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Quantum radiation by moving mirrors
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The quantum radiation of scalar particles by a moving mirror is discussed. A pertur-
bation method is developed which allows one to calculate the radiation produced by a
boundary of arbitrary shape iri the nonrelativistic limit. It is applied to the case of a mir-

ror in two-dimensional space-time and reproduces the results of Fulling and Davies. It is
also applied to the case of a plane mirror in four-dimensional space-time, and a formula
is obtained for the total energy radiated by an arbitrary nonrelativistic motion.

I. INTRODUCTION

Radiation by a moving mirror is a purely quan-
tum effect which has no analog in classical field
theories. It arises as a result of the interaction of
the mirror with zero-point fluctuations of a quan-
tized field. By a mirror we mean a surface on
which the field operator must satisfy a boundary
condition corresponding to perfect reflection. For
a scalar field P, the boundary condition we consid-
er is

This condition provides a coupling between the
field P and the mirror. (In fact, the specific form
of the condition is unimportant: Any boundary
condition on a timelike surface would give rise to
vacuum polarization and quantum radiation ef-
fects). Even for a static mirror, the modes of the
field P which satisfies Eq. (1.1) are different from
plane waves. As a result, the vacuum energy den-

sity and pressure acquire nonzero expectation
values and can lead to observable effects (in partic-
ular, to the well-known Casimir effect'). If the
mirror moves with acceleration, then one cannot,
in genera1, define a stable vacuum state. In and
out vacuum states can be defined if the motion of
the mirror is bounded in time. Modes of the field

P which have positive frequency at t~ oo be-—
come a mixture of positive- and negative-frequency
components at t~+ 00. This means that creation
and annihilation operators and the vacuum states
in the two asymptotic regions are different, and
that the motion of the mirror creates particles.

Quantum radiation from moving mirrors is an
interesting effect in its own right, but it can also
have important cosmological applications. Phase
transitions in the early universe can produce mac-
roscopic vacuum structures, vacuum domain walls,
or strings. The evolution of these structures de-

pends on the efficiency of various energy-loss
mechanisms, in particular on the rate of particle
creation. Vacuum domain walls and strings are
not perfect mirrors (with respect to electromagnetic
waves they act like dielectrics rather than mirrors).
Nonetheless, a study of radiation from moving
mirrors can help develop an intuition about quan-
tum radiation and indicate the magnitude of the
effects in other situations.

Radiation from a moving mirror in two-dimen-
sional space-time has been studied by Fulling and
navies. They found an exact expression for the
vacuum expectation value of the energy-
momentum tensor ( T»), which enabled them to
calculate the radiation reaction force and the rate
of energy loss by the mirror. In four-dimensional
space-time the problem is much more complicated
and has been solved only in the special case of a
uniformly accelerated mirror. In the present paper
we develop a perturbation method, which consists
of perturbation of the boundary conditions, and
which allows one to calculate ( T„„)and the radi-
ated power for arbitrary nonrelativistic motion of
the mirror. Our perturbatio~ technique is
described in Sec. II. It is applied to mirrors in
two- and four-dimensional space-times in Secs. III
and IV, respectively. Quantum radiation from
moving dielectrics and implications for the cosmo-
logical evolution of vacuum structures will be dis-
cussed elsewhere.
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II. PERTURBATION OF
THE BOUNDARY CONDITIONS

For simplicity, we consider a real, massless
scalar field ((}(x)satisfying the equation

OP(x) =0

and the boundary condition

(2.1)

more complicated boundary condition (2.8b) on a
simple surface Sp. The solution of Eqs. (2.8) is

P (x)= I P,(x')8„'b "(x,x')dX"

= —f, P(x )a„y,(x }a„~,'(x, x )dr"',
0

(2.9)

y(x) l„,=o. (2.2)

The surface S is a timelike surface describing the
world history of the mirror. The initial condition
for the field operator P(x} is Clkp(x x') = 0 6o (x x ') =5(x —x ) (2.10a)

where the first equality can be easily derived using
Green's identity. The retarded Green's function
bo(x, x') satisfies the equations

