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We define the Abelian component of the gauge field as a gauge-invariant object in the
Yang-Mills theory. Then, by assuming that the Abelian component dominates in the
theory at a long-distance scale, we demonstrate that quarks as well as gluons are confined
by electric vortices. The vacuum structure is shown to depend on resolution R. That is,
the vacuum has two phases in R and monopole condensation occurs for R > R.. The
string tension of mesons is obtained as o, =g.?/37R,% where g, is the effective coupling
constant at the critical resolution R,. We estimate R, ™! to be 0.6 GeV in the presence of
static quarks, and the bag constant B'/* to be 0.2—0.4 GeV. We also derive a relation
ag= %a’ between Regge slopes of mesons (') and of gluonia (ag). This relation agrees

with experimental data remarkably well provided that gluonia are identified with states

lying on the Pomeranchuk trajectory.

I. INTRODUCTION

The SU(N) Yang-Mills theory contains magnetic
monopoles as topological excitations in space-time,
which are labeled by the magnetic root lattice of
SU(N).! They are Wu-Yang monopoles in SU(2).
It has been believed that the confinement of quarks
will be realized in a condensed phase of these
monopoles.? If this is indeed the case, the Abelian
component of the theory must be important in
analyzing the problem of confinement. This is so
because classical configurations of these monopoles
are constructed within the Cartan subalgebra of
SU(N),"** which is the maximal Abelian subalge-
bra of SU(N). Then, it would be reasonable to
speculate that the Abelian component dominates in
the Yang-Mills theory at a long-distance scale. We
call this the hypothesis of Abelian dominance. In
this paper, it is demonstrated that gluons as well as
quarks are confined by electric vortices on the
basis of this hypothesis. Our major concern is to
obtain quantitative results with respect to the
structure of hadrons, though yet very rough,
within the Yang-Mills theory.

In previous papers,” we have analyzed a similar
problem in the SU(N) Higgs model, where the
Abelian component is extracted by way of a spon-
taneous symmetry breakdown. However, this
method is not applicable to the Yang-Mills theory.
It is necessary to define the Abelian component in
a gauge-invariant manner. We are able to do this
as follows. Suppose that field X (x) takes values in
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the Lie algebra of SU(N) and transforms according
to the adjoint representation:

X(x)->UX)X(x)U(x)"!. (1.1
We now diagonalize X (x) by

X(x)=T(x)X(x)T(x)~!, TESUWN), (1.2)
which is always possible. Here, the elements of the
diagonal field X(x) are gauge invariant since they
are eigenvalues of X (x). We note that the gauge
transformation (1.1) is generated by the left shift
operation of T (x) such that

T(x)->UKX)T(x), (1.3)

and that the field X(x) is determined up to an ele-
ment of the Weyl group of SU(V); under the action
of the Weyl group the diagonal elements of X(x)
permute among themselves. We call X(x) and
T(x) the Abelian component and the non-Abelian
component of X (x), respectively, since X(x) takes
values in the Cartan subalgebra of SU(N). The hy-
pothesis of Abelian dominance implies that the
non-Abelian field T (x) does not propagate at a
long-distance scale and hence that only the Abelian
component is relevant at a long-distance scale. We
emphasize that this hypothesis is a gauge-invariant
concept.

Once Abelian dominance is postulated, the
mechanism of quark confinement is essentially the
same as in the SU(N) Higgs model.> By applying
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the technique developed therein,’ we integrate over

all configurations of magnetic monopoles and
derive an effective Lagrangian of the Yang-Mills
theory. It should be noted that various parameters
in the effective Lagrangian depend on resolution R;
R could be the distance between two quarks. The
effective Lagrangian describes the Yang-Mills vac-
uum for R >R, R, being a critical resolution
beyond which monopole condensation takes place.

Based on the effective Lagrangian, we show that
the Yang-Mills vacuum is a magnetic superconduc-
tor in which electric flux is squeezed into vortices.
Then, a relation

&, /a'=(N —1)/2N (1.4)

is derived between Regge slopes of mesons (') and
of gluonia (ay). In the case of SU(3), this relation
gives rise to

ap=7a'~0.3 GeV~?, (1.5)

where a’=0.9 GeV 2 has been used. Although
there are other predictions on this relation,® % we
emphasize that our prediction gives the best fit for
the observed data,’ provided that gluonia may be
identified with states lying on the Pomeranchuk
trajectory.

