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Evolution of radiating anisotropic spheres in general relativity
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A method used to study the evolution of radiating fluid spheres is extended to the case of anisotropic spheres.
Explicit forms of the equations are written down for two models. One of the models is numerically integrated to
display the difference between the isotropic and the anisotropic models for difFerent degrees of anisotropy.

I. INTRODUCTION

fn a recent paper' (hereafter referred to as HJR)
a general method was developed by means of which
one can construct different families of radiating
fluid spheres from the exact static solution of the
Einstein equations for a spherically symmetric
distribution of matter. It is the purpose of this
paper to extend the procedure mentioned above to
the case of anisotropic matter.

Anisotropy could be introdu'ced by the existence
of a solid core, by the presence of a type-P su-
perfluid, or by other physical. phenomena. In this
paper we do not discuss the mechanisms for in-
ducing anisotropy. Rather we concentrate on the
following two questions:

(a) What is the extent to which isotropic models
differ from anisotropic ones?

(b) What is the evolution of the anisotropy in the
process of contraction (or expansion) and radia-
tion?

We recall that anisotropic matter has already
been considered, ' ~ and it has been shown that
some properties of anisotropic spheres may differ
drastically from the properties of isotropic
spheres. For example, the maximal red-shift at
the surface may be larger than the value of the
corresponding isotropic case, the stability under
adiabatic contractions depend on the degree and
the kind of anisotropy, etc.

This paper is organized as follows: In Sec. II
we include the field equations, the general condi-
tions, as well as the conventions used.

In Sec. III we describe the method to obtain the
models following closely the program sketched in
HJR. The surface equations and the equation of
state for the tangential pressure are discussed in
Sec. IV. Two examples are worked out explicitly
in Secs. V and VI. Finally, the results are dis-
cussed in the last section. Some details of inter-

mediate calculations are included in Appendices
A and B.
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where P- 0 as r- ~. Both P and V are functions
of I and x. Here e=-x' is the timelike coordinate,
r =- x' is a null coordinate, and 8, P -=x, x' are the
usual angle coordinates. In these coordinates the
components of the energy-momentum tensor are
distinguished by a bar and differentiation with re-
spect to I and x denoted by suffixes 0 and 1, re-.
spectively.

Thus the Einstein equations are

-87t = — ' ——(e —V +2p V)00 y2 ~3 j.

8&T„==, (e-se V, +2P, V), - (2)

-8w T„= 4P,/r, -
-8mT~~ = -87t T~~

= -e 'e(2P„—', r '[rV»-2P, V+2r(P»V+P, V, )P .

Following Bondi, local Minkowski coordinates
(t, x,y, e) are introduced by

II. THE FIELD EQUATIONS AND CONVENTIONS

As in HJR, our starting point is Bondi's ap-
proach to studying the evolution of gravitating
spheres, ' the only difference is that we shall con-
sider anisotropic matter instead of perfect fluids.

Thus, let us consider a nonstatic distribution of
matter which is spherically symmetric: In radia-
tion coordinates' the metric takes the form
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dt = eP[(V/r)'~ du+ (r/V)'~'dr],
(5)

dx= e'(r/V)'"dr, dy =rd8, dz =r sin8dy .
with the Schwarzschild mass.

Inside the matter, the function m(u) is general-
ized to m(u, r) by putting everywhere

Denoting the Minkowski components of the ener-
gy-momentum tensor by a caret,

V= e"[r —2m(u, r)] . (i2)

00 00

Tpg (Tpp + 2 py)e

Substituting (i2) into (I)-(4) and using (6)-(9),
one obtains

p+ P~
+E =—e T00

ll y

T2 Ts ——T3 T2 '

Next we assume that for an observer moving re-
lative to these coordinates with velocity ~ in the
radial direction, the space contains (a) anisotropic
matter of density p, radial pressure P, and tangen-
tial pressure P~, (b) isotropic radiation of energy
density S&, and (c) unpolarized radiation of energy
density e traveling in the radial direction.

For this moving observer, the covariant energy
tensor is

p —P~ 2q nz,—e T
1 + 477'Y

1 +4L) J 277

P, = —T

Pe ' 1 2m, P,

(i4)

(i5)

p+3o +f

P+o+e 0

P, +o
+ SPi(I —2m') —my'

8m~
(i6)

Now, unlike the isotropic case (P, —= P), it is not
sufficient to give P(u, r) and m(u, r) to calculate
~, P, P„p, ande.