P(x)~P;„(x) (t~ oo ), (2.3)
and

where P;„(x) is the field operator for a stationary
mirror. (We assume that the motion of the mirror
is bounded in time, and thus the mirror is station-
ary at t~+ oo.} In simple geometries, the field

P;„(x) can be easily found.
Suppose that the surface S differs only slightly

from a simple surface Sp, for which the solution of
Eqs. (2.1)—(2.3) can be found, and suppose that
Pp(x) is such a solution;

Ao(x x')
I cs, =ho(x x')

I 'es, =O (2 10b)

and

bo(x,x')=0 if t(t'. (2.10c)

&O, in
I T„„I

O,in)—:&T„„), (2.11)

where, for the minimal energy-momentum tensor,

We want to find the vacuum expectation value of
the energy-momentum tensor,

Clgp(x) =0, Po(x)
I ~cs ——0 . (2.4)

Tt.= 2 (0,t 4,.+4',.0,i hatt A', 4' )—. (2.12)

If the surface Sp describes a static mirror, then
Below we assume that this is the case.

We can rewrite the boundary condition (2.2) as

P(xt'+P(x))
I „~s,——0, (2.5)

Substituting Eqs. (2.7) and (2.9) into Eq. (2.12), we
can express & T&„) in terms of P(x), b,p (x,x'), and

Ap(x x') = &(t'ip(x)yp(x') +Ijkp(x')yp(x) )

Let

[P(x)+P(x)&„P(x)+ . ]„s,——0. (2.6)

((=No+Pi '

then to first order we obtain

(2.7)

Clg, (x)=0,
4i(x)

I x~s, = —P(x)~„4o(x)
I &~so,

(2.8a)

(2.8b)

where P(x) is the displacement vector which
translates a point x ESp to a point in S and P is
orthogonal to So and s~all in the sense to be speci-
fied below. Expanding (2.5) in powers of P, we
obtain

(2.13)

&T„.& = &T„.&p+&T„.&i, (2.14)

Of course, the resulting integrals will be divergent,
and & T&, ) should be regularized and renormalized
by subtracting the & T&„) of infinite space without
a mirror. We expect & T„„)renormalized in this
way to be finite. Here we adopt the point-
separation regularization technique': The field
operators in all the products of Eq. (2.12) will be
taken at different points, x" and x&+@I'. The lim-
it e&—+0 will be taken in the final result after re-
normalization.

From Eqs. (2.9) and (2.12) we find, neglecting
second and higher powers of g,

where

Pi(x)~0 (taboo) . (2.8c)

where & T„„)is the energy-momentum tensor for a
static mirror, and

& T„„),=D„„,rt„~~, ——
Instead of the vanishing boundary condition Eq.
(2.2) on a complicated surface S, we now have a with

(2.15)
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D„„(x}= ——, f [B„B'6"(x +e,x')Ogpu '(x,x')+Op' bo(x,x')B„Bph'(x +ex')]P(x')dX~ ~,
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(2.16)

To proceed further we need to specify the shape of the surface Sp. In the remainder of this paper we con-
sider the special case in which Sp is a plane. In this case we can write explicit expressions for hp and kp.

Ap(x, x')=5 (x —x') —b, (x —x'),
hp(x, x') =b, '(x —x') —b, '(x —x '),

(2.17a)

(2.17b)

where b,"(x) and b, '(x) are the corresponding functions in the free space without a mirror and the point x '

is the mirror image of the point x with respect to the plane Sp. If n is a unit normal to Sp, n n& —1——,
then it follows from (2.17) that

and

n&a„'cps(x, x'}
~

„.~s =2n"a„'~s(x x'—) ~, E,, (2.18a)

(2.18b)

We can also represent P(x) and d X~ as

P=gn~, dX~=n~dX, (2.19)

where the sign in the last equation is chosen so that n p points in the direction of the point of obse~ation X.
Combining Eqs. (2.16), (2.18), and (2.19), we obtain

D„(x)=—2n n~ f [ a„a.~'(x x+e)d—p,~'(x x')—
+Op 6 (x —x')B„Otic,'(x —x'+e)]g(x')dX' ), (2.20)

Although Eq. (2.20) is valid in four dimensions

only if Sp is a plane, it always applies in two di-
mensions because in this latter case, Sp is a
straight line.

