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Fluid with heat flux in a conformally flat space-time
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This paper presents a solution of Einstein's equation in a conformally flat and spherically symmetric space-time
with perfect fluid and heat flux as sources when vorticity and shear vanish. With a certain choice of parameters the
solution may represent an earlier stage of the Robertson-Walker model. Though acceleration remains, a singularity
cannot be avoided in some cases. The horizon of the model cannot be definitely known, but for a particular case it
can be assigned. Other behaviors of the solution are similar to those of the Robertson-Walker metric.

1. INTRODUCTION

In the literature there exists a large number of
studies of the solutions of Einstein's equation with
perfect-fluid source assuming a conformally flat
space-time. In such a situation one has either
spatial constancy of energy density (p) and vanish-
ing of shear (o„z) and vorticity ((P) of the fluid or
a vanishing of the sum of pressure (p) and density.
The second case reduces to the de Sitter universe
with velocity vector undetermined or an altogether
empty Minkowski space. In the first case, if ex-
pansion (8) vanishes the Schwarzschild interior
metric follows. ' If ek 0, either we have the iso-
tropic cosmological solution or a family of non-
homogeneous cosmological solutions. "' In this
paper we intend to study a more general situation,
where the fluid is not in thermal equilibrium so
that there is a heat flux in addition to perfect fluid.

I

The assumption of conformally flat space-time
now no longer leads vorticity and shear to vanish.
However, for mathematical simplicity we assume
that they vanish and we assume the space-time to
be spherically symmetric, and thereby arrive at a
class of solutions that may represent some early
stages of the previously discussed models. As ex-
pected, when the fluid thermalizes our solution
goes over to all the above solutions.

II. DERIVATION OF THE SOLUTION

We now take the energy-momentum tensor as

T„„=(p+ p)u„u„-pg„„+q„u„+q„u„,
where uo and q are the velocity and the heat-flux
vectors withu u =1 and q u =O. We recall a
few general equations from Ellis4:

h~h~E ~.„—g" ~"&~o&H~+ 3HooP =3h" p o ——2'v~q + —2'o~~q -3eq",
h&hf(o8) h&h~u'(&, 6& u&u„+—(d&(d„+ o' o~+ 38o „+h „( 3& —3-o2+ su™~ )+E „=0

h" ((o ~,~+o ~,~+ —', 8' )+((o"+o")u =q",

+a() u(a~()) huh))(~(g + o(g )np)(g u))

(2)

(3)

(4)

(5)

Here E z and H z are electric and magnetic com-
ponents derived from the Weyl tensor C z„„. In
conformally flat space-time C z„„=0, E ~=H ~
= 0 (and conversely if E

&
= H z

= 0, the space-time
is conformally flat) and with vanishing of shear
and vorticity, Eq. (5) is trivially satisfied and
Eqs. (2), (3), and (4) reduce to

I

u =g» ~'5, , then from Eq. (9) p -38' is a, func-
tion of t alone.

Again the three-space Ricci tensor B*z may be
written for this case'

B*,„=u(, „)+u,u„+3h,„(2p ——',8' u, ). (10)-
Using Eq. (7) we have in our coordinate system

h" p, =eq",

38 oh -q
From Eqs. (6) and (8)

h" (p--'8') =o

(6)

(7)

(8)

(9)

Hence the three-space is a space of constant cur-
vature. So the line element can be written as
(cf. E isenhart')

2

ds'=goodt' —(,, ), (dx'+ dy'+ dz') . (12)1+k~2''4 '
If we now use a comoving coordinate system, i.e. , Here B is a function of t alone and k=0, +1, or
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-1 for a Euclidean space, a spherical space, or a
pseudospherical space. Using polar coordinates
and assuming gpp to be a function of r and t we can
solve Einstein's equation using Dingle's formula'
for T~ = T2 and find

Walker metric and in that case acceleration van-
ishes. For R=0, i.e. , g=0, the Schwarzschild
interior metric follows with A and B as constants. '
For k= 0 the solution reduces to the Friedmann
universe having no heat flux and no acceleration.

