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Polarization experiments and the isotropy of space
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It is shown on an example that sensitive tests of the isotropy of space (i.e., of rotation
invariance) in strong-interaction particle reactions are almost identical to tests of parity
conservation, and hence the two can be confused without some additional experiments

which we specify.

The test of various conservation laws connected
with symmetries is a central concern in nuclear
and particle physics both because of cosmological
implications and because theories of particles
themselves depend on such conservation laws. Ro-
tation invariance (i.e., the isotropy of space) is a
symmetry that is relatively rarely studied. Our
present belief, for example, that space is isotropic
with respect to strong interactions is not based on
experimental information of very high precision.!
The aim of this article is therefore to explore the
type of particle reaction experiments which can
test rotation invariance in strong interactions. The
conclusions of the investigation can be summarized
in three points:

(1) One can construct tests, by using polarization
quantities that lend themselves to “null experi-
ments,” which can be performed to a reasonably
high degree of accuracy, such as one part in 10",

(2) These tests are virtually identical with experi-
ments which test parity conservation, and hence
evidence for parity nonconservation can be easily
mistaken for evidence for violation of rotaion in-
variance.

(3) There are feasible additional experiments
which can distinguish between exidence for parity
nonconservation and evidence for anisotropy of
space.

It would be quite feasible to discuss this problem
in the framework of a general formalism of polari-
zation phenomena. For didactic reasons, however,
it might be much preferable to select instead a sim-
ple reaction as an example. The nature of the dis-
cussion will be such that it should be evident to the
reader that nothing essential hinges on the specific
properties of the example reaction and that there-
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fore the generalization to any other reaction is
straightforward.

The reaction we choose as an example is
0+ %—»0—}— %, where the 0 and % denote particles
with spins O and %, respectively. A specific in-
stance of such a reaction may be elastic pion-
nucleon scattering, but there are many other in-
stances also throughout particle and nuclear phys-
ics. We will first discuss this reaction in the case
when rotation invariance holds.

In that case, the M matrix can be written in the
following form:

M=ay+a,6-q1+a,0°q4;Xq,+a30°qz ,
(1)

where ¢, and g, are the initial and final center-of-
mass momenta, the a’s are the reaction amplitudes
which are complex numbers depending on
kinematic factors, and & is the usual Pauli spin
matrix. This is one of the multiply infinite num-
ber of ways of writing the M matrix. From the
point of view of our discussion, it makes no differ-
ence which of the ways of writing the M matrix
we consider, and hence this one is used since it
may be familiar to many of the readers.

The amplitudes a; are functions of the rank-zero
tensors one can construct from the vectors that
determine the kinematics. In the present case these
vectors are q; and q,, and hence the rank-zero ten-
sors are g;2, g,%, and q;°q,. The fact that these
three are not independent of each other is of no
concern to us in the present discussion. It is im-
portant to note, however, that all three of these
rank-zero tensors are scalars and not pseudoscalars.

Now let us impose, in addition to rotation in-
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variance, also parity conservation, and let us also
assume that the product of the intrinsic parities of
the four particles in the reaction is +1. This is
not an essential constraint; the argument carries
through in an analogous way when this quantity is
—1.

With this additional constraint the M matrix
reduces to

M=a0+a26’-q’1><?j2 (2)

because the amplitudes in Eq. (1) are all scalars,
and hence the two pseudoscalar combinations ¢
and &g, in Eq. (1) must be eliminated by making
a;=a3=0 in order to have an M matrix which is
a scalar. This form is identical to the M matrix
which is generally used, for example, in elastic
pion-nucleon scattering.

This completes the discussion of the M matrix
for the case when rotation invariance holds. We
will now turn to the case when rotation invariance
is violated.

In particular, we will assume that his violation
takes the form of the existence of a unit vector U
which points at a distinguished direction in space.
It is possible to imagine violation of rotation in-
variance in such a way that such a vector does not
exist but rather the violation is expressable in
terms of a higher-rank tensor Uj;..., which
represents a distinguished orientation. Our discus-
sion can be carried out analogously in that case.
For the sake of simplicity, however, in this paper
we will consider the case when the anisotropy can
be treated in terms of a unit vector U (i.e., in terms
of a tensor of rank one). We do not need to speci-
fy whether U is a vector or a pseudovector.