The perturbation method presented here can be
extended to higher orders in g, to massive fields, or
higher spins. Finally let us briefly discuss the
range of validity of the method. We consider the
case when the mirror moves as a whole, so that the
displacement g is a function only of t, and not of
the position on the mirror. The perturbation ex-
pansion is an expansion in powers of such dimen-
sionless quantities as g/z, g, and g', where

g=dgldt and z is the distance to the mirror. Thus
a necessary condition for the perturbation method
to apply is that the motion be nonrelativistic so
that g && 1. As will be shown below, in those sit-
uations where an exact solution is known, the per-
turbation method obtains the nonrelativistic limit
of the exact solution.

III. T%'0 DIMENSIONS

In two-dimensional space-time, the trajectory of
the mirror is a timelike curve, and the "surface"

Sp is a straight line parallel to the x axis. (We as-
sume that the mirror is stationary as x —++ ao.)
The functions 6'(x) and b "(x) are given by

b, '(x) = (2ir) 'lnx (3.1}

(x)= i 8(xp)[8(xp —xi ) +8(xp+xi ) —1],
(3.2)

In this equation we have already made the subtrac-
tion of ( T&„) for infinite space, which amounts to
keeping only the second term on the right-hand
side of Eq. (2.17b). The problem thus reduces to
the calculation of the integral (2.20) for ( T&„)i.
In particular, for ( Tpi ) i we have

where x =xp —xi . From Eqs. (2.12), (2.13),
(2.17b), and (3.1) it is easily verified that the
energy-momentum tensor vanishes for a static mir-
ror,

(3.3)
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& TQ](x) )= 2 I dxog(x')[goy]g ( —x'+e)il] g (x x')+g] g (x —x'}goy]]5, (x x'+p)]
Ixi ——0

(3.4)

where the unperturbed position of the mirror is at x~ ——0. This integral is expected to be finite and indepen-
dent of the direction of e . Substituting Eqs. (3.1) and (3.2) in (3.4) with e =e, e'=0, and integrating by
parts, we obtain

&To](x))]——
I g'(u+e)[e +(2x] —e) ]+/(u+e)[ —2e +2(2x] —e) ]+/'(u)[e —(2x]+e) ]

277

+g(u)[2e —2(2x]+e) ] I, 0, (3.5)

where u =xo —x]. Expanding (3.5) in powers of e,
we find that all negative powers of e cancel. The
final result is

dP" /dx p dPP/——dx—o,
where

(3.10}

(3.6)

The remaining components of & T&, ) ] can be
found most easily from the conservation laws
8'&T&, ) =0. We find

Zp

& Too(xo,x] ) )]——B] & To](xo,x, ) )dxI],

Pg= I &T" )dx]+ J &T" )dx, (3.11)

is the energy-. momentum vector of the field and

g=g(x]]). From (3.10) and (3.11) and the energy-
conservation law, we have

= —(12m.) 'g"'(xo —x] } . (3.8)

Equations (3.6) and (3.8) apply when the point x is
to the right of the mirror (x] )0). For x] &0,

& Tm &]= & T]] & i = & To] & i =+(»~) 'P"(xo+x] )

(3.9)

Fulling and Davies have found an exact expres-
sion for & T„„)in the two-dimensional case. In the
nonrelativistic approximation our results, Eqs.
(3.6), (3.8), and (3.9), are in agreement with their
result.

