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Renormalization of quantum chromodynamics is carried out by means of a
momentum-space subtraction scheme, which is computationally simple, provides a well-

defined procedure for the determination of renormalization constants, and is equally ap-

plicable to light and heavy quarks. We also obtain the renormalization-group parameters,

verify the decoupling theorem for heavy quarks, and compute the effective coupling con-

stant and effective quark masses.

I. INTRODUCTION

Several renormalization prescriptions are
currently being used for the choice of the finite
parts of renormalization constants in quantum
chromodynamics. This leads to prescription
dependence in physical results, and there has been

controversy regarding the reliability of various re-

sults derived from perturbative quantum chromo-
dynamics. Three different renormalization
prescriptions are commonly used at present, which,
are referred to as the minimal subtraction' (MS)
scheme, the modified minimal subtraction (MS)
scheme, and the momentum-space subtraction
(MOM) scheme. The MS scheme is simple but un-

physical, the MS scheme is a distinct improvement
over the MS scheme, while the MOM scheme is
both physical as well as found to yield reasonably
small higher-order corrections in perturbative cal-
culations. The success of the MOM scheme is not
surprising because a good deal of the radiative
corrections at some typical momentum for a pro-
cess under consideration are absorbed in the cou-

pling constant.
The MOM scheme, as formulated by Celmaster

and Gonsalves, has the following disadvantages:
(l) It is computationally difficult. (2) Since renor-

malization constants resulting from the MOM
scheme do not automatically satisfy the Ward
identities, several different choices of renormaliza-

tion constants are possible, but there is no indica-
tion as to which choice is to be preferred. (3)
Quarks are treated as massless, which is clearly not
justified for the heavier quarks. The aim of our

paper is to formulate a momentum-space subtrac-
tion scheme which is free from these disadvan-

tages.
The computational difficulty in the Celmaster-

Gonsalves scheme arises from the fact that the re-

normalization of three-point vertices is carried out
at the symmetric point. But, it is obvious from the
well-known analogy between interaction diagrams
and electrical circuits that all internal lines in an
interaction diagram do not carry the same mean

momentum, and the symmetric point does not
necessarily represent an ideal choice. We shall,
therefore, use a momentum-space subtraction
scheme in which the momentum carried by one

gluon line at any three-point vertex will be made to
vanish, which simplifies the computation of the re-
normalization constants. Although the Ward
identities are not automatically satisfied even in

our scheme, we shall show how we can arrive at a
preferred choice of the renormalization constants.
Moreover, our treatment will be applicable to both
light as well as heavy quarks.

Our scheme will be based on a mass-dependent
off-inass-shell renormalization procedure which
differs from those of earlier authors. ' We shall
first show how off-mass-shell renormalization in

quantum electrodynamics can be carried out in
such a way that Ward's identity is automatically
satisfied, and subsequently follow the same treat-
ment in quantum chromodynamics to obtain the
renormalization constant for the quark-gluon ver-

tex in a particularly simple form. We shall then

perform renormalization by using the off-mass-
shell renormalization constants for all the two-

point vertices and the three-point quark-gluon ver-

tex, while the remaining renormalization constants
will be determined by means of the Ward identi-
ties. Such a renormalization procedure seems espe-

cially appropriate because the quark-gluon vertex

plays a more significant role than the other three-

point vertices in applications of quantum chromo-
dynamics to physically interesting processes such
as the positron-electron annihilation or the para-
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quarkonium decay.
Besides deriving the renormalization constants to

the one-loop level in our scheme, we shall obtain
the renormalization-group parameters, verify the
Appelquist-Carazzone decoupling theorem, ' and
compute the effective coupling constant and effec-
tive quark masses.

It should be mentioned that we shall use dimen-
sional regularization" for the evaluation of renor-
malization constants. However, since we shall in-

troduce the renormalization-scale parameter p
through a momentum-space subtraction scheme,
we shall not carry out the usual transformation of
the coupling constant, and thus avoid the introduc-
tion of an additional parameter into the results for
the renormalization constants.