In the presence of such a violation of rotation
invariance, the M matrix becomes more complicat-
ed in three ways:

(1) The M matrix itself now need not be a rank-

b,5"U=b,a0"q,+b,80q,+b,y5-q4,Xq,,

zero tensor, but can also have a part that is pro-
portional to U. In our discussion we will ignore
this type of a modification of M because it is not
connected with and does not substantially influence
the type of sensitive tests we want to propose.

(2) In the expression for M of the type given in
Eq. (1) we will now have additional rank-zero
terms which explicitly also contain U.

(3) The amplitudes now will depend on addition-
al rank-zero kinematic tensors which will contain
U.

We will now discuss in detail the second and the
third of these modifications.

To start with the second, we will now construct
those additional rank-zero terms which have been
made possible by the addition of another vector,
namely g There are tl}\ree such new terms, o-U,
o+q; XU, and 7-d, X U. The fourth term one can
construct, o’[q; X (U Xd,)], can clearly be written
in terms of the other three.

To deal with the three new terms, we realize that
since our previous three vectors q, q,, and
41X, span the three-dimensional space, these
new terms can be decomposed in terms of the old
ones. In particular, we can write

U=adq,+B4,+7d: X4, (3)

where a, B, and y are coefficients which depend on
the absolute orientation of q; and q,, and hence
they are denoted by Greek letters. In contrast, our
previous constants, the g;’s, do not depend on such
absolute directions in space. We will continue to
denote by Latin letters coefficients of this latter
type, and by Greek letters coefficients of the form-
er type, since the distinction between the two will
be crucial in our agrument.

In order to write these new terms in terms of the
old ones, we note that by Eq. (3) we have

b,0q X U=b,80"q;Xq2+by0 41 X(q;Xq)=byA5 G, +b,yBF q,+b,85-G, X d, » 4)

b3 Gy X U=b3a0"q,Xq1+b3y0d, X (4 X q)=b3yCT 41+ b3yD 7 G, —b3ad"§, XG> ,

where A= —D=14,"q,, B=—(4,)?, C=({q,)% and therefore we can write for the M matrix in the absence

of parity conservation,

M=ag+a,5q,+%,04, X, +a36 T+ b,5U+b,5G; X U+b35q,x0

=ao+(a;+ba+byyA +b3yC)o G +(ay +b1y+b,8—b3a)0 G X o+ (a3+b18+by,yB+b3yD)5 G,

=ag+(a, +w1)3‘61+(02 +02)3‘61X62+(d3 +(1)3)6'"62 , (5)
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where we denote
01=bia+byyA+b3vC ,
wy=by+bB8—bsa , (6)
wy=bB+byB+b;3yD ,

and the w;’s depend on the absolute orientation in
space.

Let us store, for the moment, Eq. (5) and let us
turn to the third of the modifications discussed
earlier, namely the altered dependence of the am-
plitudes on rank-zero tensors composed of vectors
describing the kinematics. We recall that in the
case of rotation invariance we had only three such
tensors, all of them scalars. In the presence of the
U, we will now have six such tensors,

7% 4% q:d,,

A~ A A~ (7

q;'U, 42U, q,d,XU,
More important than the increase in the number of
such tensors is the fact that whether U is a vector
or a pseudovector, the six tensors now will include
some scalars and some pseudoscalars. To take ad-
vantage of this, we will now explicitly decompose
each such coefficient into its scalar and its pseu-
doscalar part, for example,

a;=a’+al . (8)

Now let us impose parity conservation on our M
matrix, just as we did earlier when we discussed
the case of rotation invariance. In contrast to the
earlier case, however, this time the M matrix is not
reduced from four terms to two terms, since that
reduction hinged on all amplitudes being scalar
which is no longer the case. Instead, now we ob-
tain from Eq. (5),

M=a3+(a3+03) 74X,
+@t+0)o g+ (af +0)7 1, )

so that the alteration now from the parity-
nonconserving to the parity-conserving case con-
sists only of the specification of the reflection
properties of the amplitudes and not of the reduc-
tion in the number of terms. This situation is
identical to the case or reactions with more than
four particles in which the analogous effect leads
to some interesting consequences’ with respect to
parity tests.

The remainder of our discussion will be based on
Eq. (9). We see from that equation that the gen-
eral form of the M matrix as far as the structure
of the four terms is concerned (that is, apart form

the reflection properties of the amplitudes) is the
same for the case of a non-rotation-invariant but
parity-conserving reaction as for the case of a
rotation-invariant but parity-nonconserving reac-
tion. For the latter case, when parity is slightly
violated, we get

M=ay+a,5-q;Xq, +d,0°q;+d30°q>,
(10)

where a(, a,, d;, and d; are all scalars and
d; <<aj.