In our scheme, the resolution R is a crucial
length parameter. If R is small, the perturbative
picture is valid. As R increases, the perturbative
picture gradually becomes dubious. Then, we
speculate that the Abelian component would dom-
inate. When R reaches at a certain critical dis-
tance R., the condensation of monopoles occurs.
Finally, for R > R,, electric vortices emerge as
stable topological excitations and confine quarks.
We may rephrase such a situation in terms of the
bag picture with R being the separation between
two quarks. For R << R., quarks can move freely
in a bag. However, at R =R, the bag itself begins
to deform. When quarks are separated sufficiently
(R >R,), the bag is deformed into a string, which
is an electric vortex in a magnetic superconductor.

In order to determine various mass parameters
at the critical point numerically, it is enough just
to use one experimental datum as an input, that is,
the Regge slope of mesons, a’=0.9 GeV 2. Then,
we calculate the critical resolution R, =~ (0.6
GeV)~ !, which would measure the size of a bag in
the presence of static quarks. We also estimate the
width of the boundary of the bag to be 0.1 —0.2
fm, and the bag constant B'/* to be 0.2—0.4 GeV.

This paper is composed as follows. In Sec. II,
we review magnetic monopoles in the Yang-Mills

theory and then we discuss the hypothesis of
Abelian dominance. In Sec. III, an effective
Lagrangian of the Yang-Mills theory is derived by
integrating over all configurations of monopole ex-
citations on the basis of the hypothesis of Abelian
dominance. In Sec. IV, we present some numerical
values which account for the structure of hadrons.

II. HYPOTHESIS OF ABELIAN DOMINANCE

We start with a brief review on magnetic mono-
poles in the SU(N) Yang-Mills theory, where we
are able to construct monopole configurations
without violating the Bianchi identity:

Du ;v:() . (2.1)

In so doing, it is most convenient to consider
Abelian gauge potentials A7, H=1,... N —1,
which describe Dirac monopoles.!” Then, as is
well known,!! fields F fv defined by

Fit =0, 348 ol (2.2)
satisfy
duFhy =k, (2.3)

and represent Abelian electromagnetic fields -
around Dirac monopoles. Here, k& f and pfv denote
Dirac monopoles and Dirac strings, respectively,

kll(x)=4r3, nffd‘réi(‘“(x —z9z},

q (2.4)

q 4

pi(x) =t Z g [ dPr8(x —2) ———a((z"’ZV)

p T1,72)
with nf being the magnetic charges of the gth
monopole. It is to be remarked that in the Dirac
theory the gauge potential Af contains string
singularities which must be explicitly subtracted
out to obtain the electromagnetic field F fv as in
(2.2)."%" We now embed these Dirac monopoles
in the Yang-Mills theory. For this purpose, we
take the diagonal Gell-Mann matrices A7,
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H_ |2
H(H+1)
xdiag(l,...,1,—H,0,...,0), (2.5

and set
~ Nl ~ NS
A,= 3 AN, Fu= 3 Fi A2,

H=1 H=1

~ N-1 N—1 (2.6)
k,= Hzl kA2, Puy= H21 P /2



Then, it follows that

-

d,F

W yv:kv . (2.7)

It has been proved">> that, provided that the mag-
netic charge vectors 7=(n}, . .., 7" ~!) are on the
root lattice of SU(N), there is a singular gauge
transformation .S such that

Puv=1S'[8,,3,1S . (2.8)
Therefore, when we define

A,=SA4,8™"'+i(3,98",

(2.9
Fuv:ayAv_avAp"*"i[Ay,,Av] ’
we obtain
o og—1
Fu=SF,,5~!. 2.10)

It can be seen that 4, and F,, are free from string
singularities. Moreover, it is straightforward to
show that field configurations (2.9) do satisfy the
Bianchi identity (2.1). We are able to construct all
possible monopole solutions in this way: These
configurations have point singularities due to the
absence of the Higgs fields.

