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A remnant of chiral symmetry on the lattice
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A new criterion for chiral symmetry in lattice theories of fermions is derived within a
block-spin formalism. This "remnant" symmetry criterion properly incorporates the
Adler Bell-Jackiw anomaly and avoids the fermion-doubling problem of other lattice
fermion methods. Some obstacles to implementing this approach in the presence of fully

dynamical gauge fields are discussed.

Since the introduction of lattice gauge theories,
the implementation of lattice fermions has been
recognized as somewhat problematic. The most
straightforward implementation results in an un-

desirable replication of fermionic species (the "dou-
bling" problem), and methods for eliminating the
extra species have not proven entirely satisfactory.
Recently, a connection between the fermion-
doubling problem and the anomaly structure of the
theory has been pointed out. The regulation pro-
vided by the lattice allows no anomalies in Ward"
identities and enforces this by realizing a naturally
anomaly-cancelling spectrum. While the authors
of Ref. 3 have emphasized the role of the color
anomaly, a similar argument can be applied with

perhaps greater generality to the anomalies of the
ungauged fermion theory. The conclusion is that
some form of symmetry breaking must be present
at the level of the lattice if the associated continu-
um spectrum is to have the desired anomaly struc-
ture. Otherwise, the lattice theory automatically
leads to a continuum theory devoid of color or fla-
vor anomalies, typically courtesy of unwanted
anomaly-cancelling species.

Under these circumstances, how can a lattice
theory serve to represent a continuum situation
where the symmetry does not suffer explicit break-

ing? This is the case, for example, in strong-
interaction dynamics, where our understanding of

the physical spectrum depends on the breakdown
of an approximately realized chiral symmetry. A
tunable parameter has been introduced' to recover
the symmetry limit in conjunction with spectrum
calculations by strong-coupling or Monte Carlo
techniques. The idea is that the spectrum may be
tuned to exhibit some signal of the symmetry res-

toration, e.g., a vanishing Goldstone-boson mass.
This state of affairs, while not unnatural, is slight-

ly awkward in its requiring a proper and perhaps
delicate parameter tuning to find the symmetry
limit. In this article, we shall pursue a somewhat
different approach, suggested by block-spin tech-
niques. The strategy will be to exhibit a rigid cri-
terion for what is meant by a chiral-symmetry lim-
it within a framework where the symmetry is ex-

plicitly broken.
For the sake of simplicity, we shall introduce the

basic idea in a familar theory of one Dirac fer-
mion. Consider an action At(P, P) possessing the
invariance

A, (e"r p, pe" )=A, (y, y) .

At($, $) might be a continuum action but it can
remain unspecified in what follows; for our pur-
poses only the property (1) is of importance. We
now define a new action A (1b,1b) by means of the
block-spin transformation

(2)e "' ' '= f~&exp' (4' 0')~'—(4—
(we assume an implicit summation over Dirac indices and repeated primed spatial indices; our metric is Eu-
clidean). The P„and P„appearing in the first term of the exponent in Eq. (2) are block variables construct-
ed in some well-prescribed way from those degrees of freedom of the original At($, $) in the vicinity of the
new block lattice site n. The matrix u may have a nontrivial y-matrix dependence but must in any case
have a chirally noninvariant piece in order to ensure that the transformation (2) admits a nonsingular fixed-
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exp[ A(—e "r f, fe "r )]=I exp[ (g—e "r P)—a(e "r f P)—Al—(P,P)]

exp — — e " ae " — —Al

where the second line follows from a change of variables p~e '+(t), p~(()e "r together with the invari-

ance (1) of Al((tt, (t')). If Al(p, p) is quadratic in the fermion fields then so is A (1(),i7)), and we may write

(3)

(4)

Expanding Eq. (3) to first order in e then results in

point action. In the following we shall consider only the simplest case where the matrix a is proportional to
the unit matrix in Dirac space.