B
gPP 1+~2 4 (13) III. DISCUSSION OF THE RESULT

where A and B are functions of t alone. Hence
the metric (12) is completely determined as

, , —;(dr'+r'd8'+r'sin'8dy').
1+kr'/4 ' (14)

R 2(
I' „.+' „— I,

"+1+k,./4)l

k ak 1 kr'/4 -a
I y kr2/4 1+kr2/4

~ ~

—2 —+ — A+

a a
ia j ~( 1+kr'/4 1+ kr'/4

BkR~ B
8' 1+ kr'/4

(15)

(16)

(17)

or

BkRx ( B4} }4 (}y44 /4}},"+}+44' /4)

The expansion and acceleration are
-a

a ~g 1+kr'/4 (18)

1 ( B 'Bky
2 i 1+ kr'/4 8' (19)

From (15) and (16) we have

R B
P+ 3P = -6R A+1, k,. 4

6R( B ( B'I, k ./4 I

Bk 1 —kr'/4 & B
a, ' 1+ kr'/4 1+ kr'/4

If the heat flux is absent, either B= 0 or R = 0.
For B= 0, with a transformation of t such that
A= 1, the solution reduces to the Robertson-

(20)

'The nonvanishing components of T„"being T,'= T',
T 3

—P and T ', = p and 7p
= q'u„one can have the

only nonvanishing radial component of q" is q'. So
we can calculate density, pressure, and heat flux
as

Like the Robertson-Walker metric, the space
sections orthogonal. to the fluid velocity are flat,
spherical, or hyperbolic accordingly as k= 0, 1,
or -1. The t = constant hypersurfaces of the
space-time admit the same six-parameter group
of motions as such surfaces do in Robertson-
Walker space-time. The entire space-time admits
the group of rotations. However, the space-time
as a whole is not homogeneous. One may talk of
volume and topology of the space sections in much
the same way as in the case of homogeneous
space.

The solution (14) for 444: 0 may be transformed
(by a transformation of t such that A = 1) as

dS = 1+ 2 dt

2

,/4, (dr'+ r'd8'+ r~ sin~8dg') .

'2 dt
1+ kr'/4+ B, R

j.

(22)

The solution has a singularity at R = 0, the pres-
sure and density being infinite. To see whether
the singular state is actually attained at a finite
time, we examine Eq. (20). For p+ 3P) 0 and

R = 0, R is negative for B positive with k = 1 and
for B negative with k = —1 and the singularity
state is attained. Again for B negative there is a
singularity for 1+B/(1+kr'/4)=0. It is to be
noted that the R = 0 singularity is a collapse of the
entire space and not a localized singularity at dif-
ferent epochs as in the case for B negative. 'The

singularity can be avoided altogether for B positive
with k= —1.

'The functions B and R remain arbitrary, the
only constraints on them that can be reasonably
set are the physical requirements p) 0, p) 0, and
p) P. However, if B is a decreasing function with

increasing', then Eels. (17a) and (19) suggest
that heat flux and acceleration vanish more rapidly
than pressure and density. So the solution (21)
with such B may be treated as an early stage of
the Robertson-Walker universe.

As g«contains r and t, the horizon of the metric
(21) cannot be understood clearly. If, however,
B is constant, we can consider light rays to be
traveling radially leaving r, at t, and reaching r,
at t„ then
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For R = 0 singularity models, 8- 0 at finite past,
we consider that instant to be t=0. Then t 0,
R -t" and from (20) for p+ 3p& 0, R/R & 0 and
hence n(n - 1)& 0, i.e. , 0 & n & 1. With this restric-
tion on n, integral f0 8 'dt converges and one can
have a particle horizon. For models where the
B= 0 singularity is not attained, there exists a
minimum for 8 at a finite time. We assume that
time to be t=0. Then we may consider as t 0,
8-t". For p+ 3P& 0, n should be positive, other-
wise p+ 3p will diverge For. n& 0, f,R 'dt con-

verges and there is a particle horizon.
Note added in Proof. The result (13) is obtained

from (12) using Dingle's formula for 7,' = T,'= 7', = 0
and so the assumption of spherical symmetry need
not be required.
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