Indeed, an equation of state relating the tangen-
tial pressure with the other dynamical quantities
should be given. We shall discuss this point with
more detail in Sec. IV.

The choice of functions P(u, r) and m(u, r) will be
restricted by the conditions p o 0, -1 & & 1, m
& —,'z, P, & 0 and as a boundary condition at the
outer surface [say r=a(u)] of matter we have P=O.

Two remarks are in order at this point.
(a) If one allows discontinuities of the radiation

flux across the surface, then P ~„, is not neces-
sarily zero.

(b) In order to consider models which could be
of physical interest we do not impose regularity
conditions such as P, =O(r), m=O(r') at r=O.
Also, we observe that negative pressures could
appear at some stages of the evolution [even in the
case of a perfect fluid (P= P,)], so we do no—t re-
quire P ~ 0.

Finally, since P=O for x&a, and P shouM be a
continuous function across r= a(u) we impose P =0
at r= a(u) —0. The same is not true for m, since
there may be a discontinuity of density, so rn, 40
at r=a(u) —0.

The next section is devoted to presenting a gen-
eral procedure to construct models satisfying the
condition just outlined.

P, +b

A Lorentz transformation readily shows that

28 V p+P~
(6)

T„=e" ( p —P(u),1+(o
1 —Q)T =e'— (p+P),l l 1/r 1

(6)

(9)

where

p= p+3a, P=P+0,
~1 +Q)

+
1 —m

dr V
du t' 1 —Q)

(io)

Outside the matter, Eqs. (I)-(9) show that
IAAF

P=0, V=r —2m(u), e =—,', , (ll)
4m~jr —2m' '

where m is a function of integration depending on
u. This function is the same as the "mass aspect"
defined in Ref. 6. In the static case it coincides

Note also that from (5) the velocity of matter in the
radiative coordinate is given by
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III. THE MODELS

Let us start by noting that because of (14) and

(16)

m = 4m. &,2 p —PQ)

0 ~ +CO
(»)

"(+ )d.J' —2' 1 + (d
(is)

Next, let us define the two auxiliary functions:

p —(dP
p=i+~ '

P=- P —cop
1 +(d

(2o)

It can be seen at once that p = p and P =P at y

=0 because ~ = 0 at x =0. Also in the static case
P=P, p=p. Finally, note that because of (2) and

(2o)

Thus, one has three differential equations for five
unknown functions of u, which are the three func-
tions appearing in the definition of P and m, E,
and the tangential pressure evaluated at z=a.

(5) Given one of the functions, and specifying the
equation of state relating the tangential pressure
with the other dynamical variables, the system
may be integrated for any particular initial data.

(6) Feeding back the result of integration in the
expressions for Js and m, these two functions are
completely determined.

(7) Using (13)-(16)and the equation of state for
the tangential pressure, p, P„P, ~, and z may
be found.

In the above we have outlined the general pro-
gram for obtaining models. In the next section
we shall investigate in detail the differential equa-
tions mentioned in point (4) and the equation of
state for the tangential pressure.

'ps = 477'v p &',
0

(»)
r

p= (p+P)dr. (is )
a

Thus m and p are expressed in terms of p and P
in the nonstatic case in the same way they are in
terms of p and P in the static case. These con-
siderations, which are the same as for the perfect-
fluid case, suggest the following procedures to ob-
tain models of radiating contracting spheres:

(1) Take a static interior solution of the Einstein
equations for anisotropic matter with spherical
symmetry and with given

p„=p(r), P„=P(r) .

(2) Assume that the r dependence of P and p is
the same as of P, and p „but being careful with
the boundary condition, which now reads, because
of (2O),

Pa = —(dapa ~

From now on the suffix p indicates that the quantity
is evaluated at the surface.

(3) With the r dependence of p and P and using
(17') and (18') one gets m and P up to three func-
tions of u, which will be specified below.

