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Matrix elements of the exchange operator
for arbitrary-angular-momentum two-meson states
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A method allowing for the calculation of all matrix elements of the exchange operator
between two mesons is presented. A close formula for such matrix elements is also given,
together with graphical rules that allow easy numerical calculations.

I. INTRODUCTION

Recently, ' it has been shown that a proper calcu-
lation of meson masses must take into account the
effect of virtual channels into which a given meson
can eventually decay, and which, therefore, contri-
bute significantly to its mass. The spontaneous
creation of a quark-antiquark pair, with the quan-
tum numbers of the vacuum ( Po) is, together with
the Pauli principle, responsible for such decays, as
is depicted in Fig. 1.

Because quarks are fermions, any state made out
of two quarks and two antiquarks must be proper-
ly antisymmetrized. If we assume that the quarks
are labeled 1 and 3, and the antiquarks 2 and 4 (see
Fig. 1), the antisymmetrization procedure can be
written as an equation:

fg (13,24) =2Qt(12)t)'tn(34),

A =—(1—P' )(1 P), —

where Pt(1,2) and P&&(3,4) represent meson 1 and
meson 2, respectively, and gz represents the

q —q properly antisymmetrized wave function.
P', for instance, represents the exchange of quarks
1 and 3 according to Fig. 2. P does the same for
the antiquarks. One antisymmetrizes separately
for quarks and for the antiquarks, whence the
form of A, the total antisymmetrizer. X is a nor-
malizing constant.

It can be shown that A can be also written as

3 =(1—P' )(1+Pt)/N, (1.2)

where P, induces the exchange of the two mesons

Pt and Pt& as a whole. It is apparent, therefore,
that one only needs to be concerned with the calcu-
lation of the matrix elements for P', P, being
essentially 1 (boson statistics). The purpose of this
paper is to calculate such matrix elements.

We are interested in the quantities

M(l ),m t, lp, m 2,L &2,M~&,'13,m 3, lz, m 4,L34 M34)

= (Pt (l3, m 3 )Pn(14, mc )gt n(L34~M34)
I

P
I
A(l t,m i )Pn(12, m2 )gt, u(L ]2,M&2) ) . (1.3)

The mesons P are assumed to have arbitrary angu-
lar momentum. Pt, for instance, is defined above
to have angular momentum l &, with z projection
m't. The wave function g&» (gt tt) describes the re-
lative movement between P& and Pn (Pt and th&t),

I

and is. also assumed to have arbitrary angular
momentum. From what has been said, it is obvi-
ous that the above matrix elements are going to
"control" the relative strength of the coupling of a
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FIG. 1. 'I'0 mechanism to p~~m. FIG. 2. The effect of I' ' .
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given meson to the two-meson channels into which
it may decay. These quantities also play a role in
the meson-meson scattering reactions.

The rest of the paper is divided into two sec-
tions. In Sec. II, the general formalism is intro-
duced. Section III deals with the relevant calcula-
tions and results. In the Appendices, we derive
some formulas that play important roles in obtain-
ing the final results.

II. BARGMAN HILBERT SPACES

The Bargman Hilbert space is a Hilbert space
B&"', where one defines the inner product of two
elements f, gEBs as

(f,g)= I f(z)g(z)dp„(z),

(4i fz)=(fi fi»
f;(z)=A/;(q)= =-f;(z)= JA(z, q)1((q)dq .

A is given by (n dimensions)

A(z, q)=m " exp[ ——,(z +q )+V2z.q] .

(2.3)

Namely, it transforms the harmonic-oscillator
wave functions (which constitute a complete set in
H'"') into suitable defined monomials of the vari-
able z, which constitute also a complete set in BI',"'.

