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A phenomenological model of hadron-nucleus interactions is proposed which includes
particle contributions from three sources: target-nucleon fragmentation, projectile frag-
mentation, and central-region “pionization.” The model is consistent with the energy-
independent features of angular distributions and average charged-particle multiplicities.
R=(ng;)/{ny) (where n, is the minimum-ionizing multiplicity on nuclei and ny is the
multiplicity at equal energy on hydrogen) is energy dependent and asymptotically propor-
tional to ¥, the average number of collisions in the target nucleus. We conclude that, in
p-p interactions, target and projectile fragmentation each account for 1.5 charged particles
independent of primary energy, so that the energy dependence of (ny) resides solely in

the central-region contribution.

INTRODUCTION

Recent analyses of hadron-nucleus interactions
have revealed new features inconsistent with
current models.! Andersson, Otterlund, and Sten-
lund? have shown that R =(n,)/{ny) (where n,
is the minimum-ionizing multiplicity on nuclei and
ny is the multiplicity at equal energy on hydrogen)
is energy dependent and asymptotically essentially
proportional to ¥, the number of collisions in the
target nucleus. Our analysis of angular distribu-
tions shows that the quantity

M={(n)y—{(n),=1.74+0.06

is independent of energy, target nucleus, and pro-
jectile. In this relation (1), is the average pseu-
dorapidity of particles in excess of the hydrogen-
target pseudorapidity distribution, while {(7)y
represents the hydrogen-target case. Thus we see
that (1), grows as a function of energy at the
same rate as {7 )y, i.e., as 0.5 In E. These results
strongly suggest a model in which an energy-
dependent central-region contribution to the multi-
plicity eventually dominates energy-independent
contributions from target and projectile fragmenta-
tion.

THE MODEL

Our approach is a modification of the scheme
originally suggested by Gottfried.> Although our
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model is extremely simple and involves an exten-
sion of ideas regarding hadron-hadron multiparti-
cle production which have been widely discussed
for some time*, we know of no previous explicit
application of these ideas to hadron-nucleus in-
teractions. Figure 1 illustrates the main features of
the model. In Fig. 1(a), a single collision occurs
and the distributions for target fragmentation (n,),
projectile fragmentation (n,), and the central region
(n.) are indicated, drawn as rectangles for simplici-
ty. We assume that the fragmentation multiplici-
ties are energy independent and equal. Each subse-
quent collision reproduces the target and central
particle distributions, but the projectile contribu-
tion occurs only once, as shown in Fig. 1(b) in
which three collisions are considered. However,
techniques for measuring such interactions fail to
observe very-low-energy particles, so we have indi-
cated a group of € uncounted particles in Fig. 1(b).
These tracks may be distributed more widely over
the pseudorapidity range than is indicated in the
figure. We might expect € to depend on the exper-
imental technique used. As primary energy in-
creases, the central region becomes longer, and in-
creases slowly in height, but no other changes oc-
cur.

It is clear that the energy independence of 87 is
built into this model, and that asymptotically R is
proportional to ¥. We can now derive R as a func-
tion of ¥. In this derivation all quantities are aver-
age values. From Fig. 1(a),
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FIG. 1. Pseudorapidity distributions for the three-
component model.

ngy=n;+n.+n, . (1)
From Fig. 1(b), for ¥ collisions,
ng=v(n,+n,—€)+n,

=vny+(n, —vn,—ve) , (2)
so

R=V+[n,—Wn,+€)]1/ny . (3)

For proton collisions in emulsion, Andersson,
Otterlund, and Stenlund? find

R =(2.34+0.03)—4.12/ny . (4)

Comparing Eqgs. (3) and (4) suggests v=

2.34+0.03. This is in excellent agreement with the
values determined by Elias et al.,’ where v= 2.32
at 50 GeV and 2.39 at 200 GeV. Changes in ¥ due
to the rising cross section are ignored in Eq. (4)
and ¥ is treated as a constant. Andersson, Otter-
lund, and Stenlund? then estimated v= 2.47 for p-
emulsion collisions, and derived the following re-
sult:

R =0.124-0.90v+(1.53—2.29%) /ny . (5)

Consistent with Eqs. (3) and (4) and the data of
Ref. 5, we feel that v= 2.34 is a better choice than

v= 2.47. So we have modified Eq. (5) to account
for the different value of ¥. The result is

R=v+(1.53—-2.42%)/ny . (6)

Equation (6) with ¥= 2.34 is numerically identical
to Eq. (5) with ¥=2.47. Comparing this result to
Eq. (3) we find n,=1.53 and €=2.42—1.53=0.89.

At very low 7, our model does not reproduce the
data of Ref. 5. However the data of Florian et al.®
and Lee et al.” where observations were made in
nuclear emulsion, agree with the model in this re-
gion. The latter experiments should yield more ac-
curate data on particles emitted at large angles.

We have deliberately avoided giving any explicit
picture of the space-time development of the in-
teraction process. The most obvious interpretation
of Fig. 1 is that only the projectile interacts, but
does not itself fragment until after leaving the nu-
cleus. However any space-time scenario which
leads to Fig. 1 would be equally acceptable under
the model described here.

TESTING THE MODEL

Our model is based on the assumption that the
multiplicity ratio R is energy dependent, asymptot-
ically approaching a constant at high energy. This
view is supported by examination of the emulsion?
and neon-filled bubble-chamber results.®~!! How-
ever, Elias et al.,’ using the results of a counter
experiment, and defining the multiplicity ratio as
R, =(ng)/({nyg)—0.5), find R, energy indepen-
dent in the range 50—200 GeV.

The quark-parton model of Brodsky, Gunion,
and Kuhn (BGK)' is in good agreement with the
data of Ref. 5, and thus disagrees with Ref. 2 and
the picture proposed here.

The R values for the 7—-Ne data'® are shown in
Fig. 2, along with curves representing our model,
the BGK model, and the constant-R 4 hypothesis
of Ref. 5. In our model, € is treated as a free
parameter, and we find €=0.60 provides the best
fit to the bubble-chamber data. For the BGK
model, the fit is poor unless one includes the ef-

fects of €=0.5 undetected tracks per intranuclear
collision. In these model calculations, we have

used ¥ values from Ref. 5. Figure 2 shows that
the data demand stronger energy dependence than
the constant-R, curve provides.

A plot of {n,)vs(ny) for p-emulsion interac-
tions is shown in Fig. 3. The solid line, equivalent
to Eq. (4) above, represents the fit of Andersson
et al.? to a world collection of emulsion data in the
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FIG. 2. Multiplicity ratio R for m~-neon bubble-
chamber data. See text for explanation.

energy range 1 —400 GeV. This line, with slope
2.34, is also the prediction of our model, which
takes the work of Andersson et al. as its starting
point. The nonzero intercept makes R a function
of {(ny) and thus energy dependent. Also shown
in Fig. 3 are the emulsion data of Ref. 5 (where a
passive emulsion target was used in a counter ex-
periment). Taken alone, these two points are in ex-
cellent agreement with the slope of 1.87 predicted
by the BGK model.

CONCLUSIONS

We have described a simple phenomenological
model of hadron-nucleus multiparticle production
which is in excellent agreement with important
features of the emulsion and bubble-chamber data.
However, our model does not agree with some re-
sults from the recent comprehensive counter exper-
iment of Elias et al.

We of course expect the data to show small de-
viations from the predictions of this model. For
example, energy conservation requires that succes-
sive intranuclear interactions would slightly deplete
the extreme forward pseudorapidity region, an ef-
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FIG. 3. (n,) vs (ny) for p-emulsion data. Solid
line: Ref. 2 and this work; dashed line: Ref. 5 and Ref.
12.

fect which has been noted.'* However, this simple
model is surprisingly accurate, and is a good start-
ing point for more sophisticated and complete
models of hadron-nucleus collisions.
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