We note that the singular gauge transformation
S is determined up to a regular gauge transforma-
tion and that the ambiguity in choosing a matrix S
in formula (2.8) is entirely attributed to the gauge
degrees of freedom. That is, under the left shift
operation of S such that

S—US , (2.11)

formula (2.8) is invariant, but 4, and F,, defined
by formula (2.9) undergo a regular gauge transfor-
mation:

A,—UA U +iR,UU!,
Fu—UF,U™". (2.12)

It should be emphasized that the element F f,, of
the Abelian field F,, is an SU(N)-invariant quanti-
ty. The reason reads as follows. Suppose that a
monopole configuration F,, is given by solving the
Yang-Mills field equations. Then, the Abelian
component F,, is obtained by diagonalizing F,,.
Thus, F,, consists of eigenvalues of F,,, which are
SU(N)-invariant quantities.

As we have reviewed, magnetic monopoles are
constructed within the Cartan subalgebra of SU(N).
It is our common belief that these magnetic mono-
poles are the essential agents that lead to quark
confinement. Hence, we are led to a speculation
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that the Abelian component would be the dom-
inant part of the theory at a long-distance scale.
We call this the hypothesis of Abelian dominance.

Let us describe the hypothesis of Abelian domi-
nance a bit more in detail. We first discuss the
problem of extracting the Abelian component from
the field strength F,,. In general, F,, is a very
complicated object and it is impossible to choose
the Abelian component as in formula (2.10). How-
ever, we can define the Abelian component by di-
agonalizing F,, as follows:

~ —1
Fm,zT,wF,“,T,w , T#VESU(N). (2.13)

Here, T}, is a gauge-variant quantity, while the
elements of F,, are gauge invariant since they are
eigenvalues of F,,. Note that F,, takes values in
the Cartan subalgebra of SU(N). When we quan-
tize the system in the functional formalism it is
possible to obtain the effective theory of the Abeli-
an component F,, by integrating out the non-
Abelian component T,,. Obviously, the effective
Lagrangian must be invariant under the action of
the Weyl group of SU(N). A comment is in order.
The decomposition (2.13) may not be useful in a
formal argument because T, and F,, are not
Lorentz covariant in general. There would be oth-
er choices of fields by use of which the Abelian
component becomes Lorentz covariant. We do not
attempt to analyze the problem in this paper. We
only emphasize that it is possible to extract the
Abelian component as a gauge-invariant quantity
in the Yang-Mills theory.

We continue to discuss the hypothesis of Abelian
dominance. We are mainly interested in the effec-
tive Abelian theory at a long-distance scale. Our
basic assumption is that the non-Abelian com-
ponent does not contribute to the effective Lagran-
gian at a long-distance scale; the only effect of the
non-Abelian component is to smear out the short-
distance behaviors of the theory inclusive of the
point singularities of magnetic monopoles. This is
the hypothesis of Abelian dominance. The Abelian
dominance would be achieved if the dynamics
make the non-Abelian component “heavier” than
the Abelian component so that the non-Abelian
component does not propagate at a long-distance
scale. Moregver, in such a situation the Abelian
component F,, would be effectively a covariant
tensor. The reason is as follows. Since quantum
fluctuations of low-momentum components in the
non-Abelian field 7, are very small by assump-
tion, it would be possible to fix the direction of

T,, arbitrarily in the group space of SU(N) such
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that T,,, =S as far as long-range correlations of
gauge-invariant quantities are concerned. We shall
not try to prove the Abelian dominance in this pa-
per. Let us simply adopt this as a working hy-
pothesis and examine whether the results may ac-
count for the structure of hadrons.