For simplicity, let us consider the one-
dimensional case H"'. The set of harmonic-
oscillator wave functions is given by

P~(q) =(2 m!v n. )'~ H~(q)e

The H~(q) are the well-known Hermite polynomi-
als. Now,

dp„(z)=~ "e "g dxkdyk,
k=1

(2.1)

U (z)= =A/ (q) .
v'm! (2.5)

The functions U (z) constitute a complete set in
BI',"'. In other words, A can be decomposed as

(41 P2) = I 4(q)C(q)d "q

A PiEH'"'. (2.2)

There is an integral transform A that is a unitary

map of H'"' into B~"', i.e.,

Z Z= ZkZk
k=1

z is an n-fold complex variable; f and g are entire
analytic functions defined on C".

One defines the usual inner product for usual
Hilbert space H'"' as

A(z, q)= g P (q) .
m!

(2.6)

Such decompositions can be achieved for arbitrary
n. We will show such a decomposition for the
three dimensional case in spherical coordinates.
We will consider the closely related kernel

G(s, p)=exp sz — +2is p
Z

(2.7)

G(s,p} is obtained from A(z,p) by the substitution
z~lV 2s.

We are going to show that

G(s,p)= gi
nlm

2%3

n!I'(n+ l+ —, )

1/2

(2.8)

The proof is as follows: First one writes down the general expression for the harmonic-oscillator wave func-
tion,

2(n!)
3I (n+1+ —, )

1/2
—p/zi ilI + I( 2)y ( ) (2.9)

One sees that one needs a generating functional to handle the Laguerre polynomials L„+' (p ):

L' '(x)
e'(xz} "~ ' J~(2~xz )= g z~, a& —1, , 1(p+a+1)

with J being the Bessel functions. If we substitute

(2.10)
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x~p, z~s, p~n, a=c+ —, ,2 2

we have

I I+ 1/2( 2)S 2n
$2e' (sp) Jl+i/2(2sp)= g„=0 1(n+l+ —, )

We consider the relation
1/2

(2.1 1)

4sp
Jl+ i/2(2sp) = Jl(sp») (2.12)

with Jl(sp) being spherical Bessel functions, to obtain

I l+ I /2( 2)S 2n

e' (sp) Jl+i/2(2sp)= P 3.=0 Pn+l+ —, )

—(1/2) 2
Multiplying both terms by 4ni Yl (p)F~~(s)e "/ lp and summing in both sides over l, m, we get

e' " 'P +4nijl(2sp. )Yi (p)Yl' (s)
l, m

(2.13)

Noticing that

~

IL I+i/2( 2) Y ( )
—(1/2)p ] ~ ~

2n+l Yn ( ) (2 14)
1 (n+1+ —,')

+4~i'Jl(2sp) Yl, ~(P) Yl', ~(s) =e""
l, m

(2.15)

and taking into consideration the normalization of the harmonic-oscillator wave function, one obtains the re-
sult of (2.8).

III. THE EXCHANGE-OPERATOR MATRIX ELEMENTS

To find the matrix elements (p' ), we proceed via two steps.
(1) First we evaluate

P(s;,R,R')=(G( s3,pi2)G( s4, p34)
~

P
~

G( s i,pi2)G( s2, p34)) (l'=1,4)

and show it to be equal to

(2m) G 'V2R G 'v2R' e
(s —s) (s —s)

with R being the vector distance between the two mesons and R' representing P' R By the symb. ol ( ) we
mean integration on the quark (antiquark) individual coordinates. pi2, for instance, stands for the difference
ri —r2, with r i, r2 being the positions of quark 1 and antiquark 2.