We would now like to determine what, if any, are the properties possessed by A (P,f}by virtue of its hav-

ing been constructed from an initially chirally invariant action Al(P, (It). Under a global chiral transforma-
tion, we have

e "(' )[1+iefIy, h jlit] = J [1+ie(g p) {y—, a j(p—p)]exp[ (it) p—)a(f—p) A—l(p, p—)]

1 ie —a 'Iy, aja ' I exp[ (f P)a—(P —P) Al(—P, P)—]
ay

'
ai7

5 —)
j

—A(f, Q)a

alai
'

a@
(5)

/he ~"&= e
a

'
the terms linear in e in Eq. (5) become

iegIy, h joe &"&=iegh fy, a 'jhPe

(6)

The content of Eq. (7) is that the remnant of chiral
symmetry which filters through the block-spin
transformation (2) to A (g, P) =Ph P is embodied in
the relation

Iy, h j =h Iy,a 'jh =2hy a 'h . (8a)

In terms of the propagator h '= (,gf), this rela-

[An additional term —ie Tra 'ty, aj has been
eliminated from the right-hand side of (5) by
Try =0.] The crucial element entering Eq. (5) is
the possibility of reexpressing the P dependence in

terms of derivatives with respect to the new P vari-
ables which then allows performing the ((),P func-
tional integration to recover e —"(&») on the right-
hand side. By use of

I

tion takes the form

I y', h '
j =2y'a (8b)

T„„(p,k) =e„~gp~k~T(k )

(k is the nmomentum, p.is a photon momentum)

by

(9a)

From the opening discussion, we recall that any
lattice theory with an undoubled spectrum must
have certain symmetries broken. The relation (8)
provides the key to making precise what is meant

by the symmetry limit of such symmetries. It need
only be abstracted from the present derivation as
follows: Any h, in particular a fixed-point h ap-
proached after many iterations of the block-spin
transformation (2}, is said to be chirally invariant
if it satisfies (8). The remainder of this article is
devoted to illustrating in an explicit calculation the
utility of expressing lattice chiral symmetry in this
manner.

The calculation we shall perform is an evalua-
tion of the anomalous three-current expectation
value (J&(x)J„(0)ai'Jz(x) } in the theory with ac-
tion (4). In the continuum, this quantity is related
to the invariant amplitude for m —+2y decay

k —m
T»(P, k)=

z Jd x Jd ze'i'"e' (Jz(x)J„(0)al'Jz(z)), (9b)
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where the m. field is taken to be P(z) =(1/f m )cd&(z). It follows from Eqs. (9a) and (9b) that T(0) satis-
ies

pT(0)= fd x fd zx zp(J„(x)J,(0)P'Jp(z)) .I (10)

To properly motivate the lattice discussion which follows, we shall briefly recall some essential aspects of
the continuum short-distance analysis of Eq. (10). If everything were sufficiently well defined, the algebraic
identity

xnz pB, T„,z(x,z}= xnz„(Y +8, ) T„pp(x,z) xzz„—B„T&np(x,z}+cYxnz p T&„z(x,z)

—(B„+B,)x z,T„pp(x,z)+ B„xqz„T~p(x,z)

(8,—:8/Bzz) could be applied to T&„z(x,z)
= (J&(x )J,(0)J&(z) ) in the integrand of (10) to
eliminate the divergence of the axial-vector current
in favor of divergences of vector currents (which
vanish) plus total divergences which would seem to
yield only vanishing surface terms upon integra-
tion. This, then, would constitute a proof of the
(false) Sutherland-Veltman theorem: T (0)=0.
As pointed out in Ref. 8, however, a careful defini-
tion of Eq. (10}requires short-distance cutoffs to
exclude the singular points in the domain of in-

tegration which occur when any two currents coin-
cide in space-time. The cutoff-dependent surface
terms so generated have a finite limit as the short-
distance cutoffs are taken to zero, giving the re-
quired nonvanishing of T(0). The continuum
perturbation-theory result, in substantial agreement
with experiment, is

T(0)= 1

4' f
To perform a lattice analysis of (10), we must

define the lattice vector and axial-vector currents

Jnp and Jnp. It is important that these currents
transform properly under the lattice cubic symme-

try group (discrete Lorentz symmetries) in order to
ensure that only the pseudotensor structure of (10)
survives to the continuum, where it is required by
the usual I.orentz symmetries. I.et us examine the
vector current J„&. It is associated with the link in
the p, direction from the site n so is conveniently
interpreted as residing at n +p/2. Under a parity
transformation (n ~ n), we th—us impose

Jgp~ J g p ~ n

Defining B&J„&——J„„—J„&„,it then follows that

BPJPgP~ J ~ P ~+J
gg IJ =BPJ g P

as desired for a parity-even operator at n Under.

