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West's proof of confinement by contradiction is studied for the unconfined SU(E)
Gross-Neveu model to leading order in 1/X and for the confining Schwinger model. In
both cases, we find that the contradiction found by West for four-dimensional QCD is
averted.

I. INTRODUCTION

Quantum chromodynamics (QCD), the non-
Abelian gauge theory describing the interactions of
quarks and gluons, is an outstanding candidate for
the theory of the strong interactions of hadronic
matter. One of the most fundamental features of
this theory is supposed to be the confinement of
color nonsinglet states. A proof of this property in
four dimensions has been as elusive as the quark it-
self. Attempts have always made use of the very
technical details of the particular methodology em-

ployed, be it instanton or lattice physics. How&ever,

recently West' has outlined a proof of confinement

by means of contradiction that relies on the very
general field-theoretic features of the model such
as its asymptotic freedom.

More specifically, West assumed the existence of
the one-particle quark state

~ p ) of momentum
p" (p =m ) and that the overlap between the
quark field f and this state is nonvanishing so that

Then he introduced the electromagnetic current
vertex function I "(p,q), defined by

I "(p q)u(p)=i(p m) f "—x e""&Ol Tj "(x)g(o) lp&

where j"is the current and p'&=p" —q". The current is assumed conserved so that the vertex function
obeys the canonical Ward identity

q„l "(p,q)=(p' —m) .

(1.2)

(1.3)

In four-dimensional QCD, this vertex function is known only perturbatively. On the other hand, based on
the summation of certain contributions from gluon exchanges, nonperturbative expressions for elastic form
factors have been conjectured for q asymptotically large and spacelike. In order to exploit this, West in-
corporates the Ward-identity information in a dispersion relation for an elastic form factor G(q,m) of
I "(p,q) so that

G( i
)

1 "d ImG(q, 8')
m+ g —PPg

(1.4)

The 1 on the left-hand side results directly from application of the Ward identity. For spacelike q, the im-
aginary part of G can be bounded using the Schwarz inequality by the product of the quark spectral func-
tion p+ and the electromagnetic structure function 8'I, to yield

~

1 —G(q, m )
~

& ( 2mq )'"—f 00 d8' 1/2(gr2)W i/2( 2 W2)~+ (W'+m)[(w —m) —q ]
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For large spacelike q, asymptotic freedom implies
that the right-hand side vanishes. However, the
elastic form factor G(q, m) does not approach 1; it
decreases exponentially to zero. Hence we have a
contradiction. West then concludes that the origi-
nal assumption (0

~ g ~
p)+0 is at fault and the

quark fields must be confined. The purpose of this
paper is to study the details of his proof in the
framework of specific two-dimensional models for
which more than ordinary perturbative information
is known.

In Sec. II the assumption of the nonzero-overlap
matrix element is stated and elaborated upon.

The vertex function is defined and its canonical
Ward identity is assumed. Finally, the dispersion
relation for the vertex function is given and the
bound for the form factors derived.

In Sec. III the assumptions are tested in the
framework of the two-dimensional SU(N) Gross-
Neveu model to leading order in a I/N perturba-
tion expansion. This model is asymptotically free,
but the fundamental Fermi fields are not con-
fined. ~ Hence a contradiction is neither expected
nor obtained. Even so, it demonstrates that the
property of asymptotic freedom is not the only
essential ingredient needed to obtain a contradic-
tion from Eq. (1.5). It is also critical that the elas-
tic form factors vanish for asymptotic spacelike q .
This last property is model dependent, although it
seems to be true in both four-dimensional QED
(Ref. 5) and four-dimensional QCD.

Finally in Sec. IV the assumptions are viewed in
the light of the confining Schwinger model of
massless two-dimensional quantum electrodynam-
ics. Once again, no contradiction is obtained
from West's inequality since for asymptotic q the
form factor equals just the Born term. This results
from the superrenormalizability of the model and
it is conjectured that all superrenormalizable
models, even though they might confine, have

form factors equal to their Born term for asymp-

totic q . Hence they will not lead to a contradic-
tion in West's inequality.

Appendix A contains notation, conventions, and

some useful formulas.

II. THE FUNDAMENTAL INEQUALITY

(0
~
P(x )

~ p )+0 . (2.1)

Next, we assume that the model possesses a con-
served current j"(x) so that Bp4(x) =0. This can
be the electromagnetic current, the energy-
momentum tensor, or some internal-symmetry
current.

Following West, ' we consider the time-ordered
function

In this section, we discuss the assumptions
underlying the derivation of the current-vertex-
function inequality which forms the basis of
West's proof.