In the following arguments, weight vectors and
root vectors of SU(N) play important roles. For
the reader’s convenience, we list the minimal for-
mulas that we need in the rest of the paper. The
easiest way of constructing these vectors is to use
the diagonal Gell-Mann matrices (2.5).° Then, ele-
mentary weight vectors €; =(e}, e, ejv ~1) are de-
fined by setting 651 =(H,2) jj- There are N such
vectors, among which N —1 vectors are indepen-
dent. They characterize a quantity which trans-
forms according to the fundamental representation
of SU(N). Now, weight vectors are constructed by

N-—1
j=1

with n; being integers. The set of all these vectors
constitutes the weight lattice of SU(N). On the
other hand, the elementary root vectors 17j; are de-
fined by

Ty=€—& . (2.15)
There are N (N —1) nontrivial vectors, among

which N —1 vectors are independent. They
characterize a quantity which transform according

(W(C)) =Z~" [ TI[dF(p)I8(D,Fp\) W (C,F,,)exp
p

where we have adopted the field strength formulation.

to the adjoint representation of SU(N). Then, root
vectors are constructed by

N—1

17: 2 mj ﬁjN (216)

j=1
with m; being integers, the set of which constitutes
the root lattice of SU(N). Obviously, the root lat-
tice is a sublattice of the weight lattice. Note that

E}Z:(N—l)/2N ( for each j),
(2.17)
72=1 ( for each i,j; i54)) ,
which we shall use when we discuss string tensions
of mesons and gluonia.

In this section, we have argued that excitations
of magnetic monopoles in the Yang-Mills theory
are taken in the Abelian component of the gauge
field F,,. We have emphasized that the Abelian
component consists of eigenvalues of F,, which
are SU(N)-invariant quantities.

III. EFFECTIVE LAGRANGIAN

In the previous section, by defining the Abelian
component of the gauge field, we have proposed a
hypothesis that the Abelian component will be the
dominant part of the theory at a long-distance
scale. In this section, we shall explicitly use this
hypothesis to analyze the Wilson loop in order to
show quark confinement. Thus, we consider

1 g
— TrF,
2 g02 f 1244

) (3.1)

Here g, and Z stand for the bare coupling constant

and the normalization constant. We wish to derive the effective Lagrangian of the Yang-Mills theory at
resolution R, R being the distance between a quark and an antiquark. For this purpose we integrate out all
the field variables with the momentum components p >R ~!. In the process of integrations, we need to iake

into account of monopole configurations as well.

It is quite complicated to carry out explicitly the above integrations, which we wish to study in a future
paper. In this paper, for the sake of simplicity, we make a working hypothesis of Abelian dominance. That
is, at a resolution R which is beyond a certain scale, we assume that the Abelian component F v becomes
dominant. Then, in the presence of monopole excitations, the Abelian field F,, would have a monopole
source effectively as in (2.7). Hence, we assume that (3.1) is reduced to

R-!
r—1 ~ Ak ~ A~ A - 1 A~
(W(C)=2 jk [ 1;[ [dF,.(p)18(3,F 7, —k,)8(3,k, )W (C,F,,) exp ~WNAR) [ 1ef,2 |,

(3.2)

with A being a renormalization mass parameter. Here ik indicates the integration measure for collective
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coordinates of magnetic monopoles parametrized by (2.4), and all fields take values in the Cartan subalgebra
of SU(N). The essential point of the hypothesis is that all the non-Abelian effects are summarized by mag-

netic monopole excitations and effective coupling constant g(AR) at resolution R.
We proceed to evaluate the Wilson loop (3.2). First, we note that, when the gauge field is taken in the
Cartan subalgebra, the fundamental representation (quark) Wilson loop operator reads

w(C, F‘“,)—Trexp f JWFEA/2 | =

H exp

t—lH—l

) (3.3)

fe”

where €; =(€},...,e" ~!) are the elementary weight vectors of SU(N), and J v Parametrizes a surface whose

boundary is given by the loop C;
a(zy,z,)

_ 2 84) .
Jpx)= [ d*r8¥(x —2) Brry)

(3.4)

Similarly, the adjoint representation (gluon) Wilson loop operator reads

=3 T ew

i#jH=1

W(C,E,,)

b

i
- S iF

where 77,,—(17,], ...

(3.5)

> Mij ¥=1) are the nontrivial elementary root vectors of SU(N): Note that the tr1v1a1 ele-

mentary root vector does not contribute to the Wilson loop. Next, we introduce dual potentials B by

83, FI* _kH)= [ [dBHlexp |i [ BE (@, FH} —kH) (3.6)
uhp (7l

and dual Goldstone fields X7 by

83,k = [ tax"lexp [i [ x"a,kll] .