(2) We perform for the above equality a power-series expansion of both terms, and equate powers of s.
This will imply relations among the coefficients of such expansions, which in turn will yield the sought ma-
trix elements for P'3

A. Evaluation of P(s;,R,R')

To start with, let us introduce the kinematical variables relevant for the process we are interested in. In
Fig. 3 we depict them. The effect of the operator P' can be summarized as follows:
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FIG. 3. Some relevant kinematical variables.

r i~r3 13~r~, r2~r2, r4~r4 ~ (3.1)

In the calculations which follow, we will make use
of the variable R', that is the vector image of R
under the transformation P':

R'=P R . (3.2)

Using the definition of R, and acting upon this
vector with P', we get

FIG. 4. The overlap "interaction. "

RI, II 2 (rl+ r2 r3 r4) 2'{r3+r2 ri r4) RI II
p13

Next we introduce the "center-of-mass extracted" vector variables r'I that are defined by

r,' =r; —Ri (i =1,2), r J ——rJ —R2 (j=3,4) .

In terms of these variables, R' can be very simply written as

(3.3)

(3.4)

(3.5)

For the sake of clarity, we sketch in Fig. 4 what happens when we exchange quarks 1 and 3.
The integration volume is

dv=d rid r2d r3d r4 ——
~

J ~d RTd Rd rid r2

with J being a suitable Jacobian, and RT ——R&+R2. Trivial insertions of unity, like for instance
1 =d R'5 {R' —(r 2

—r 4)), will lead us to

du=d RTd Rd R'5 (R' —(r 2
—r4))d r id r 25 (r I+r 2)d r 3d r45 (r 3+r4) .

(3.6)

(3.7)

It will become apparent that none of the algebraic manipulations we are about to execute excite the degree
of freedom RT, which means that we need only to be concerned with the actual differential volume,

d '=d Rd R'gd ';5 ( ', + ')5 ( '+ ')5 (R' —(
' — ')) . (3 8)

A further modification is required in order to account for the unusual normalization used where defining
the harmonic wave functions for the mesons. As an example, the ground-state wave function for a meson
reads

0(S»)=—exp—
N 2g, '

3/4g 3/2
p (3 9)

and the integration volume, du =2 d r id r 25 (r 'I+ r 2), such that (p(p i2)
~
p(p i2) }=1. With the above

functions, one writes du' as

du'=d R'd Rdu", du"=2 gd r', 5 {R'—(r' —r'))d (r', /r')d (r'+r') .
i=1

(3.10)
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The symbol ( } in the definition of P(s;,R,R') means that the integration I du" is performed.
It is perhaps clarifying to show a special case,

(mt 0 00(P12)00,0,0(P34) i
P

i $0,0,0(p13)pp 0 p(p34) } P(0 R R ) .

It is easy, albeit cumbersome, to show that P(O, R,R ), with the integration measure (3.10), reads

p3/4 p3/4

3ize
"

3i3e
" =$0 00(v'2R )Pppp(v'2R'), Rp ——1.

(3.11)

(3.12)

Because the algebraic calculations leading to the results (3.12) are the same as those used in deriving the gen-
eral result, we refer the reader to Sec. III8.

It is convenient, at this stage, to refer to two properties possessed by the generating functional 6( s,p ):
(i) 6'(s, p)=6( —s,p).
(ii) If

then

p } r Anlm'iulm(p} I
s

i
I 1m(s}

nlrb

)„~p = X" '"Animknlm(~p)
nlm

' 2n+l

(3.13a)

(3.13b)

Consider now,

( 3 P13}«S4P34}IP 16(si,p13)6(s2,P34)&.

The ket expression corresponds to (for notational convenience we supprMs the arrow superscripts)

exp [si ——,(r'1 —r2 )'+2is, .(r', r,' )+s,' ———,(r', r4 )'+—2is, .(r 3
—r4 )], (3.14)

P13=ri —r3=ri —r3, p34=r3 r4=—r3 r4. Using the f—act that P' Ri 11=Rill =R'=r3 r'1 r2 —r4, we-
have (when ri~r3)

exp I si +s2 ——,[(r 1
—r2 } +(r3 r'4) ]—(R R') —+—2isi(r3 r2)+2—is3(ri —r4} I

so that the total product G &G ~P' )& G && G reads

exp I si +s3 +s3 +s4 [(ri —r3) +(r3 ——r4) ]—(R —R ) +2isi(r3 r2)