In short, the current Ward identity is combined
with dispersion relations for the corresponding
form factors and the Schwarz inequality in order
to bound the current vertex function by the prod-
uct of the current-current single-particle matrix
element and a two-point spectral function. In or-
der to proceed, we first assume that the two-
dimensional theories under consideration allow for
the existence of one-particle states

~ p ) of momen-
tum p4 (p =m ), which have the same quantum

numbers as the fundamental Fermi fields g of the
model. For example, in the SU(N) Gross-Neveu
model, the states

~ p ) are taken to lie in the funda-

mental representation of the group as do the fun-
damental Fermi fields g. Moreover, we must as-

sume that there is a nonzero overlap between these
states and the fundamental fields so that

G4(p, q)u(p)=i J d xe+'' (0~ Tj4(x)g(0) ~p), (2.2)

(2.3)

The models we study possess conserved U(1)
currents whose zero component has an equal-time
commutator with the fundamental field given by q„G"(p,q)u(p)=(0

~
tg0)

~ p) . (2.5)

where u (p) is the momentum-space wave function for the one-particle state
~ p ); for plane-wave solutions to

the free Dirac theory, u (p,x)—:e '~"u (p) with (p —m) u (p) =0. Since j" is conserved, G" obeys a Ward
identity which is given by the equal-time commutator of g with j:

q4G4(p, q)u(p)= Jd x e+'e"5(x )(0
~ [j (x),g(0)]

~
p) .

I

In this case, the Ward identity of Eq. (2.3) reduces
to

5(x )[j (x),g(0)]=5i(x)g(0) . (2.4) Finally, it is assumed that 6" has the usual
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Here the vertex function I" is defined by

I "(p,q)u (p)—:(p' —I )G"(p,q)u (p), (2.7)

analyticity properties so that dispersion relations
for its form factors can be derived. The dispersion
relations have the form

y"+I "(p,q;p' =m )

—1 "d ImI "(p,q;p' =8' )

m+ 8'—m

with p'"=(p —qP' and m & 0 being the mass of the
fundamental Fermi field. Equation (2.6) is to be
understood as dispersion relations for the form fac-
tors which are the scalar functions of q and
W~=p' obtained after I'i' is Lorentz decomposed.
The matrix y" is necessary so as to satisfy the
Ward identity of Eq. (2.5). In the remainder of
this section, a bound will be derived for the ima-

ginary part of the vertex function I'i'.
Taking the imaginary part of I'i', we find

2i[lml i'(p, q)]u(p) =[I'"(p,q) —I" (p,q)]u(p)

=i(p' I)—fd'xe+'s [&Oli "(xÃ(0) lp&+&oIf(0)j"(x) Ip&] (2.8)

where we have used y'„=y„(see Appendix A for conventions and useful formulas} and the product (HW) of
parity (~) and time-reversal (~ invariance of the theory to show that

u*(p) = u(p),

&ol j (x)F0}lp& =&olj (-x}y(0)Ip&,

&o
I
e«V"(» Ip &'=&0

I
e(0V"( —»

I p & .

(2.9)

(2.10)

Inserting a complete set of states, 1 =+„ I
n & & n I, in the right-hand side and restricting the momentum q to

be spacelike, q &0, so that the first term vanishes, we secure

ImI "(pq)u(p) = , (p' m—)g(—2m) 8 (p' —p„)&0
I
1((0)

I
n & & n

I
j&(0)

I p & .

As in Refs. 7 and 8, the imaginary part of I can be bounded by means of the Schwarz inequality. Defin-

ing

and

a„=—(p' —m)&oly(0) lu&, s„=&nli"(o) lp&,

g' —=g(2n )'8'(p' —p„),
n n

(2.11}

we have

Iml i'(p, q)u (p) = , g'a„b„" . — (2.12}

Applying the Schwarz inequality

&g'Ia. I'X'Ib" I' (2.13)

yields

limI'"(p q}u (p} I

'&
4
g(2~}'&'(p' —p. }

I a. I

' X(2~)'&'(p' —p )
I

b"
I

'
n m

where

g(2~}'&'(p' —p )Ib" I'=X(2~}'5'(p"'—p )&pli"(o)Iu&&~ li"(o)lp&
m m

=fd xe ''i"&p
I
ji'(x)ji'(0) lp& (no sum on p)

(2.14)

(2.15)
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is the current-current single-particle matrix element and

g(2m) 5 (p' p—„)~a„~ =g(2m) 5 (p' —p„)(p' —m)(0~$(0) ~n)(n ~g(0) ~0)(p' —m)y (2.16)

For certain models, such as the Gross-Neveu model, we can further simplify this to obtain the Fourier
transform of the two-point Wightman function,

g(2n) 5 (p' —p„) ia„ i
=(p' —I)fd xe+' "(Oig(x)g(0)

i
))(p' —m)y (2.17)

The fundamental inequality for the form factors can thus be written as

1 ~ dW 1/2

~[++I "(p,q;p' =m )]u(p)
~

& f g(2~) & (p' —p„) )&,
~

n

1/2fd x e '~"(p ~
j"(x)j"(0)

~ p ) (2.18)

It is through this bound that the original assump-
tions can then be checked.