Let us now find the radiation reaction force and
the radiative energy loss by the mirror. If P]' is
the energy-momentum vector of the mirror, then

(3.7a)

&Tii(xo,x]}&]=—~0 I &Tol(xo xl }&dxl

(3.7b)

where & Tz, ) ]~0 as xo~ —oo and as x]~—~.
From Eqs. (3.6) and (3.7) we obtain

& Too(x) ) i
——& T]i (x) ) ]

dP /dxo 0, ——
F=dP'/d xo(6m. ) ]g'"(xo),

(3.13)

(3.14)

where E is the radiation reaction force. The total
energy loss vanishes to first order in g however, it
is possible to find the energy radiated in second or-
der using the result (3.14) for the reaction force.
Let 8'be work done by the force I', and E be the
total energy radiated; then

E=—O'= — I' 'dX0

=(6]r) ' I V dxo, (3.15)

where V=/' is the velocity of the mirror. Finally
we note that, using the exact & T& ) found by Ful-
ling and Davies, we can obtain an exact relativis-
tic expression for the radiative force,

dP" 1 d u" d u"
dr 6ir

(3.16)

(3.12)

In our approximation we can neglect terms propor-
tional to ('. Then, using Eqs. (3.6), (3.8), and (3.9),
we obtain
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where u"=dgldr and r is the proper time. Note
that Eq. (3.16) has the same form as the relativistic
radiative force in classical electrodynamics.

and b,"(x) are

6'(x)= —(2/x )

5"(x)=(4m
[

x
f ) '5(t —

/

x
i ),

(4.1)

(4.2)

IV. FOUR DIMENSIONS

In this section, we shall calculate ( T&„)~, the re-
action force and the radiated energy for a plane
mirror in four-dimensional space-time. The sur-
face So describing the unperturbed world history of
the mirror is the plane z =0. The functions 6'{x)

(T„„)0——(16m z ) 'diag( —1, 1,1,0) .

Equation {2.20) yields (TO3) ~,

(4.3)

where x =t —x . From Eqs. (2.12), (2.13),
(2.17b}, and (4.1) we find the energy-momentum
tensor for a static m&rror:

(T ),= —2 f d'x Pt }[a,a,a"(x —x +E)a,'a'(x —x )+a, 'a'(x —x )a,a,a'(x —x'+~)], ,
e—«0

(4.4)

where d x'=dt'dx'dy'. As in the previous section, let e =e, e=O.
Equation (4.4) is valid even if g is a function of x and y, the coordinates in the mirror, as well as t. Simi-

lar expressions may be given for the remaining components of (T&„)&. Thus it is possible, using this for-
malism, to study the radiation produced by arbitrary small deformations of the initial surface So. Because
of the presence of the retarded Green's function 6, ( T„„)~ depends upon g evaluated at retarded times.
Thus to first order in g the radiation seen by an observer depends only upon g and its derivatives along the
intersection of the world history of the mirror S, with the observer s past light cone. In this sense it is
correct to say that the quantum radiation emanates from the mirror's surface. In the remainder of this pa-
per we restrict our attention to the case of a plane mirror which moves rigidly so g =((t)

Substitute (4.1) and (4.2) in (4A), integrate by parts and expand in powers of e; after a lengthy but
straightforward calculation one finds

(T03)t ——(16m )
' f d x'[z R (7g'+7R++3R~P" + , R g' '+ —„—Rg'")

zR '( , f+—, Rg" +—R'P'—+, R'g"')], — (4.5}

where d x'=dx'dy', R =(x —x') +(y —y') +z, and g is evaluated at the retarded time (=((t —R).
As expected, all negative powers of e have canceled. If we convert Eq. (4.5) to an integral on R and re-

peatedly use the relation

(4.6}

we obtain

(T03)=(16m z ) '(/+zan" +—„z g'"+—„z g' '), (4.7)

where now g=g(t —z). All off-diagonal components of ( T&„) expect ( T03 ) are equal to zero by symmetry
As before, the components ( Too ) &

and ( T33 ) f can be found from the conservation law, recalling that
( T&„) is a function of t and z only.

The results are

and

( Too ),= —(16/z')-'(4g+4z f+—„z'g"+ —,z'g"'+ —„z'g"')

(T„),=—(48Hz')-'(g" +zg"'+-,'z'g'") .