(4) For these three functions one has two differ-
ential equations, one of which is (10) evaluated at
r=g and the other is

[T;.„f.=o.

m
Z(u) -=(4vr'e].=..0 =

(x —2m)~r a+0

Another u-dependent equation can be obtained eval-
uating (11) at r =a+ 0. Thus,

IV. THE EQUATIONS AT THE SURFACE
AND THE EQUATION OF STATE

A. The equation of state

The chief question when introducing anisotropy is
how to chose the equation of state relating the tan-
gential pressure with the other dynamical varia-
bles. The ideal approach would be to infer such
an equation on physical grounds; unfortunately this
is an extremely difficult task. So we shall follow
the procedure introduced in Ref. 4. Namely, for
the static case the following equation of state is
proposed (for mathematical simplicity):

[m(r)+4wr'Pj
(21)

where C is a constant measuring the anisotropy.
Now, we shall generalize Eq (2) for the radiating
case as follows:

(4~rP +m).C(P+ p)
r —2m

(21')

Another possible gneralization could be

P —P = C (4&r'P+ m)
(P+ p)

(r-2m

However, it can be shown that such a possibility
is incompatible with the boundary condition P, =O.

B. The equations at the surface

Two of the equations at the surface are the same
as in the isotropic case (actually they are the same
for any model with spherically symmetric distri-
bution of matter). Thus from (10) and (11) we get
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Equation (22) can be written as

A=F(n 1)-. (26}

ci = (I —2m/a) ' with a -=—, (22)
dQ

where m =-m, is the total mass. Scaling the radius
g, the total mass m, and the timel. ike coordinate
u by the initial mass m(u= 0) —= m(0),

A =- a/m (0), M =—m/m (0), u/m (0) u, (23)
and defining

F =—1 —2M/A, (24)

(26)
1 —(d ff

M =-FE .
Using (24), (26), and (27),

F 2E+ (1 —F)(Q —1)
A

(2'I)

(28)

The third equation at the surface will be obtained
from the conservation equation T, ,=O, evaluated
at the surface.

After a lengthy and tedious calculation we get

The second equation relates the total mass-loss
rate with the energy fl.ux through the surface. This
can be obtained by evaluating Eq. (11) for r=a+0
and takes the form

F fl p, 0 RF, -, , 4vup, h h(1 —F) (1 +F) gFa + (29)

with

h(&+ p) - m
R —= —+ 4gyP+—

(1 2m/-r)

h, =1 —2C.

If the effective density p is separable, i.e. , p =f(u)g(r), then it can be shown (see Ref. 1) that Eq. (29)
becomes

0
F—+ (1 —F) =G(F, Q, A—, h) (30)

with

G(F, n, A, h)
m(O)

+ (F -1)(n- I) 4vap. (2+h) - P'+h(u)F
Q

h(1 —F) (1+F) QF-+ - pi (31)

where

k(a) =—ln — dr ~'g(r)/g(a)d 1
dO 6 0

E 2E
(32)

C. Bouncing at the surface

As in the isotropic case it is possible to define
a, criterion to predict the bounce at the surface
without integrating the equations at the surface.
With this aim observe that the occurrence of a
bounce is related to the occurrence of a minimum
of the object's radius A. during the evolution.

According to Eq. (26), this requires, as expec-
ted, 0=1, and we have

A. =I'Q

which together with Eqs. (28) and (30) gives

All quantities are to be evaluated at the extremal
point. It is obvious from (32) that a necessary
condition for a bounce to occur is G & 0, more
specifically, a sufficient condition is

2E
G&—. (33)

Observe also that G & 0 is equivalent to -R & 0.
The difference between the isotropic and aniso-
tropic cases depends on the presence of h, in the
expression for G.

In the following sections we shall exhibit two
models. The first is a nonstatic radiating gener-
alization of the Schwarzschild anisotropic model. '
In this model R =0 so that the bouncing of the sur-
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face is impossible. In the second model (a non-
static radiating generalization of the anisotropic
Tolman IV solution') R is not identically zero al-
lowing the occurrence of bounce.

tropic SchwarzschiM solution.
With this aim, and following the prescription of

Sec. III, we take

V. THE ANISOTROPIC
SCH%ARZSCHILD- TYPE MODEL

I et us now illustrate the method presented above
with a very simple model inspired by the aniso-

f(M), r & a(u)R=
0, r& a(a)

(34)

(1 —,'vfr 2)""-(I—3~ )
- (' —".)(' ——'.mfa')" ']

[3(1—&u, )(1 ——,
' mfa')" ' —(1 ——,

' vfr')" '(1 —3+,)]

(36)

;vfr', —r~ a(u)

-', mfa', r &a.

And from (31) and the definition of R,
R=—0,

1 —F'0 —1
G = — [2 (2 + It)0 —3h] .

2AQ

(3V)

Using (17') and (18'),

2h
n ( —

~~)1&2(1 —8v r')" y' 2
+co, , r&a

0, r&a

Appendix A. ) Figures 2 and 3 show the profile of
the density for different values of h (or C) and for
r/a=1, —,'.