A ~A +i g e„Bi'J„„
n'

(13a}

under the infinitesimal local transformation

4n~0n+ien4n~ 0n~ Pn 4nien

Inserting (13b) into the action (4), we find that

(13b)

Phg~ Phg ie„g„h—„
+ien'em'hm'n'en' ~

so (13a) implies

&Jni =4m hm n0n 4nhnm —itm . (14)

To see that this behaves as expected for the total
divergence of a conserved current, we note [by (4)
and (6)] that

8'J„pe e
—Ae (15a)

This means, after integration by parts, that

g (RB"J„„)= g ib„—p„n)
(15b)

for any quantity R. The operator acting on R in
this expression simply counts its total "baryonic"
charge (Q =Q„,J„O},with each g or P in R count-

ing + 1 and —I, respectively. We thus recognize

the axis interchange symmetry p~v, we must re-

quire

Jnp, ~Jn'v ~

where n' is the vector n with p and v coordinates
interchanged. The currents explicitly constructed
below wi11 be seen to have the above properties.

8'J„& can be extracted from the formal prescrip-
tion
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in (15b) the usual relation

fd x(R(y)B„J"(x))

=fd x—(0
I

TR (y)J"(x)
I
0)

ax~

= fd x I (0
I

TR (y)B„J"(x)
I
0)

+ &(x —y )(OI [J (x),R(y)]
I 0)]

=(OI [Q,R(y)) IO) .

(4). To proceed, we decompose

h =(hy )y = —,[h, y ]y + 2 [h,y ]y

and use only the chirally invariant part 2 [h, y ]y
to define 8'J„& via (13) and a local (18):

(19)

Comparing (19) and (14), we see that J„& may be
constructed just as was J„z above. The result is

+Jnp (('n +I'til'itin itn til'4n —I' ~ (16)

Using translation invariance hn ~:—hn~, (14)
may be reexpressed in the form

5 5Jnpfn ~1'Epl'!"4n+I" ~

where E„is related to E„of (17) by

Ep 2[Ep——,y ] .

(20)

(21)

which allows a most convenient construction of
J„„.For all t with t„&0, we let each of the

(
I
t, I+ I

t, I+ I
t, I+ It, I

)!

shortest-length paths from n to n +t contribute

(1/L)it!„+ hiit!„+ !to J» for each link coming
into n +m from n +m —P; for t„&0, reflection
symmetry then dictates a contribution
—(1/L)1(„+ hip„+ !to J» for each link going
from n +m to n +m —P. Jnz so defined satisfies
(16) since each link gives a contribution

1
it'n+mtil Pn+m —I 4n+m ti !In—+m —i!—I

to B&J„&and the contributions along each
shortest-length path simply cancel in pairs except
for the boundary terms

jl

L (e +I~le 0 ~l(4 —i)

Let us now assume that there is an explicit devi-
ation from the chiral-symmetry limit (8),

It,y'] =2hy'a-'t —2M', (22)

with the deviation parametrized by M, the analog
of a continuum mass term. From Eq. (19), then,
the divergence of the now only partially conserved
axial-vector current is

&J'~=4 & 'y'4. +it»y'ti. it

(24)

vanishes in the chiral-symmetry limit. The Fourier
transform

4p= ge""0.

=iT ti 'y'4. +it.y'ti. it

—1(|tiy a 'h 1(„—it!„tiy'a 'h 1t +p„, (23)

where

Jn p itn ~ I +id'I" 4n ~'!" (17)

The sum over shortest-length paths, included to
preserve the lattice rotational invariance, then can-
cels the 1/L. Properties of J» are most easily ex-

pressed in terms of the kernel K defined by

satisfies

pp ——f, [it! p M'(p')it!p+p

+4p p™V')Pp 1— (25)

Some of these properties which will later be useful
are derived in the Appendix.