(3.15)

+2is3(ri r2)+2i—s2(ri r4)+2is4(r3 r4) J
=—exp(z) . (3—.16)

Using

r3 r2 —r3 r2 +R2 —R i ——r3 —r2 —R, ri —r2 ——r'& —r2, etc.

the imaginary part of z becomes

2i[si(r3 r2 —R )+s3(r'1 —r3 )+s2(r'1 r'4 —+R—)+s4(r3 r4 )] . —

(a}. Integration in r 3, r'1 uses up the 5 functions 5 (r'1 +r2 }5 (r3 +r4 ) and yields

2i[s 1( r'4 r2 —R )+s3—( —2rq )+s—2( r3 r4+R )+s4( —
2r4 )]—. —

(b). Integration in r45 (R' —(rq r4)) gives—
2iI si( —2r3+R' R}+s3(—2rz)+—sq( —2r2+R' R)+s4[ —2(r3 ——R')] J

which can be written as

2i[s 1(—2A —R )+s3( —2A —R')+s2( —2A +R )+s4( —2A+R')]

with A =r2 —R'/2.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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So much for the imaginary part of z. The real part of z going through steps (a) and (b) yields

s) +$2 +$3 +$4 —SA —R —R2 2 2 2 2 2 $2

We get for ( GG
~

P '3
~

GG ) the expression

(3.22)

2 f exp[si +s2 +s3 +s4 8—A 4—iA(si+s2+s3+s4) —2i(si sq) —R —2i(s3 s4) R—']d r2 . (3.23)

Rearranging terms,

(GG ~P'
~

GG)=2 f exp

R'
A=rz—

2

(si+sq) (s3+$4)
2

+ 8A— 4iA—(s i+$3+$3+$4)
2

(si —$3)2 ($3 —$4)2

+
2

—2i(si —sq)R+ —2i(s3 —s4)R' d r2,
2

(3.24)

Further rearrangement yields

(GG ~P'
~

GG)=2 f exp[ —8A + —,(si+s2+s3+s4) 4iA—(si+s2+s3+$4)]d ri

(si —$3}2

&(exp[ —(si +s2}(s3+s4)]exp
2

—2i(s i
—$3)R —R

(s3 —s4)2

Xexp
2

—2i(si —s4)R' —R'

The integration can be easily performed rq ~A, and we obtain

(si —s2} (s3 —s4}
(GG

I

P'
~
GG) =(2ir} e ' ' ' 'G,v 2R G,v 2R'

v2 v2

The expression (GG
~

P'
~

GG ) means f dv "G G P' GG, therefore using (3.13a), we finally obtain

(3.25)

(3.26}

( G($3 pi2)G($4 p34) I
P

I
G(si pi2)G(s2, p34) )=(2ir)' 'G, V 2R G,W2R' e

2 2
'

(3.27)

B. Power-series expansions of the 6's

($] +$2 )($3+$4 )
We start with e

($ ] +$2 )($3+$4) S]$3+$2$3+$]$4+$2$4e =e

Using the formulas

e ''=4mji(sisq)Yim(si)Y'im(s~), Yi~ (s)Yim ($)=.
with

mg

lj L;J
~~i& Mi&($ }

J lJ y

(3.28)

(3.29)

I, IJ. L)i

mg mJ M,J.