III. THE GROSS-NEVEU MODEL

The first model in which we test the inequality
(2.18) is the SU(N) Gross-Neveu model to leading
order in a 1/X perturbation expansion. The model
consists of a Fermi field P„a = 1, . . . , N,
transforming as the fundamental representation
and an auxiliary singlet scalar field a, interacting
with f, via a Yukawa potential. The Lagrangian
is given by

(3.1)

On analysis of this model, one finds that a fermion
mass term, mP, g„ is generated when one operates
in the correct vacuum which is defined by
(0~ o ~0) =0. Consistent with this, the renormal-
ized Green's functions are calculated within the

Bogolubov-Parasiuk-Hepp-Zimmermann (BPHZ)
momentum-space renormalization scheme. The
1/N Feynman rules are given in Fig. 1, where for
the o.-field propagator the single-fermion-loop con-
tributions to the self-energy have already been
summed by the Schwinger-Dyson equation and
should no longer be included. The fermion loop
yields the function

1/2
4m&(q') =—1—

2 ln
(1—4m /q )+1

(1 —4m /q )'i —1

J (»=N i [P.)'"P.(—»] .

Thus to leading order in 1/X, we find

(3.3)

(3.2)

so that 6(0)=1.
The renormalized U(1) current j"(x) is defined

by means of Zimmermann's normal-product algo-
rithm, symbolically written as

G"(p,q)u(p)=i fd2x e+'~"(0~ Tj "(x)1((0)~p)

=fd x d y e+'~" '~~(0
~

TN& [P,y"P, (x)]g(0)g(y)
~

0)(p —m )u(p) . (3.4)

The two graphical contributions are shown in Fig. 2. Applying the Feynman rules and momentum subtrac-
tions, we find

D(q ), —u(p)
P —Pl

0

d kG"(p,q)u(p)= —, iPu(p) iN f —(1—t )Trp' rn —(2n. )2 ~ k —m q+ k m—
iPu(p) . (3.5)

The loop integral is finite and zero even without the zero-order momentum Taylor subtraction t . ln addi-
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tion, we find the simple result to leading order in 1/N for the vertex function I'",

I "(p,q)u(p) —= (p' —iii)G(p, q)u(p) =—y u(p) . (3.6)

We see immediately that the left-hand side of Eq. (2.18}vanishes and so the fundamental inequality is trivi-
ally satisfied:

1 ~ dS' 1/2 1/20( f g(2n. ) 5 (p' p„)—~a„~ fd xe ' "(p
~ j (x)j"(0)~p)

n

(3.7)

Thus, as one expected from the calculation of the
exact S matrix and exact form factors9 in the
Gross-Neveu model where the fundamental fields
are shown not be be confined, West's use of the
fundamental inequality equation (2.18}does not
lead to a contradiction. The assumptions of Sec.
II, in particular the assumption of nonzero overlap
(0

~ f ~
p)+0, for the fundamental Fermi fields

and the one-particle state, are consistent. When
West applied the inequality to four-dimensional

QCD, he found a contradiction due to two critical
properties of the model. First, for asymptotically
large spacelike q, asymptotic freedom implied that
the right-hand side of Eq. (2.18) went to zero.
Similarly, the Gross-Neveu model is asymptotically
free [P(g}=—g A.]. Thus using the renormaliza-
tion group and light-cone expansion the right-hand
side of (3.7) also goes to zero as q approaches
—oo. Of course, in leading order in 1/N,
lmI'&=0 for all q spacelike. Thus as far as this
first critical property is concerned, QCD4 and the
Gross-Neveu model have the same behavior. The
second critical property West used in obtaining a
contradiction for QCD4 was that for q ~—oo, the
elastic form factor contained in I &(p,qp'2=m ) on
the left-hand side of the dispersion relation (2.18)

/field
SF (p, rn)

vanished. This results in the contradiction (1&0)
and hence leads to the conclusion that the set of
initial assumptions are mutually inconsistent.
West claims it is the existence of the single fer-

mion state which is erroneous, thus obtaining

quark confinement. The point is that this second

property, the vanishing of the elastic form factor
for asymptotic q, is an essential ingredient for ob-

taining a violation of the fundamental inequality.