We see therefore that at first glance, the experi-
ments testing rotation noninvariance and parity
nonconservation are identical, since they are both
aimed at detecting the presence of the two addi-
tional terms [as compared to the two in Eq. (2)].
What are these experiments?

There are effects, of course, in all observables,
but in some of them detection would be practically
impossible. For example, let us consider the dif-
ferential cross section calculated from Eq. (9)
which is

92 o |af |+ |af +of |2+ | af +of |

+ |af+of|*. 11)

In this expression the effect of rotation noninvari-
ance (if the extent of the anisotropy is small)
would be a tiny effect superimposed on a huge
cross section, and this cross section cannot be cal-
culated accurately from any present theory. Hence
the detection of anisotropy effects in such cross
sections would be impossible.

If, on the other hand, we select some other ob-
servables, the detection of such effects can be feasi-
ble. In particular, we should select observables
which vanish in the presence of only two of the
four terms in the M matrix [that is, when Eq. (2)
holds]. Such an observable is the polarization in
any direction in the reaction plane. For example,
using Eq. (9) we can calculate (using a small
amount of spin arithmetic) the polarization in the
q direction, which is

P, <q’Relaj(a] +ol)*
+(q"d2)Re[ag(a} +wh)*]
+(q1 X q2)Im(a5; +w3)af +0d)*] . (12)

We see from this that the effect in that case is of
first order in a” and/or %, and that we have to
perform a “null experiment,” that is, measure a
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small effect on top of a “background” which is
zero. Such experiments have in fact been per-
formed® in connection with a search for parity-
violating components in strong-interaction reac-
tions and it has been possible to attain accuracies
of one part in 10’.

To complete our discussion, we must find a way
to distinguish between rotation noninvariance and
parity nonconservation, both of which would give
the same type of effect in the experiment suggested
above. There are two ways of making such a dis-
tinction.

The first way is to note that in the case of parity
nonconservation with rotation invariance, all am-
plitudes remain scalar and hence the polarization
quantity we measure is also a scalar. In contrast,
we can see from Eq. (12) that when we have parity
conservation and rotation noninvariance, we have
products of amplitude involving one scalar and one
pseudoscalar amplitude, and hence the product will
be a pseudoscalar. Therefore a comparison of the
measurement with another one corresponding to
space inversion will show equality or a flip of sign
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depending on whether we deal with parity noncon-
servation or with rotation noninvariance.

The second way is to perform the experiment,
say, in March and then again in June, using always
the same part of the day. During that time the ab-
solute orientation of the experimental equipment
changes, and hence the effect should be unequal in
the two cases if it is due to rotation noninvariance.
In contrast, if the effect comes from parity non-
conservation, the effect should be independent of
what part of the year we perform the measurement
in.

To summarize, we would like to urge the perfor-
mance of the type of experiment suggested in this
discussion not only because we want to test rota-
tion invariance, but because, on account of the al-
ready substantial activity in experiments testing
parity nonconservation, it is important to make
sure that these experiments indeed measure parity
nonconservation and not rotation noninvariance.
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IIn fact we have not been able to find any published ex-
periment specifically dealing with the measurement of
rotation invariance in strong interactions. Discussions
with various colleagues generally resulted in the state-
ment that if rotation invariance were grossly violated,
partial-wave expansions (which depend on angular
momentum conservation) would not work. This how-
ever, places only a very weak limit on the extent to
which rotation invariance holds. There has been one
experiment [R. Newman and S. Wiesner, Phys. Rev.
D 14, 1(1976)] which tested rotation invariance in weak
interactions to the extent of one part in 10°— 107, that
is, slightly less accurately than the tests suggested in

our paper for strong interactions. On the anisotropy
of inertial mass, which is yet another aspect of the
properties of space, there is an upper limit by V. W.
Hughes, H. G. Robinson, and V. Beltram-Lopez
[Phys. Rev. Lett. 4, 342 (1960)] Am /m <10~%,

2p. L. Csonka, M. J. Moravcsik, and M. D. Scadron,
Phys. Rev. Lett. 14, 861 (1965).

3For a recent summary of the status of such parity ex-
periments, see W. Haeberli, in Polarization Phenome-
na in Nuclear Physics—1980, proceedings of the Fifth
Symposium, Santa Fe, 1980, edited by G. G. Ohlsen,
R. E. Brown, Nelson Jarmie, W. W. McNaughton,
and G. M. Hale (AIP, New York, 1981), p. 1340.