Of special interest in the context of this work
is Fig. 4 which shows the profile of the ratio g
=(P, —P)/P for r/a= —,'. It is interesting to ob-
serve that during the maximum intensity of the
pulse of radiation, g oscillates rapidly through
zero, and the material is subject to large stress-
es. However, at the surface the tangential pres-
sure increases during that time as shown in Fig.
5. Figure 6 shows the pulse of radiation.

Thus, the equations at the surface for this model
are

A=F(O —1),
F 2Z+ (I - F)(a - I)

A

500000

4.86370-

—+ (1 —F) =G . —0
0

We still need to specify one function of I and the
initial data. Following HSH we chose IiE to be a
Gaussian, so that the total radiated mass is one-
tenth of the initial mass. As for the initial data
the following cases wil1 be described:

(a) ~1,=5, III„,=I, FI„,=0.6,
(b) wl„, =5, nl„, =o 33, Fl„,=. o.6,
(c) &I„,=3.3, Iil„,=l, Fl„,=0.4.

Figure 1 shows the evolution of the radius A for
the three different values of k. In all cases (inclu-
ding the isotropic case) the final situation is a
constant density sphere, the final density depen-
ding on h. Once equations at the surface are in-
tegrated, we are able to determine the functions

R, c, P, P„and w for any piece of the material,
following the algorithm indicated in Sec. III.
(Some details of the calculations are included in

472740-

459IIO-

4.45480—

4.3 I 850—
I I I I I I I

2$ 7.5 l2.5 I78
FIG. 1. The radius A as a function of the timelike

coordinate for the initial valueA[„. 0= 5, i1(„o——1,
0= o.s, and different values of h. The solid line

represents h= 0.33, the dashed line 4=1, and the dot-
dashed line jg = 1.33.
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33.100- 1.0000-

28.280 0.6480—

23.460 0.2959—

18.640 -00561-

13.820
Jl

~J

—0.4082—

II

9.000-
2.5 7.5 12.5

f the timelike coordi-2{0) as a function o
=0.33, zL„,'' ldataAu o=5, u o= . , u

f h Th ol' d=0.5, and different values o h.
3 lI d hed line h= l, and t eline represents h = 0.33,3 te ase

dot-dashed line h = 1.33.

I

125
I

7.5
I I I

—0.7602—
17.5 22.52.5

P as a function of the timeli ke coordi-
for r a = 0.5, and different values o

d the dashed line h=1.33.l' represents h = 0.33 an e aone = e a
QL„O——1, AL„O——3.3, E „ II

——

I I II

3.35700-

3.100-

2.34700—

2.760—

I.33700—

2.420—

0.32700-

2.080

—0.68300

1.740

I

75
I

225
1.400-

125 17.52.5

2 but for r/a = 1.FIG. 3. Same as Fag. 2,

—I.69300—
2.5 7.5 12.5

as a function of the tim elike co-FIG. 3. PI =m(0)PI as a n-
o ' initial data PL „o——0.6, o--/-. Th ld=1 for differenrent values of h and r a =

d hed line h = 1.33.represen ts h= 0.33 and the das e i
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VI. ANISOTROPIC TOLMAN VI-TYPE MODEL

As a second example we shall give all the form-
ulas for a model obtained from the anisotropic-
static Tolman VI solution. 4

Following the scheme of Sec. III, let us take

.2274I2-

.IS I950-

sg(u)P= (38)

g(N) f n-(4 sa-)' 'z~"
h~2 1-~(4 —sh)'~'~&4'"""- (3S)

.I 56447—

with

K=8 —sh+4(4 —sh)'i

I= 8 —3h —4(4 —sh)' ~~,

~ 090965-

I+ 3h(o,
(4-sh)'i'(A+ Sa ) '-'"""

.0454S2-

Substituting (38) and (39) into (1V') and (18'),

m =12ngr, (4O)

.00000C,
2.5 75 l2.5 l75 22.5

FIG. 6. E as a function of the timelike coordinate.

8' [1 ~ (4 sh)1/2/(4-3))) ~ tm/y)2-(4-3)))

(1 —24vgp [1—c((4 —sh)' ~'g" "' p(a)]

Next, using (31) and the definition of R one gets

B=, 13(1)—1)F()-—[1 + (133))13)][1411+3(Q—))3]44()—F)3I,
(1 —F)

(1 -F) (1 —F) 2 h(1 —F) (1+8) 2QF '

(4s)

The surface equations may now be integrated as
in the preceding example, in order to obtain p, I',
P„and (. (some intermediate calculations are
given in Appendix B). As we have indicated it is
possible that in this case the sphere will bounce.