&(p) =A ~(p')+A ~(p')(ip y+ m ),
A (PP)=B1(P )y +iB2(p )P

+iB3(p )p&(ip. y+m ),

(2.3)

(2.4)

so that substitution of (2.3) and (2.4) into Ward's
identity

—i =A (pp)
. ar(p)

P (2.5)

g|ves

Let X(p) be the contribution of proper electron
self-energy parts, and A(p,p) be the contribution of
proper electron-photon vertex parts in which the
photon momentum has been made to vanish. We
then set

II. OFF-MASS-SHELL RENORMALIZATION
OF QUANTUM ELECTRODYNAMICS

A, (p') =B,(p'), (2.6)

The renormalized Lagrangian density in quan-
tum electrodynamics is expressible as

I, = ——,'Z„(ay„—aP„)'——,'(a„A„)2
p

2 +m 2 p2 (2.7)

and we carry out off-mass-shell renormalization by
choosing the counterterms in (2.1) such that
A~(p ), A2(p ), and B~(p ) in (2.3) and (2.4) are
canceled at

with

Zy(A'I dl
—4+m%)

+iZpApgyqg Zp(Z ——1)mff (2.1)
For the contribution II&,(p) of proper photon self-

energy parts, we follow the usual off-mass-shell re-
normalization procedure by setting

Z~ ——Z~, e =Zz '
eo, m =Z~ 'mp,1/2 (2.2) Iip„(p)=C(p )(p 5~„—ppp„), (2.8)

where eo and mo are the bare charge and bare
mass of the electron. We shall describe a pro-
cedure for off-mass-shell renormalization in which
Ward's identity is automatically satisfied. Our
procedure will be valid for massive as well as
massless quantum electrodynamics.

and choosing the counterterm in (2.1) such that
C(p ) is canceled at

2= 2
P =P (2 9)

The above renormalization procedure yields to
the one-loop level,

2 z m m (3m —4p) m
Zm ——1 — 3 —yE+ ln4~ —in@ +5 — —

2 2 2166 4—~ m2 p2 (m2 p2)2 p2
(2.10)

e 2 m m4 m'
Zf —Zf —1 —yE+ln4m —lnp +1+ — 1n—

4—n m2 2 (m2 p2)2 p2
(2.11)

e 2 2 5 4m m
Zw =1- —yE+ln4m —lnp + —,—

2
—ln

212' 4—n p p

(2.12)

It should be observed that for p =0, our treatment becomes a mass-shell renormalization procedure, and

(2.10), (2.11), and (2.12) become

Zm = 1 — —yE+1n4~ —lnm + 3

3e 2 4

16m 4—n
(2.13)
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Zf —Zf —1
8 2 —yE+ln4m. —lnm +2

16& 4—ii
(2.14)

Zg —1

2 2 —yE+ ln+r —lnm
12& 4—ii

(2.15)

where only (2.13) and (2.15) agree with the usual mass-shell results. However, since the equality of Zq, and
Z'i. is maintained. the usual ohvsical results remain unchanaed .

We also note that for massless quantum electrodynamics, Z drops out from the I.agrangian density (2.1),
while (2.11) and (2.12} reduce to

Zg ——Zg ——1— 8 2 —yE+ln4m —
leap + 1

16ir' 4—ii
(2.16)

Zg ——1— e 2 5—yE+ln4m —in@ + —,
12ir' 4—ii

(2.17)

III. OFF-MASS-SHELL RENORMALIZATION
OF QUANTUM CHROMODYNAMICS

The renormalized Lagrangian density in quantum chromodynamics is given by

g[Zq(qy&—B&q+mqq) iZqgG&qy—&T'q+Zq(Z —1)mqq] ZcdqC BpC +Zcgf J GpdqC~ C
)if

(3.1)

with

ZG/ZG ——ZG/ZG ——Z /Z =Zc/Zg,

g =(ZG1/2zq fzq)go, m =Z. -lmo

(3.2)

(3.3)

where q, G&, and c' are the quark, the gluon, and the ghost fields, nf is the number of quark flavors, the T'
are 1V)(N color matrices, and the upper indices take the values 1,2, . . .,N —1.

We shall determine the off-mass-shell renormalization constants to the one-loop level for the two- and
three-point vertices in quantum chromodynamics. These vertices are shown in Fig. 1, and the contributions
of the scattering operator for them are given in the Appendix. For the two-point vertices, we require X(p),
II)„(p), and Ilij(p), given by (A4}, (A10), and (A21). For the three-point vertices, the momentum of one
external gluon line is made to vanish in our scheme, and therefore we require A„'(p,p, O), Ag"„i(p, —p, O), and
Ag (p,p, O), which can be obtained from (A6), (A15), and (A23).