Extracting c)pJ„„from (4) by the same canonical
prescription requires a little more care than 8'J„&
since

where

=& (p)y'a '(p)h (p) ——, I h (p), y'I

e" 0, 0 4e"~ (18)

f, =(1/2ir) f dp'.
is not assumed to be an exact global symmetry of
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To understand Eq. (25), we must digress
momentarily to discuss the solution to (8b). A
rather general solution with a symmetry-breaking
mass term takes the form

I, -i( ) -i( )+ g y'(x+2~i)

(J )
i (p +2irj }&yi'+m

and up to corrections in higher orders of mass m

and momenta p,p', the field P of (24) is simply
—2m' g. Thus by the usual definition
(0

~ gy„y g ~

n. ) =2ik+, implying
—2m (0

~ gyes ~

m ) =2m f, P in the low-
momentum limit is just 2m~ f times the m. field.
Thus

(26) 2f~eq~pT(0)= g m~np(J~qJo„g„)
m'n'

(29)

y(p) is an arbitrary function of momentum and 2m

periodicity in each momentum component is en-

forced by the sum over integers j&. As an exam-

ple, the fixed-point h approached by iterating the
block-spin transformation (2) on an initial undou-

bled action

(27)

sin(p„/2}.=0

when the block variables are constructed by
averaging over hypercubes with sharp boundaries. '

For a general y normalized to y (0}= 1, Eq. (26) to
leading order in m and p reduces to

is for our purposes the appropriate lattice version
of Eq. (10}. Before continuing, we should establish
the relevance of (29) to the continuum result by
showing that it is indeed dominated by its long-
distance behavior. From (17) and (24), we note
that the expectation value in (29) will contain three
propagators h '. For m' and n' of O(1/mass), the
three propagators each give a factor (mass}, m'
and n' each a factor 1/mass, and together with the
explicit factor of mass from P and the (mass)
phase-space factor, we find an overall contribution
of O(1). All other regions of the summation are
easily seen to be suppressed by powers of mass.
The region with m', n' both of O(1},for example,
contributes O(mass) due to the explicit factor of
mass from tIl. Equation (29) is thus dominated by
m', n'-O(1/mass) and so should revert to the con-
tinuum result in the mass~0 limit.

To proceed in analyzing (29), a lattice version of
the continuum identity (11) is needed. A bit of
care is in order since the lattice chain rule

h(p)=m+ip .

Consequently

r)„(f„g„)=(&J'i„)g„+f„pd~,
=f„d~„+(dQ„)g„ (30)

M (p) = —my
p, m g&1

involves a shift in spatial argument. With a little
perseverance, one arrives at

m~npccT&„z(m, n}= m n„B~„T&zp(m v, n P) m&n„—B~ T—~—p(m +P v, n —P)—

+Pm npTq„p(m, n)+P' mqn, T~p(m +P v, n —P—)

[(P„m n„T„pp(m+p —v, n+p P)+8 —m n, T„—pp(m+P v, n —P)]—, (31)

where p'„T(m, n)=T(m +p, n +p) —T(m, n) in the first term. The strategy from here in evaluating (29)
will be to substitute for P„via (23}, then reexpress the 2'J„z term via (31) and the remaining terms via (6).
Typical manipulations involve identities such as those of (15). We shall be able to drop the total divergence
terms generated from (31) since they produce only negligible surface terms as long as m' and n' are
summed over regions of characteristic length much greater than the infrared cutoff 1/mass. We find, after
integrating by parts,
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2f e„()T(0) g=m,'n'p —Q„h)"a ' (—a 'y'hP )„1„Jo„)
a

I 1 al7

+m a~ P n' — + V n' ~m'pc~9v
Bl())) ' n

(32a)

(32b)

a—

man�„'

ll)p

ay,
8 5"—() P)'FO

(32c)

—m an v 1Pm'+p 0—
~4'+p —0

8
~m'+P —0 g,),

&m'+P —9

5
Jp J„. )))) . , (32d)

where (32c) and (32d) come from the &'J„z part of (23), and (32a) and (32b) from the other two terms. Since
the lattice regulates the short-distance singularities alluded to following Eq. (11), it should come as no
surprise that (32c) and (32d) will prove to give vanishing contributions in the continuum limit. It turns out
[see Eq. (36)] that (32b) does not contribute either, and only (32a) survives in the limit of interest.

