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Absence of stationary solutions to Einstein-Yang-Mills equations

R. Weder
Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas,

Universidad Xacional Autonoma de Mexico, Apartado Postal 20-726, Mexico 20, D.F.
(Received 31 October 1980; revised manuscript received 24 November 1981)

We prove the absence of nonsingular, localized, stationary solutions of the coupled
Einstein-Yang-Mills equations, with compact gauge group.

INTRODUCTION

Since the early days of general relativity many
investigations have been dedicated to the study of
the possibility of the existence of nonsingular, lo-
calized solutions to the Einstein equations. The
importance of this question for the self-consistence
of general relativity was first discovered by Hil-
bert, ' Levi-Civita, and G. Darmois. Serini and
Racine proved that every static, localized, non-

singular solution is locally Minkowski space-time.
This research culminated in the work by Lichnero-
wicz, Einstein, and Einstein and Pauli, where
it was proven that every nonsingular, localized, sta-
tionary solution to the Einstein equations is Locally

Minkowski space-time. It is also known that if
one considers general nonsingular, localized solu-

tions this statement is not true.
The same question has been investigated by

Thiry' in the case of Einstein-Maxwell equations.
He proved that every stationary, localized, non-

singular solution to these equations is trivial. Of
course if the assumption of localization is removed
there are nonsingular solutions, namely static
Wheeler geons. "

It was not many years after Yang and Mills' in-

troduced non-Abelian gauge fields that similar glo-
bal questions were investigated for Yang-Mills
equations. The first result is due to Deser' and
Coleman, ' who demonstrated the absence of static
finite-energy solutions going to zero fast enough at
spatial infinity. Then Coleman' demonstrated the
absence of finite-energy solutions going sufficiently
fast to zero at infinity uniformly in time. Finally
Weder' proved that the local energies of every
finite-energy solution to pure Yang-Mills equations
decay in time, i.e, , all the energy is radiated out to
spatial infinity. This result excludes the possibility
of the existence of any classical lump for pure
Yang-Mills equations, and is the analog of the
Einstein-Lichnerowicz-Pauli- Thiry theorems in the

gravitational and Abelian cases.
The natural continuation of this research is to

consider both gravitation and non-Abelian gauge
fields, that is to say to investigate classical lumps
in the case of Einstein-Yang-Mills (EYM) equa-
tions. In what follows we give an elementary
proof of the absence of localized nonsingular sta-
tionary solutions with space-oriented space sec-
tions. Recently Deser' conjectured this result in
the particular case of static solutions. Our elemen-

tary proof is different from the ones suggested in
Ref. 18, and from Thiry's proof. '

ABSENCE OF SOLUTIONS

Let V4 denote a four-dimensional Riemannian
manifold of class C with a metric of normal hy-
perbolic type. Consider a principal fiber bundle
with base manifold V4, and with gauge group a
compact Lie group G. Denote by 3 a Lie-algebra-
valued connection one-form, and let I' be the cur-
vature two-form. In a local coordinate system we
have

(2.1)

The EYM equations are

Gpv=Tpv ~

DqF" =(VqF" +[Aq, F" ])=0, -

(2.3)

(2.4)

where Vz stands for the covariant derivative on V4,
and [,] denotes the Lie brackets on the Lie algebra
of G.

Let us consider now a stationary space-time V4

where g' ' are the structure constants of the Lie
algebra of G, and p, v=0, 1,2,3 are space-time in-
dices. The energy-momentum tensor of the Yang-
Mills fields is given by

(2.2)
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(Ref. 19). These spaces are homeomorphic to the
product (in a topological sense) R && V3, where V3

is a three-dimensional manifold (the space mani-
fold). Moreover there exist systems of adapted lo-
cal coordinates such that the potentials g& are in-

dependent of the time variable xp, and where x; is

any system of local coordinates of V3. Moreover
in an adapted system q =gpp &0. The manifold

xo ——constant (denoted 8'3) of an adapted system
of coordinates will be called the space sections of
the system. The 8'3 are clearly homeomorphic to
V3. From now on we will always work in an

adapted system of local coordinates.
As usual we consider in 8'3 the metric given by

where

n =(goo)'"

goi' goJq;=,. g+—g,„g J(a, , —a,
Bx 2

and q'=g'JqJ. Then

(2.8)

I gRodV3 ———I V;q'dV3 ——0 . (2.9)

R„„=T„
Then we have from (2.9)

(2.10)

Since the trace of T„, is zero, (2.3) is equivalent to

3—
glJ glJ

goigoj

goo
(2.5)

gT V3 —— gR V3 ——0 .