(4.8)

(4.9)

The remaining components, ( T~~ ) = ( T22), would require a separate calculation, but are unimportant for
the calculation of the reaction force. Equations (4.7), (4.8), and (4.9) apply for all points to the right of the
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mirror, i.e., for z ~0. For z &0, we have to replace g by —g and make a coordinate reflection z~ —z. This
gives

(T (tz))= —(T (t, z—)), (T„(tz))=—(T„(t, z)—), T„(tz))=(T„(t,—z)) . (4.10)

As a check of our results for ( T&„)i, one can veri-

fy that terms proportional to g and to g' in Eqs.
(4.7) andd (4.8) can be obtained from the result Eq.
(4.3), for a static mirror by a translation and a
Lorentx transformation.

From Eqs. (4.7), (4.8},and (4.9}we see that

(T») i becomes infinite as z~0. This means that
not only is the field energy infinite for a static mir-

ror, but it changes by an infinite amount as the
mirror begins to move. These infinities can be at-
tributed to the fact that the classical boundary con-
dition Eq. (1.1) is not strictly compatible with the
quantum theory. Forcing P to vanish on a surface
requires its conjugate momentum to be totally in-

determinate. Thus (T») is singular on the mirror
for the same reason that single-particle quantum
mechanics would require a position eigenstate to
have infimte energy. This singularity should

disappear in a more realistic model for the mir-

ror. ' Nevertheless, it wi11 be shown that the total
energy radiated by the mirror is finite if the
m.otion is bounded in time.

The radiation reaction force per unit on the mir-

ror is

We have also calculated (8»), F, and E for the
conformal energy-momentum tensor,

81.= 2 (0,p4,.+4,.4,t hatt.
—k, A' )

1

with g= —,. The results are

(8p3)i ——(720ir z ) '(g"'+zg' '),

(4.14)

(4.15a)

(8pp)i ———(720' z z ) '(2g"+2zg"'+z g' '),

( 833 ) i — (720rt—z)

(4.15b)

{4.15c)

where, as above, g=g(t —z). The vacuum expecta-
tion value of the energy-momentum tensor for ar-

bitrary conformal parameter g can be found as a
linear combination of (T») i and (8») i. We can
find the remaining nonzero components of (8»)
from the relation 8&

——0. They are

(8ii)i ——(822)i ———(720ir z ) '(P+zg'") .

(4.16)

(T ) =— (T33) =o 2(T33)

(4.11)

From Eqs. (4.11) and (4.15c), the radiative reaction
force is given by

The total energy radiated by the mirror is

E=—f F(t)g'(t)dt

V dt,
36(hr'

(4.13)

where we have integrated by parts, assumed that
g'"'-+0 as t~+ ap, and let a —+0. We see that, al-

though the reaction force (4.12) diverges as a ~0,
the radiated energy per unit area is finite. This in-
finite force creates an infinite energy in the space
surrounding the mirror, but this energy is bound to
the mirror and is reabsorbed when the motion
ceases.

where we have introduced a cutoff at z =a. Using

Eq. (4.9) and expanding in powers of a we find

F(t)=(24m ) 'f a 'P(t) „a 'g' '(t)——
(4.12)

F(t)=(360m )-'[a-'g'"'{t)—g"'(t)] (4.17)

E=- 1ri)
1 2 s

72
(4.18)

Because leo&1, we must have I Eg 10 co. Be-

and the energy radiated by the mirror is the same
as for the minimal tensor Eq. (4.13). The fact that
E is independent of the conformal parameter g is
not surprising, because the difference between 8„„
and T„„is a total divergence.

For constant acceleration (g"= constant), our re-
sult for (8») is in agreement with the nonrela-
tivistic limit of that of Candelas and Deutsch.
Note that the reaction force and the radiated ener-

gy vanish in this case.
To illustrate the result Eq. (4.13), let us consider

a surface which oscillates so that g(t) =I costpt
Then the energy radiated per unit area per oscilla-
tion is
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cause one expects the photon produced in this case
to have a typical frequency of the order of ro, the
mirror radiates fewer than 10 photons per oscil-
lation per area I . Thus quantum radiation by
mirrors is a small effect under normal circum-
stances. However, such structures as domain walls
and vacuum strings might be expected to be sub-
jected to large accelerations and hence radiate
strongly. Another object which is similar to an ac-

celerating mirror and which can create quantum
radiation is the expanding bubble associated with a
phase transition in various gauge theories.
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