms would be
too small.

The easiest way to see this is to start from the
expression for the M1 amplitude given by one of
us earlier. ' Those expressions' included the ef-
fects of the interaction-dependent part of the boost
operator. We find that we can reproduce Eq. (19)
in this way too, provided the spin-dependent part
of the operator W'" of Ref. 10 commutes with the
nonrelativisitc internal Hamiltonian. For the
Hamiltonian under consideration we can show that
this condition is definitely satisfied.

As mentioned in the introduction our approach
is somewhat different than that given in Ref. 3.
We would now like to show that they are
equivalent. Let us first consider the spin-
dependent terms linear in the radiation field arising
from all terms of Eq. (2) except the last term in-
volving d'00 and the double-commutator terms in
which d'zz ——Vv —P,P2Vs. From Eq. (3) we get

o i.Bi+ [o i.B„p, ]+— o, .B,+ o i.Ai X pi+(1~2) .
2m gm

'
gm 4m 2

Between the initial and final states we may replace this expression by

(20)
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'+e 'k pi (criXe~) pi+(1~2) . (21)

We now drop those terms which would constitute relative corrections of order k /m . The present analysis
shows that our previous contribution in Eq. (19) involving co/4m is much smaller when matrix elements are
actually evaluated. We find that Eq. (21) may be replaced by

0) kxei (k'7xi)

4m3 4m3

oi V(Vv+ Vs)XAi+(1~2) . (22)
4m
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This expression should be compared to the no-pair contribution of Sucher, given by

q' e, kxe 1
' q', p, 'F, -kxe q', g, p, xe (p, .k). (23)

To complete the comparison we must now obtain the previously discarded terms. It is straightforward to
show that neglected double commutators can be written as

2 [&) Al, [Vv+P)P2Vs, tr t'pt]]+ 2
&t.V(VV+ Vs)XA)+(1~2) .

4m 4m

The corresponding term of Sucher coming from pair terms is

(24)

2 [ct 1'At [VV+~1P2VS tr 1'P 1]1+(1
4m

(25}

Finally, our anticommutator term of Eq. (2) agrees
exactly with the pair anticommutator term, Eq.
(6.64) of Sucher. Hence when we add our contri-
butions they agree with those of Sucher.

In this paper we have shown that our approach
is equivalent to that of Ref. 3 but that a new
correction of relative order —p /6m emerges as a
consequence of recoil of the final composite sys-
tem. To what extent does this correction modify
the decay widths previously calculated? The
answer is model dependent. An examination of
Table II of Ref. 3 indicated that M 1 decays for
which the initial and final radial wave function are
the same (g'~ ri,'+y and g—+ ri, +y) tend to be
dominated by the leading M1 operator. These are
nonrelativistic M1 transitions and the correction
we found above lowers the rate by 8 or 9% for
c/i' +ri,'+y-and 4 or 5% for f~ ri, +y. A more
dramatic effect occurs for the relativistic M 1 tran-
sitions ri,'~ lh+y and g'~ ri, +y. For the first of

I

these, corrections of the order of 50% can occur
while for the second, which has a very low rate,
the effect is much larger. For example, on the
basis of model (i} of Sucher (see Table II) we find
that the rate 0.07 would be replaced by 0.45.

In a more extensive article, now in preparation,
we will provide numerical rates which contain the
correction we now find as well as a comparison
with existing data.

In conclusion we should emphasize that the
correction term we have found for the M 1 decays
of charmonium is independent of any model we
are using and will play an important role in the
"relativistic" M 1 decays of any bound system
whose constituent particles have comparable
masses.
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