(3.7

Inserting (3.3), (3.6), and (3.7) into (3.2), and integrating over ﬁﬁv, we obtain

(W(C)=2'~ lzj, [[ [ [aBHdx™

i=1

X exp

with fov———a#Bf,I —ava, where we have extracted
the self-energies of magnetic monopoles explicitly
as

M(x)=

2 7 [ dr8¥(x —z,)

12
, (3.9)

(AR)2

zpzl

X |ZpZp

since they act as the chemical potentials for the ex-
citations of these monopoles.” We shall derive for-
mula (3.9) in the next paragraph. When we use
(3.5) instead of (3.3), we obtain (3.8), but with e
replaced by 77,1

In order to derive the self-energies of magnetic
monopoles, we integrate over Bf in formula (3.8).

2
—& [(Gh—er, i [ kB -3~ [

(3.8)

I
Then, we obtain an interacting system of magnetic
monopoles whose total energy is given by

s,v—— b3 [ d*xdtykfix)
H=1
XAy x —pk(y),  (3.10

where A, (x —) is the massless propagator. Let
us consider a static monopole sitting at the origin,
i.e.,

k[ (x) =4mnH8 3 (x)8,,, . (3.11)

In this case, & is the self-energy of the monopole
and hence & = | .#(x) with
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M(x)= 7283 (x) , (3.12)

R !
T
where we have considered only the contribution
from the momentum range R —1s p >0, since it is
understood that the momentum range p> R ~! has
already been integrated out in the formula (3.2). In
general, it is straightforward to derive the self-
energy term (3.9) from the total energy (3.10).

Note that the mass scale of monopoles depends
only on resolution R, which implies that mono-
poles have no intrinsic scales in the Yang-Mills
theory. In this sense, they are essentially different

J

(W(C))=Z"‘§ j N[_[l [ [aBH1ax™

i=1vog=1
2
g
Xexp|— f

where m?=8R ~? (note that we have taken the

resolution R as the lattice spacing which defines

the integration measure of magnetic monopole ex-

citations®), while

. d(zZ,z9)

H 2,_s(4) Bty

oli(x)=S el [ d*r8W(x —z9)——
uv( § a j ( 8(1‘1,7'2)

(3.14)

with a#a{,’vzo. We may interpret afv to be elec-
tric vortex strings which are closed upon them-
selves. These strings describe excitations of electric
vortex loops labeled by the weight lattice of SU(N),
which are stable topological excitations at a long-
distance scale R > R., R, being a critical length
beyond which the monopole condensation occurs.
We wish to remark upon the following observa-
tions. We have evaluated the Wilson loop by pos-
tulating the Abelian dominance. We could inter-
pret that formula (3.13) has been obtained as a re-
sult of the integration over the non-Abelian com-
ponent. Thus, the formula describes an effective
Abelian theory which is gauge invariant. The
Abelian theory must be invariant under the action
of the Weyl group of SU(N), W(SU(N)), as we
have noticed in the previous section. It is trivial to
see that the formula (3.13) possesses this symmetry
group; the Weyl group denotes the invariance
under the permutations of N elementary weight
vectors €; therein. It is notable that besides this
symmetry group the formula contains the maximal
torus of SUN), T(SU(N)), as a local gauge sym-

(G —0oiy +elTy,) 2 +2mX(BY —3,xH)

from ’t Hooft— Polyakov monopoles in the
Georgi-Glashow model.

We proceed to integrate over all possible config-
urations of magnetic monopoles in formula (3.8).
We have described a technique for this calculation
in detail in previous papers,’ where we have al-
ready anlayzed (3.8). Therefore, we only cite the
result. By making use of Poisson resummation
formulas, we may change the summation over
magnetic monopoles (f) labeled by the root lat-

tice of SU(N) into the summation (£ ) over elec-

tric vortices labeled by the weight lattice of SU(N).
Thus (3.8) is rewritten as

[

metry. Thus, the total symmetry group of the ef-
fective Abelian theory is given by W(SU(N))

® T(SU(N)). Bearing these remarks in mind, we
extract the effective Lagrangians from formula
(3.13) as

g & * 12
= T[ (Gm,+ GJ,“,)
+2m*(B,—3,X ] (3.15)

in the presence of external quarks, where € denotes
generically the elementary weight vector of SU(),
while

2 - =
L= %[(Guv‘F 77‘];1')2+2m Z(Bll- _aﬁ‘x )2]
(3.15"

in the presence of external gluons, where 77 denotes
generically the nontrivial elementary root vector of
SU(N). It should be emphasized that we may use
these effective Lagrangians only to calculate
gauge-invariant quantities.