From (2.2) we obtain

(2.11)

Since the metric is normally hyperbolic g,J defines

a negative-definite metric. 8'3 and V3 are
Riemannian manifolds with the metric give~ by
(2.5}. We denote by 7; the associated covariant
derivative. We will always assume that V3 and
8 3 are complete mani folds.

DEFINITION I

We say that the space sections 8'3 are space
oriented if the tangent plane T at each point of
8 3 is space oriented, that is to say, if for every
x E 8'3 and every tangent vector dx'/dp we have

dx' dxJ
glJ

p p
(2.6)

gRp ———V;q',0 3 (2.7)

The assumption that the space sections are space
oriented means that the metric of "three-dimen-
sional space" is negative definite. This is true in
particular if V4 is static, i.e., if the space is station-
ary and moreover gpi ——0, because in this case it
follows from (2.5) that g;J =g~j~ and the later metric
is negative definite.

By a trivial solution to the EYM equations we
mean a solution with I'& ——0, and V4 locally Min-
kowski space-time.

We first consider the case where the space sec-
tions are compact.

Theorem I. The only nonsingularly, stationary
solution to the EYM equations with compact,
space-oriented, space sections is the trivial one.

Proof. We denote by R~, the Ricci tensor on
V4. It follows from a straightforward computation
that we omit that

——giJg Pg. P. +—g I .g JF

00 ij a a
g +0+0 (2.12)

Since the space sections are space orientated the
metric defined by g'J is negative definite, and

g &0. Then the first and last terms on the right
of (2.12) are non-negative. The second is obviously
non-negative. Hence we have Tp &0 with equality
if and only if I'& =0. But since g &0 it follows
from (2.11}that To =0, and then—F„',:0. We are-
now in the case of Einstein equations and it fol-
lows from the Lichnerowicz theorem that V4 is
locally Minkowski space-time. Q.E.D. Once this
result has been established, the extension to non-

compact space sections is easy. There are many
ways to define a localized solution. In general they
have a similar intuitive meaning, but many differ
from the technical point of view. Since we prefer
a precise concept of localization we will consider
solutions with space sections asymptotically Eu-
clidean in the sense of Lichnerowicz; we refer to
Ref. 19 for details. In particular this means that
for some R &0 and every x E 8'3, such that
r =d(a, x))R,

C C C
r2 r 2+5

(2.13)

where C,e are positive constants, a is a fixed, but
arbitrary, point of W3, and r =d (a,x) is the geo-
desic distance from a to x, and

ri„.=(+ 1,—1,—1,—1).
Theorem II. The only nonsingular stationary

solution to the EYM equations, with space-oriented
space sections, that is localized in the sense of
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= lim f qtds'=0.
g ~&g

(2.14)

As before, this implies F&„=0,and the result fol-
lows from the pure gravitational case. Q.E.D.
Clearly the conditions (2.13) are stronger than
what is really needed, however we have chosen
simplicity rather than generality.

Finally we consider in the case of static V4 a
theorem where we have a different type of assump-
tion in the behavior of the metric at spatial infini-
ty. We recall' that V3 is said to have a domain at
infinity if for some fixed a E Vi, and every r & 0
there exists x E Vs such that d (a,x) & r.

Theorem IIL The only nonsingular static solu-
tion to EYM equations with space manifold V3

having a domain at infinity and such that gpp
tends to 1 uniformly by values larger than or equal
to 1 in the domain at infinity is the trivial solution.

Proof. In an orthonormal Cartan moving frame
we have'

Lichnerowicz is the trivial solution.
Proof. We follow the proof of Theorem I:

f riTrtd V3 ——f rlR od V3 ———lim f V; q'd Vs

Then from (2.3)

(2.16)

ACKNOWLEDGMENT

—( —b, ri)=Roo=Too= Too,
1 3 1

since Tpp & 0,—5 g & 0, and since g tends to 1 uni-
formly by values larger than or equal to 1, it fol-
lows from the maximum principle that g—= 1. But
then from (2.16) it follows that Trl=0, and then

F& =0. Hence V4 is locally Minkowski space-
time by the Racine theorem. Q.E.D. Notice that
in our proof we only used the facts that T&~——0,
Tp & 0, in Theorem I, and II, and Tpp &0, in
Theorem III. Then our results hold in the more
general case where we consider Einstein equation
with any energy-momentum tensor having these
properties.

Our theorems do not cover the case where gpp
tends to 1 by values smaller than or equal to 1, at
slower rate than 1/r'+'. An interesting open ques-
tion is to extend our results to that case.

Rpo= —( —b, si) .
7l
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