In analogy with quantum electrodynamics, we express X(p) and A„'(p,p, O) in the form

&(p)=&i(p )+&p(p )(&p'y+m),

A„'(p,p, O)=B,(p )T'y„+iB2(p )T'pq+iB3(p )T'p„(ip y+m),
and choose renormalization constants so as to cancel Ai(p ), A2(p ), and Bi(p ) in (3.4) and (3.5) at

(3 4)

(3.5)

p+m p
We thus obtain

(3.6)

g 2 m m (3m —4p) m2
Z =1—CF 3 —yE+ln4~ 1% +5—

2 2
—

2 22 ln
216& 4—n m2 p2 (m2 ~2)2 2 (3.7)
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g 2 m m4 m2
Zq ——1 —Cp —yE+ln4n. —lop +1+ — — ln

16m 4 n- m2 p2 (m2 ~2)2 2
L

I g 22

Z =Z —Cg
2

16M 4—n
—yE+ln4m —in@ +1

(3.8)

(3.10)

The evaluation of II&J„(p) and A&J„~(p, —p, O) yields results of the form'

11'J„(p)=C(p')5'J(p'5„„p~—„),
Ap„g(p, P,O) =—f' "[D)(p )(P„5„g+p„kg 2pg5—q„)+Dp(p )(p~5„g+p„5~~)+D3(p )p~p„p~/p ], (3.11)

and we choose renormalization constants such that C(p ) and D&(p ) are canceled at

p =p
which gives

g 5 22

ZG ——1+ — —3C& —yE+ln4n. —in@ +»
Itnr

' 4—n

(3.12)

2 2 5 4m m—yE+ In4s —in@~+ —,— —ln
4—n p2 p2

2m —p, (1 4 z/ z)&nl (1+4m /P, )' +1+ 2 ~ (1+4m2/p2)1/2

2

ZG ——1+ —3' —yE+ ln4m —lnp + —,2
g 2 2 2 23

16'' ' 4—n

(3.13)

2 2 2 2m m—yE+ln4g —
leap + 3 + ln

4—n p2 p2

1+2m /p +4m /p, (I+4m~/p, ~)'/~+I
ln

(I+4m'/p, ')'" (I+4m'/I. ')'"—1

For n~ light and ns heavy quarks, (3.13) and (3.14) reduce to

(3.14)

g 5 22
2 2 5

G = + 2 3 g —yE+ln4% —111p +» —
3 nl —yE+ln4m —lop + —,

16~2 ' 4—n » 3

2 2 2
yE +In4m —lnm—

4—n
(3.15)

g 2 22
2 23 2 2 2 2

ZG =1+
2 3 CA —yE+ln4~ —1% +—„——,nl —yE+ln4~ —lnp + —,

16m2 ' 4-n 12 3

2 2 2—-X —yE+ln@r —lnm
4—n

n~

(3.16)

The vertices II'J(p) and A'J (p,p, O) are the simplest ones to deal with. We obtain results of the form

II'J(p) =E(p )5'Jp~, (3.17)

A~s (p,p, O)=F(p )f' p~,
choose renormalization constants such that E(p~) and F(p ) are canceled at (3.12), and thus

(3.18)
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Zc = I+C g 2 —yE+ln4~ —lnp +22

32&
(3.19)

I g 22

Zc =1—C yE+ln4m —in@ +22

32' (3.20)

Let us now examine the compatibility of the above results with the Ward identities (3.2). According to
(3.9), (3.15), (3.16), (3.19), and (3.20),

Z~/Z~ =1+C„yE+—1n4rr in@—+1 +O(g ),
4 n— (3.21)

g 22

ZG/ZG ——1+Cg —y@+ln4m —lnp +—,—
162 4—~

n
+O(g ), (3.22)

2

Zc/Zc=i+C~ yE+—lnkn1nIJ, .—+2 +O(g ),16+ 4 n— (3.23)

and thus, for C~ ——3 and nI =3 or 4, there is some violation of the Ward identities, which necessitates a spe-
cial role for one of the three-point vertices in the renormalization procedure.

As explained in Sec. I, it is especially appropriate to use the quark-gluon vertex rather than any other
three-point vertex for a preferred choice of the renormalization constants. %e shall, therefore, take Zq, Zq,
ZG, and Zc as given by (3.8), (3.9), (3.13), and (3.19), and obtain ZG and Zr' through the relations

ZG ——ZGZ /Z, Zc ——ZCZ /Z (3.24)

It is remarkable that our scheme yields a simple result for Zz/Z~ for quarks of arbitrary mass, while earlier
authors' found renormalization via the quark-gluon vertex too complex to be used in practical applications.