In nonasymptotically free QEDq (Ref. 5) and (to a
less well-established degree) in QCD4, this ex-

ponential damping results from a summing up of
zero-mass gauge-field exchanges in the Feynman-

diagram expansion for the vertex function. In the

Gross-Neveu model, there are no massless fields to
exponentiate and so the leading-order contribution

to the vertex function remains the Born term 1 .
Hence we see that two crucial properties are need-

ed in order to obtain a contradiction by means of
West's method; asymptotic freedom and asymptot-

ic vanishing of the elastic form factor.

IV. THE SCHWINGER MODEL

We next test the assumptions of Sec. II in a
model which exhibits confinement of the funda-

mental Fermi fields —the Schwinger model of
two-dimensional massless quantum electrodynam-

a field

Yukawa

Interaction

l

q+k ~ k

q

, q

I p) state u (p) (p' = rn*)

FIG. 1. 1/N Feynman rules.
FIG. 2. Graphical contributions to 6"(p,q)u (p) to

leading order in 1/X.
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ics. We first briefly recall the exact solution for
the vertex function. The model is described by a
(electron) Fermi field itj and a (photon) vector field

A& whose interaction is governed by the Lagrangi-
an

+ ooF"(x)=,I dy'e(x' —y'}ej'(x',y')
Bx

F!4++—g e}P+ejFA

where the covariant field strength tensor is
F""=8'A" a"A". —The current is defined by
Schwinger's symmetric limit as

(4 1)
A'(x) = J dy'a(x' —y')ej'(x', y') .

From the commutation relations and equations
of motion for the Fermi fields, it can be shown
that the electromagnetic current j" is conserved,

j"(x)=—symm limp(x+e)yI'p(x —e),
e~O

(4.2)
while the axial-vector current

(4.8)

where e& is purely spacelike so that e"=(O,e).
Following Brown' we work in the Coulomb
gauge, defined by n&A"=0 with n"=( 01) Wit.h
this constraint, we can easily solve Maxwell's equa-
tions

j~5(x)—:symm Iimf(x —e)py5(x+e)
e~O

= —e""j„(x)

obeys the anomalous conservation equation

(4.9)

aQ" (x)=ej"(x), (4.3)

with the help of the one-dimensional Green's func-
tion &(x) defined by F(x) . —O& (4.10)

&(x —y)=5(x —y) .
dx

(4 4) These imply that the current ji'(x) is a free mas-
sive field with mass e!Vmand sat. isfies the mas-
sive K.lein-Gordon equation

Using a principal-value boundary condition, this
function takes the form 2

a'+ j"(x)=0 .
7T

(4.11)

&(x)= —, [x [

ke'
(2n )x,+1

(k+ie) (k —ie)

Thus we are able to reduce any time-ordered
product of operators involving the current and Fer-
mi fields to just the time-ordered product of the
Fermi fields. In particular, the time-ordered prod-
uct of the electromagnetic current and one Fermi
field we find

2 2 + 00

Tj "(x)p(0)= a„b,+ x;—y'p+ —n" I—du'b, + x,x' —u'; —n&a"N(u') g(0), (4.12)
7r oo

where 6+ is the propagator for a massive scalar field satisfying

2 2

a„2+—b, + x —y; —=5 (x —y)
m

(4.13)

and given explicitly by

e' + d'k
x; = 2e—"(2m)

—1

k —e /~+i@
(4.14)

We next take the vacuum —one-particle-state matrix element of this operator to obtain the vertex function
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I «(p, q)u(p) =p'G(p, q)tt (p)

=p fd2x, +~ &oI TJ«(x)p(o) Ip)
2

= —p'qp+ —p'n«n qe. (q') &+ q' &o
I
P(o)

I p & .
7T 7T

(4.15}

The vertex function obeys the Ward identity (2.5)

q«r«(p, q)a(p)=p'&o
I
1((o)

I p) (4.16)

explicitly.
Taking the asymptotic q ~—00 limit we find

1 «(p, q) (p) = —y"&o
I
f(o)