We have analyzed the Wilson loops in this sec-
tion. It is concluded from the effective Lagrangi-
ans that gluons as well as quarks are confined by
an electric vortex.

IV. HADRONIC STRUCTURE

In the previous section, we have derived the ef-
fective Lagrangian of the Abelian component of
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the Yang-Mills theory by integrating over all con-
figurations of magnetic monopoles. We have
shown that the effective Lagrangian describes a
magnetic superconductor, where €;;; G;; stands for
the electric field.

In our scheme there are several mass scales, such
as monopole mass M and B,-field mass m:

(4.1)

These masses are not physical quantities, since they
are dependent on resolution R. We may interpret
M ~! as the coherent length and m ~! as the
penetration depth of electric field in the magnetic
superconductor.

First, let us argue how monopole condensation
occurs as a function of resolution R. We assume
that the effective coupling constant g(R) is a
monotonically increasing function as we expect
from perturbative calculations. Then, when R —0,
the monopole mass M (R) is very large, as is obvi-
ous in (4.1), and hence there are scarcely any
monopole excitations. On the other hand, when
R — «0, the monopole mass is zero, and hence the
vacuum will be dominated by monopole excita-
tions. There must be a critical resolution R, at
which the phase transition takes place. This criti-
cal point is determined by

R.M_.=In(2d) , (4.2)

where M, =M (R_) and d is the dimension of the
space-time; here d=4. Thus, monopole excitations
are incoherent at short distance (R <R, ), while
they become coherent at large distance (R > R,).

It is obvious from the effective Lagrangian
(3.15) that electric vortices emerge between external
charges whose string tensions are given by'*

e 2
0g=3-8 (R)m“(R) for quarks ,

2 4.3)
og= g;gz(R)m XR) for gluons ,

where € and 7] are the elementary weight and root
vectors of SU(N). Recall that € and 7 are expli-
citly given by (2.17). It is remarkable that the ra-
tio 0,/0, is determined without knowing details of
the theory. Thus, by using the string-model con-
nection between string tensions and Regge slopes,
we obtain

ag= (4.4)

where o’ and a, stand for the Regge slopes of
mesons and gluonia, respectively. Here and hereaf-
ter, we only consider the case of SU(3) explicitly.
Then, this relation gives rise to

ay=+a'=0.3 GeV~2, (4.5)

where a'=0.9 GeV 2 has been used.

We emphasize that this ratio has been derived
on the basis of Abelian dominance. Let us cite
some other predictions on this relation proposed in
literature. First, a naive consideration of the
Casimir operators in the adjoint and the funda-
mental representations gives rise to®

ay=3a'~0.4 GeV~2. (4.6)
Second, a bag model gives’
ay=+a'~0.6 GeV~2 . 4.7)

Third, the dual resonance model gives®
ay=7a'~0.45 GeV~2, (4.8)

provided that gluonia are identified with states ly-
ing on the Pomeranchuk trajectory. On the other
hand, the slope of the Pomeron has been observed
experimentally as’

ap=0.30—0.33 GeV~2. (4.9)

Therefore, when gluonia and the Pomeron are
identified, our prediction (4.5) agrees remarkably
well with experimental data.

Let us recapitulate the underlying physics in the
Yang-Mills theory. The physics depends crucially
upon resolution R with which we are concerned; R
could be the distance between two quarks. If R is
small, the perturbative picture is valid. As R in-
creases, the perturbative picture becomes gradually
dubious. Then, we have speculated that the Abeli-
an component would dominate. When R reaches a
certain critical distance R, the condensation of
monopoles occurs. Finally for R > R, electric vor-
tices emerge as stable topological excitations and
confine quarks. We may rephrase such a situation
in terms of the bag picture. For R <<R_, quarks
can move freely in a bag. However, at R ~R, the
bag itself begins to deform. When quarks are
separated sufficiently (R > R,), the bag is deformed
into a string, which is an electric vortex in a mag-
netic superconductor.