VII. CONCLUSIONS

%e have seen so far that the method described in
HJR for isotropic matter is very easily extended
to the anisotropic matter.

The main results to appear are the peculair evo-
lution of the anisotropy during tPe process of con-
traction and radiation (Figs. 2-4) and the influence
of the anisotropy on the possibility of the bounce at
the surface, as indicated in Eq. (33). Figures 1—
6 for the Schwarzschild model show that the main
features of collapse are qualitatively similar for
the isotropic and for the anisotropic cases. 'The

most obvious difference is the wild swings in the
ratio (P, —P)/P when the pulse of radiation passes

I

by.
This might have important consequences for an

actual collapsing object; it quite possibly will lead
to instability in the purely radial nature and to the
onset of convective-type instabilities. Obviously
a study of the stability of a collapsing spherically
symmetric, nonisotropic object would be worth-
while.

It is a very difficult task to evaluate the extent
to which the results exhibited here are model in-
dependent. However, two remarks may be made
at this point.

(a) Since anisotropic and isotropic models are
continuously connected through the parameter C
(or h) it seems plausible to think that, at least, for
small anisotropies the conclusions remain valid.

(b) The identification of the r dependence of P
and p with the corresponding dependence of the
static case may be expected to work for small
velocities, since it is true in the limit ~ —0.
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Obviously, it would be of great interest to see
the effect on collapse of anisotropy based on a phy-
sically derived and realistic relationship between
the tangential pressure and the radial pressure.
Ideally, a nonconstant effective dens itylike model
should be examined to permit the possibility of a
bounce, and the stability of the collapsing object
with respect to nonradial motions should be ex-
amined.
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APPENMX A

P„m'(O) = SF + rn + VA,

h(2 —E)(3 —2Q)S=— 1+
4gy'4/Z +/2&+2 ] 4y'gy&

SE]3/2(l E) 3
- F 2/2r

1+4Z&/2+&g y&g 2gy& ] Z g

3F" '(1 —F) h(Z —F)(3 —2Q) r
2g2gy'AZ (h/2)+2 4y'gy'h

sh(1 F)2F]3-2 3 1 &

4nr'"A'z"' 2n (F/z)" /'

sz] 1

(A4)

(A6)

(A6)

Once the surface equations are integrated for
the anisotropic Schwarzschild-type case, it is
useful to introduce the following nondimensional
auxiliary quantities:

Feeding back (Al)-(A6) into (16) gives P„ then
using (21') we get P The o. ther field equations
give

1 "3 g h/2 3 &/h
y e28 +0 ——

Q„2 Z 2

2
Z-=1 —(1 —F)—,a'

It is now easy to obtain

3(l —E) E"/'

4A Q y'1]Z (]] /2&h1 a
3 (1 —E)F"/'

]s„m (O)' =

(Al)

(A2)

S(1 —E)(F/Z)»2
&"n[3(1 —F) + 8A Pl '

p=
8 ~, (1+(d)+Ho,s(1 - E)

2(1 —F)i.
8pZ 7'"A A a

3 (1 —F) p+ P&d'

8'' (1 —(d') '
'

3ggP/2
y]3Z (]3/2)+2 (1 —Z)

2Q

—Z'"(h+2))'" },
(As)

s(1-F)(i+~)
P —

8 ~2 +++

where

P=m'(O)P, p=pm'(O), Z=~m'(O).

APPENDIX 8

In the anisotropic Tolman VI case we arrive at the following expressions:

(1-E)
m,=, m„=O,

2

(1 —a)) (&))+3())—()h]())3+3())—))hl(a/a)"'"'
SEh

"
[an+ 3 (n —1)h] —[In+ 3(n —1)h] a

()m+3()) 1)h]- ()))+3())- ()h—](a/a)" *"""' a * "'"""}""
[Kn+ 3(n —l)hi[In + 3 (n —1)hl a

() —3') ()1))43())—1)h](2 —(4 —33)"'I—(2+(4 —32)' ']()))43())—1)h](a/a)" '"" '}
SF(r/a)ah [Kn + 3(n —1)hl —[In + 3 (n —1)hl(r/a)'
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