I p), (4.17)

which is the Born term. Hence the fundamental
inequality equation (2.18) is not violated even
though the fundamental Fermi fields are confined.
As long as the elastic form factor reduces to the
Born term in the asymptotic limit the fundamental
inequality is trivially satisfied. The reason for this
behavior is the superrenormalizability of two-
dimensional QED. Four-dimensional gauge
theories are renormalizable models so that in each
order of perturbation theory the form factor has a
dependence that goes as [g ln( —q /p )]" (where p
is the renormalization point). As seen in Refs. 2
and 5 the perturbation series exponentiates to yield
e g '"' ~ & ' which goes to 0 as q ~—00, leav-
ing 1 on the left-hand side of the fundamental in-

equality. However, in superrenormalizable theories
each term in a perturbation expansion for the form
factor goes as I (g /q )[ln( —q /p )]' J" for some
constant a. Thus even if the series exponentiates,
one finds

exp{(+g /q )[ln( —q /p )] j

which goes to 1 as q ~—00. In the Schwinger
model the series sums to be Eq. (4.15) leaving only
the Born term in the asymptotic limit. Thus the
vertex function will always go to the Born term for
a superrenormalizable theory making the funda-
mental inequality trivially satisfied.

APPENDIX A: NOTATION, CONVENTIONS,
AND USEFUL FORMULAS

The metric tensor gz„ is defined so that its only
nonvanishing elements are goo ——1 =—g11. The
Levi-Civita tensor e" is defined by e""=—e"&

with e '= —F01
——+1. Thus

e«~ =I„'5„6„P„'. — (Al)

The two-component Dirac matrices y" are defined
in terms of the Pauli matrices cr',

1
0 1 2= 0 —i~= 10 ~= +I 0

1 0
0 —1

(A2)

by

so that

3 1 ~ 2 9 1 1
X =«rs=x'X =~ (A3)

I y" y" I =2g"" y'y«y'=y«, y„'=y„, (A4)

where the superscript T signifies transposition, and
the superscript e complex conjugation. The two-
component, complex Dirac spinors g„a =1,2, have
an inner product defined by

4.&.=4.y.»b (A5)

with the adjoint spinor f, defined as

(A6)
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The discrete symmetry operations of parity,
charge conjugation, and time reversal are represent-
ed by the operators H, @, and W, respectively.
Under a parity transformation, the spinor field f
transforms as

'$, (x)H=L(%},blab(x ),
where
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with

0
pP y 0 (A9)

L (W)y "L(W) ' = T—"„y

L(W)tL(W)=1 .

In our choice of representation

(A18)

and L(H) satisfies

L(H)yt'L '(9') =P"„y",

L(H)L(H)=1.
In our choice of representation,

L(H)=y .

(A 10)

(A11)

(A19)

Thus the combined operation of parity and time
reversal has a simple representation

(9'W) 'f, (x)(RW) =L(9'W),blab( —x)

(A20)

For charge conjugation,

Ctp, (x)C =L(C),blab(x),
where

(A12)

with

L(HW) =L(9')L(W),

L(~W) 'y„'L(9'W) =y„.
(A21)

L(C') 'y„L(C') =—y„,
L(C) L(@)=1. (A13)

In our choice of representation, L(R~ is just the
identity

In our choice of representation

L(Ã)=iy' . (A14)

L(HW)=1 .

Thus

(A22)

where

f, (x)~=L(W),blab(x ), (A15)

with

x I'=TI' x' (A16)

(A17)

and L(W satisfies

Under the antiunitary operation of time reversal, f
transforms as

(~~) 'f(x)(+W)=g( x), —

(+~) 'j"( x)(+~)=j"(—x),

(P'W) i0)= i0)

and due to the antiunitary nature of p'~

where
i
a ) are the parity —time-reversal

transformed states

)=(+~)its) .

(A23)

(A24)

(A25)

G. B. West, Phys. Rev. Lett. 46, 1365 (1981).
2J. M. Cornwall and G. Tiktopoulos, Phys. Rev. D 13,

3370 (1976).
3D. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
4A. B. Zamolodchikov and Al. B. Zamolodchikov, Phys.

Lett. 728, 481 (1978); M. Karowski and H. J. Thun,
Nucl. Phys. B190, 61 (1981).

~C. P. Korthals Altes and E. de Rafael, Nucl. Phys.
8106, 237 (1976).

J. Schwinger, Phys. Rev. 128, 2425 (1962); in Proceed-
ings of the Seminar on Theoretical Physics, Trieste,
1962 (IAEA, Vienna, 1963), p. 89.

7G. B. West, Phys. Rev. Lett. 27, 762 (1971).
8F. Cooper and H. Pagels, Phys. Rev. D 2, 228 (1970).
9M. Karowski and P. Weisz, Nucl. Phys. B139,455

(1978).
L. S. Brown Nuovo Cimento 29, 617 (1963).