We go on to examine whether some quantitative
results account for the structure of hadrons. Mak-
ing use of (4.1) and (4.3), we are able to represent
various mass scales in terms of the effective cou-
pling constant,
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R)=——5—", (4.10)

From (4.2) and (4.10), we first derive that

gHAR,)/4r=1/41n8~0.37 , (4.11)

which fixes the critical resolution R, in terms of
the renormalization point A if the effective cou-
pling constant g (AR) is known. In this case, we
are able to calculate numerically o,, M, =M (R,),
and m,=m (R,) from (4.10).

Actually, we do not know the functional form of
g (AR), which must be determined in the process
of proving the hypothesis of Abelian dominance
[see (3.2)]. Thus, it is more convenient to fix the
scale of the theory by giving the Regge slope of
mesons, that is, &' =(270,)"'=0.9 GeV~? as an
input. Then, we may easily obtain from (4.10) that

R.~'=0.6 GeV, M_,~1.2 GeV,
4.12)
m,~1.6 GeV .

These critical values are physical quantities. We
may consider that R. ! gives the size of a bag in
the presence of static quarks. It is quite plausible
that the actual size of a hadronic bag will be en-
larged to, e.g., R, ~!'~0.2 GeV in the presence of
dynamical quarks. On the other hand, the skin
widths of the bag are given by the coherent length
(M, ~'~0.17 fm) and the penetration depth
(m,~'~0.13 fm).

It is remarkable that the effective coupling con-
stant (4.11) is quite small at the critical point. It
would be tempting to assume the well-known one-
loop formula

g%(AR)/4m=127/[331n(AR)?] (4.13)

as an approximation to g (AR). Then, we may cal-
culate from (4.11)—(4.13) that A~0.5 GeV, which
is consistent with the experimental data of A ob-
tained in the analysis of perturbative QCD.

Finally we estimate the bag constant B'/4. We
have shown that the Yang-Mills vacuum is a mag-
netic superconductor for R >R,. Let us write
down an effective Landau-Ginzburg Lagrangian:

2

¢H

N -1 4 ,
L=3 | +GHVP+| |3, +i—=B,"
H=1 g

+A(| o |2—0v2)? |, (4.14)

which is equivalent to the effective Lagrangian
(3.15) if we set B’f———ng and ¢ =vexp(—i4mx¥),
where v2=g?m?/327%. Now, bag constant B'/* is
given by

B=(N —DAv*=No,mg*/87 (4.15)
with mg=2vV'A being the mass of the ¢ field. It
would be justified to set either mg=R, ! or
mg=M,_. Then, in the case of SU(3), we obtain
B'4=0.2—-0.4 GeV corresponding to m,=0.5—1
GeV at the critical point.

We wish to emphasize that all these numerical
values have been derived on the basis of the hy-
pothesis of Abelian dominance. We believe that
they agree reasonably well with our expectation for
the structure of hadrons.

V. DISCUSSION

In this paper we have analyzed the Wilson loop
in the Yang-Mills theory on the basis of the hy-
pothesis of Abelian dominance. We have em-
phasized that the hypothesis is a gauge-invariant
concept. By integrating over all configurations of
magnetic monopole excitations, we have derived an
effective Lagrangian. It is to be remarked that
various parameters in our scheme are dependent on
resolution R; R could be the distance between two
quarks. We have argued that monopole excitations
are incoherent at short distance (R < R,), while
they are coherent at long distance (R > R,) with R,
being the critical resolution. The effective Lagran-
gian describes a magnetic superconductor for R > R,.

Then, by making use of the effective Lagrangi-
an, we have obtained some numerical results such
as the size of a hadron and the bag constant. We
have also derived a relation between the Regge
slopes of mesons and gluonia. Thus, our scheme
of quark confinement has phenomenological appli-
cations on the structure of hadrons. It is also pos-
sible to calculate various long-range correlation
functions, once the hypothesis of Abelian dominance
is accepted. We are currently investigating this
problem.
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