To spare some algebraic tedium, we shall explicitly exhibit here the initial simplification of (32a) only; the
rest of (32) is treated similarly and reappears in Eq. (35). Substituting (17) and taking the fermion deriva-
tives in (32a) results in

m'np—([P„hy'a 'K„,.,„g~+),-+Q,+, „, , y "4n ]PI, „(,(,0(,-
Nf 5

Performing the functional integration in (33) then shows the two lines to be identical after a change of sum-

mation variables; they combine to produce

I I —1 —1 5 —1g 2m~npTr(K &, i„h,+&„1,K I, ,„hI„,h„;y a.,
p& ~ m+] —

g v&& &
—n

—
I —pg

m's'

We now use the Fourier transforms

+ ~ - f "i'—n"' ~

P ~' ~ &i&z

together with the identity

g m'J'(p')e'~ =i5(p')O'J(p') (a.'=—asap. )

to rewrite the four parts of (32) as

2f ez~pT(0)= —2B~Bp f TrIK&(p+p",p+p')h '(p+p')K„(p+p', p)h '(p)h(p+p")y a '(p+p")I

—28 "Bpf TrIK&(p +p",p +p')a '(p+p')y h(p +p')h '(p)K„(pp +p")h '(p +p")] (35a)

+28' f TrIy'[8+„(p,p+p')]h '(p+p')K„(p+p', p)h '(p)I
P

+8'„f Trt [B~„(p+p',p)]h '(p)Kp(p p'+p)h '(p+p')]

+ 8' f TrI [8+p(p +p',p)]h '(p)K~(pp +p')h '(p +p') j

—a„' f Trt [a„K.(p+p,p)lh (p)K~(p p+p )h
—(p+p.)—

+[~„Kp(pp+p')]h '(p+p')K (p+p', p)h '(p)I .

(35b)

(35c)

(35d)
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The terms in (35) are all understood to be evaluated at p'=p" =0.
In arriving at (35), we have not yet made use of its overall pseudotensor structure, i.e., the assured total

antisymmetry in pvap which allows us to drop any symmetric parts. It should first be noted that (35c) and
(35d) are identical term by term after odd permutations of indices. Moreover, we recall that by construction
Kp= , [Kf—i,y ] but because of the y, only the y -odd parts of the two Ka's and two h 's in the trace need

be retained (the trace of y and fewer than four y matrices vanish) so we may write K =K y in (35c) and
(35d). It thus emerges that (35b), (35c), and (35d) are all identical. Combined they give

6a.' f TrIy'[apK„(pp+p')]h '(p+p')K„(p+p', p)h '(p) I

= 6 Tr ' „p,p+p' ' p+p' &~ p+p', p
'

p
P

—6 f Trjy'[BtiK„(p,p)]h '(p)B'[K„(pp+p')h '(p+p')]J . (36)

But by the results of the Appendix [Eq. (A6)],

5q„
K„(p,p) =iB„h(p), B~„(p,p +p')

~

=—B„BQ(p) — h (p),P= 2
(37)

[h„—+'(p)—:B„h +—'(p)] . (38)

the first and second terms on the right-hand side of (36) are symmetric in ap, and pp, respectively, and so
neither contributes to e„ iiT(0).

This leaves (35a) as the only nonvanishing contribution. Applying (37) and keeping only the fully an-
tisymmetric parts gives

2f ~&„&T(0)=2f Tr{h&(p)h '(p)h„(p)h '(p)[B&(h(p)ya '(p))]I

+2 f TrIh„(p)[B&(a '(p)y'h(p)]h '(p)h„(p)h '(p) I

There is potentially a problem in taking the massless limit of Eq. (38) due to the singularity in the integrand
at p=0. But for m =0, h (p)-p in the infrared, and we find that (38) behaves only as a harmless fd "pjp;
the finite mass effects are thus small and the leading contribution to T(0) may be safely calculated at m =0.
Now we would also like to make use of the symmetry condition (8), but indiscriminate substitution of

2hy a '=y +hy h (39)

(40)

in (38) would produce a logarithmically divergent expression. To set up a more careful treatment, we first
define the integrals in (38) to exclude the region

~ p ~
(5, for small but finite 5. Substitution of (8) may

then be made in the remainder of the integration region and the resulting integral will turn out to be reduci-
ble to a

~ p ~

=5 surface term. Owing to the original convergence of (38), the necessarily nonsingular 5~0
limit of this surface term determines T(0), up to negligible higher-order corrections in the mass.