For practical purposes, it is useful to note that the coupling constant in our scheme is related to that in
the MS scheme as

gZq /ZqZG =go =F4q /ZqZG

where the barred quantities refer to the MS scheme. It follows that'"

(3.25)

&s
cps cps 1+ 2'+ —,Cg ——,nI+ —,gin

nq

(3.26)

where a, =g /4m.

IV. EFFECTIVE COUPLING CONSTANT
AND QUARK MASSES

(n, n&)
(g, m, p,p&,p2, . . . ) denote the renormalized contribution of proper vertex parts with n~ and nG

external quark and gluon lines carrying the momenta p~,p2, . . .. The renormalization-group equation is then
given by

1 1 (n, nG)
p +~ +gXm~ —

2 g'Yq z "GYG I '(g«~«p«pi«pz«
Bp Bg 8Nlf

(4 1)

dg ~ dm p d&q p dzG

dp m dp Zq dp ZG dP

where differentiations in (4.2) are to be carried out by treating go and mo as constants.

(4.2)
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With the use of the results of the preceding section, we obtain from (4.2) to the lowest order

g3» z 6m 12m /p (1+4m /p, )'/+1
+ ln3 3 p2 (1+4m 2/p2)1/2 (1+4m2/ 2)1/2

(4.3)

g2 3—m2/p2 (2m /p, )(2—m /p ) m

8& (1—m 2/p2)~ (1 m—'Ip')' p' (4.4)

g 1 —3m /p, 2m /p, rn

8m (1 rn /p—, ) (1—m /p, ) p
(4.5)

g ~ 1
6 12 /p (1+4 /p )' +1

8n
' '

p (1+4m Ip )' (1+4m /p )' 1— (4.6)

and the contributions of heavy quarks to the above
renormalization-group parameters vanish in the
limit m /p ~ ao in accordance with the
Appelquist-Carazzone decoupling theorem. '

The effective coupling constant and effective
quark masses can be determined for various values
of Jb by solving the coupled equations

p
dg

dp

~ dm

m dp
Pal

(4.7)

(4.8)

where P and y, given by (4.3) and (4.4), are func-
tions of g and m/Jb. We have computed the solu-
tions for N =3 with the use of the following input
parameters: at p =3 GeV, m„=m~ ——0.02 GeV,
m, =0.4 GeV, m, =1.5 GeV, mb ——5 GeV, and

a, =0.35. The results, given in Table I, show that
as Jb decreases, both the effective coupling constant
and effective quark masses increase, and the rapid
increase in the effective coupling constant for very
low values of p is especially noteworthy.

(b) (b")
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FIG, 1. Two- and three-point vertices in quantum
chromodynamics at the one-loop level. Solid lines
represent quarks, while broken and dotted lines
represent gluons and ghost particles, respectively.

APPENDIX: TWO- AND THREE-POINT VERTICES
IN QUANTUM CHROMODYNAMICS

We give contributions of the scattering operator
for the two- and three-point vertices shown in Fig.
1, where tadpole and leaf diagrams with vanishing
contributions have been ignored. We have reduced
the color factors with the use of the relations

[T' TJ]=if""T" Tr(T'T )= , 5', T'T'=Cbl, —

fabifabj C 8iJ fabifbaJfaak C fiJk (Al)
~here
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TABLE I. Effective coupling constant and effective quark masses. The renormalization-
scale parameter JM and the quark masses are given in GeV.

CKs mu~~d m,

0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

4.44
1.98
1.35
1.06
0.89
0.78
0.44
0.35
0.31
0.28
0.26
0.25
0.24
0.23
0.22
0.19
0.17
0.16
0.15
0.15
0.15
0.14
0.14
0.14

0.06
0.04
0.04
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.74
0.65
0.61
0.57
O.S5
0.53
0.44
0.40
0.38
0.36
0.35
0.34
0.34
0.33
0.33
0.30
0.28
0.27
0.27
0.26
0.26
0.26
0.26
0.25

1.97
1.89
1.84
1.81
1.78
1.75
1.59
1.50
1.44
1.39
1.35
1.32
1.30
1.28
1.26
1.16
1.10
1.07
1.05
1.03
1.01
1.00
0.99
0.98

5.41
5.36
5.33
5.31
5.29
5.27
5.12
5.00
4.90
4.82
4.74
4.68
4.62
4.57
4.52
4.21
4.04
3.92
3.84
3.77
3.72
3.68
3.64
3.60

Cp (N 1)/2E, C——~ E—. — (A2)

%e have also carried out some manipulations to
express the results in a compact form.

For the diagram (a), the contribution of the
scattering operator is expressible as

S,= i (2')"5(—p —p')g( p)&(p)g(p)

with
A„'(p,p', k) =Ap'+Aq',

where

(A6)

ig2 y„[i (p 1) y m]y-„—
(2m. )" 1 [( —1)' 2]

while for the diagrams (b') and (5"),

Sb ———g(2m )"5(k +p p')Gq(k)f—(p')Aq(p, p', k )P(p)

(A5)
with

ig2 y„[i (p' 1) y m—]y&[i(—p —1).y —m ]y„A„''=(CF , Cg )T' —d—l

(2~)" 1 [(p' —1) +m ][(p —1) +m ]
g 'y 9 (p 1)'y™]yz-A„"'=——,Cg T' dl

~ 2
— [5„g(21—k)~+5g„(2k 1)„5q (—1+k—)g] .

(2n.)" 1 (k —1) [(p' —1) +m ]
Similarly, for the diagrams (c'), (c"), and (c),

S,= i (2m )"5(—p+p')G„'(p')Hg„(p)Gi (p)

with

(A7)

(AS)

(A9)

(A10)

where
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~ 2

II„"„=—,Cg5" g f, [5 p(21 p—)„+5@„(2p I)— 5„—(/+p)p](2a)" I (p —I)

X[5 p(2/ —p) +5p,(2p —I).—5 (/+p)p]

I (p —I)„II„"j=c„5'j g
„ fd/

(2m)" I'(p —/)

Tr[ (il y —m)y„[i(l+p) y m]—y„J
(2~)" (I'+m')[(/+p)'+m ']

and for the diagrams (d'), (d"), (d"'), and (d),

Sd =—g(2n )"5(p +p'+p")6„'(p)G'„(p')Gq(p")&„"„"q(p,p',p")

with

j~&»p P —
I vx+Apvx+Apvz +g&q„k,

lff

where

,'C~f"" -f , —, „,[5p (/+P) —5 ~( ' —»~+5j~" —p' ]
(2m)" I (I —p) (/+p")

X [5,p(l p+p')r —5»(2/ p—+p"),+—5~(1 p'+p")&]—

(A11)

(A12)

(A13)

(A14)

(A15)

X [5&r(/+2p") —5~ (21 +p")&+5 &(I —p")r],

A «ijk 9 fijk &g 6 —5
p.~= 4C~

pvpx zppv 5—vxPp 5pvpx 5kppv 5vzPp
(2~)n /2(i )2 /2(l i)2 /2(l ii 2

ig2 I&(/ p),(l +p" )k+(I p)„(l +p «)p—k
Pvk 2 A

(2 P /P(l )g(/ + H)P

TrI (il y m)yq[—i(l —p) y —m]y„[i(/+p").y —m]yk I

(2m )" (/2+m~)[(l —p) +m ][(I+p") +m ]
Finally, for the diagram (e),

S,=—'(2 )"5(p —p')C'*(p')11'j(p)Cj(p)

with
~ 2

II'j(p)=c„5'j 'g f di P'P
(2~)" I (p —I)

and for the diagrams (f ) and (f"),

Sf——g(2m)"5(k+p p)6„'(k)C"(p')&—„" (p,p', k)C (p)

with

A'j"(p p' k) =A"~'+A""'

where

A' ~ik= C f~j——'( —I)( ' —I)

(2n. )" I (p —I) (p' —I)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)
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ig2 pv(p' /—)&[5„&(21 k—)„+5&„(2k 1—)„5—„,(1 +k),]
(2 )tl 1 (k —1) (p' —1)

These results were used in Sec. III for the evaluation of renormalization constants.
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For massless quarks, the relation between a, and a,
can be obtained from (3.26) by setting nq ——0. We
note that this relation for massless quarks differs
somewhat from the corresponding relation obtained

by Braaten and Leveille in Ref. 5. The difference ar-
ises from the fact that we have decomposed the
quark-gluon vertex by following an analogy with

quantum electrodynamics, while in Ref. 5 another
procedure has been followed for the decomposition of
this vertex. Further, our result can be compared with

that of Celmaster and Gonsalves in Ref. 3 by taking,
for instance, nI ——4 and n~ ——0. Then, (3.26) gives, for
N=3,

a, =a, [1+3.0(a, /n)],

which shows that a, is practically identical with

aMoM for massless quarks.