We now proceed as outlined above, starting with the insertion of (39) into (38) supplied with
~ p ~

=5 cut-
off. Using again the antisymmetry in p,vap, along with the relation h„' = —h 'h„h ', we obtain

2f e»T(0)= f Trjh&h h„h [h&yh +hyhgi ]]+ f Trfh&[hei yh+h yhp]h hvha 1

= f ( Try h& 'h—ah„'h&+Try h& 'h&ha 'h„+ Trysh„ha 'h&h&
' —Try h&h„'hah& ')

=4 Tr „'p „p 'p pp

The antisymmetric part of (40) is a total divergence, B&[h 'h, h 'hp), whose integral may indeed be re-
expressed as a p =5 surface term. To zeroth order in m, we take h (p) =p and find

2fae&~pT(0)=4 f n&Tr y —y„—2 pa y&
1 ya P

=4 f 4e~p q
——4 2n p e„~p 4

—— eq~p+0(m) .niP 1 i p 1
Tvcx g (2 )4 f414Ã 4 2 PvcK (41)
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We thus conclude that T(0}=1l4/f, in agree-
ment with (12}.

Given the evident utility" of the criterion (8) for
expressing lattice chiral symmetry, the reader is
undoubtedly wondering why we cannot now use
our formalism in calculations of, say, the mass
spectrum of QCD. The incorporation of dynami-
cal gauge fields in our formalism involves taking a
free-fermion relation like (8), making it locally
gauge invariant, and then solving it for Ii. We
have unfortunately not yet found either (Sa) or (Sb)
to yield any tractable gauge-invariant solutions.
For calculational purposes, we prefer an action,
and hence an h, sufficiently local to justify retain-

ing as few couplings as possible, ideally only
nearest neighbor and maybe some next-nearest
neighbor. But the symmetry criterion in terms of
h, Eq. (8a), is difficult to solve directly because it
is nonlinear. In terms of h ', on the other hand,
the linear Eq. (8b) does yield solutions but they are
nonlocal. We have not been able to exhibit an h

whose nonlocal strings of flux compactly invert to
produce a (roughly) local h. Consequently, our
remnant-symmetry formalism has not yet allowed
calculations with gauge fields, even when the rem-
nant symmetry is only an ungauged flavor symme-

try. Finding a way to go ahead and actually gauge
a symmetry present only in remnant form stands
as a further challenge.

APPENDIX

This appendix establishes the properties of E„
quoted in Eq. (37).

With the definition (17) rewritten

&.i = g i'.+ Ei, (f.+-i-
ml

(Al)

it follows from the construction of J„„described
after (16) that

Ep, m m —1=LE,mlkl (A2)

Li, mi I„, —— (A3)

lq(l„+5„,)
2

mvLpmi=

The Fourier transform

E (p p +p') = y e '~ e'~+~ ' E
ltlll

ye i(P+P—')I'i eiP'm Lp m'l'
l'm'

(A4)

where L& l is equal to sgnl& times the fraction of
shortest-length paths from 0 to 1 which pass
through the link from m —P to m. By induction,
it is easily shown that L„ i satisfies

We thank O. Alvarez and M. Peskin for useful
discussions. One of us (P.H.G.) is supported by
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and its derivative with respect to p„' are only need-

ed evaluated at p'=0. Thus we need only evaluate
(A4) to leading order in p':

E&(p,p+p') = g e '~ hp(1 ip'1'+ip'm'}L—&~.i.
l'm'

to find

. , (l +5„)= ge 'i'hpl„' 1 ip'l'+i—p'
l'

.'a=i 8„ I+ + " g(p) (A5)

E„(p,p)=id„h(p), B~„(p,p+p'}
~

=—i) i)p(p) )i(p)

We notice that d„'E„(p,p +p')
~ z o is symmetric in p, and v.

(A6)
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