(2li+1)(2l2+1)
' li 12 Li2

4m(2L, i+1) 0 0 0
I) l2 L)2

m~ m2 M~2
(3.30)
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and with

E) l2 L)2 l) l2 L)2

m) m2M)2 ' 0 0 0

being appropriate Clebsch-Gordan coefficients for SO(3), we get

1+ 2]~ 3+ 4~ 4-e = (4~) JI.($1$3)JI ($2$3)JI,($1$4)JI,($2$4)

l, l, E lb ld lbd l~ Ib isb 1, 1$ l,s
X

ma mcm~ y mb mdmbd y m, mbmab y m, md mcd y

x Yi,m ($1)Yl,m ($2)YI b, m ($3)Yi g, m ($4) (3.31)

(Summing over the repeated indices is assumed from now on. ) G((s2 —
s1 )/V 2, V 2R) gives [see (3.13b)]

ls s,
l

"+
p„l (v2R)

2 I
Yi' (s2 1),

( 2) n2+ IG,V2R = gi
v 2n!I (n+1+ —,)

wheres2 1
——(s2—sl)/I s2 —sl I. There is an analogous expression for G((s3 —$4)/v2, ~2R'). Next we

use the result (see Appendix A)

YL12M12(p2
—pl )

I p2 —pl I

"= ( —1) ' r(L12+ —, )

r(1, +-,')r(1, +-', )

1/2
E] l2 L )2

I p I

'
I p I

'Yi, , pl Yi, , p2

X (CI, ) 5(L12—11 —12 ),
Lo

where Ci represents Lo!/1, !(Lo—1, )!.
I

Substituting all the above results into

(3.32)

g 2 1 ~pR g 3 4 ~pR ~ (sl+s2)(s3+s4)

v2 V2

yields trivially [we use the notational convention that r(l+ —,)—:I 1(l)]

10 .L)2+L24
I rl(L12) rl(L34)

1/4

)10 I 12 4

E)!I1(L)2+El )E2!I I(E2+L34)I 1(11)I 1(12)I 1(13)I'1(14)

I ~l A, L(2M, (V 2R )+2L24M24(V 2R ')

(~2) 1+ 2+ 1 2

T

l ) l2 L )2 l3 l4 L34
X M b(L 12 11 12 )5(L34 13 14)m] m2 ]2 m3 m4 34

x lsl I
'I$2I 'I$3I 'I$4I '

mac M /ac y
m 2 mbd M2bd y

13 lgb L 3ab 14 1,$ L4' 1, 1, lss lb lp lbsI

X m 3 mab M3ab y m 4 mcd M4cd y ma mc mac y mb md mbd y

lc ld lcdlb l.b 2Ni 2N2x ~ ~ ~ lsl $2
I I$3 —$41 Ji, ($1$3)JI,($2$3)JI ($1$4)JI ($2$4)ma b mab y c md cd y

C d

x YL, M (sl) YL2bs M2~($2)YL2 b M ($3)YL~ M~($4) . (3.33)
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If, on the other hand, we develop the expression (GG
I

P'
I
GG), we obtain

.1', +1z —13 —14
l

3 4 1/2

r, (l', )r, (l; )r, (l; )r,(l; )

X Yl", ($1)Y,', , ($2)Y», , ($3)Y, ($4)

«„», ,
~ »31»0„», , »p34 I I 4„, »;

~ (S»)0„» ~ (»p34) & (3 34)

We recall that the

G
3 4 ~2R G

2 1 ~2Ri (si+s2Ms3+s4)

V2 V2

s-angular dependence is of the form YL M (s 1 ) YL M „(s4). The variables s; are arbitrary; hence,

l )
——L )„, l2 ——L2bd, l3 —L3gb, l4 ——L~d (3.35)

Returning to Eq. (3.33) we see that we can set Ni, N2 ——0. It suffices to use the remaining integrations in

R,R' to project, with the help of gi ii(R) =i)|1pLM(V 2R); gi ii(R') —
i)I1pL M (V 2R'), the Ni 2

——0 part. A par-
ticular set of values L, M; L', M' can also be chosen this way. We use the result (see Appendix B)

l, (Lp)

2.»2I', (I, )l, (i2)

l, l, L,
m~ m2 Mo

l ) l2 Lo
(C 0)1/2

m) m2 MO
(3.36)

to simplify expression (3.33)~ We get

26 4g 12+ 34( l)1+4 I 1 (l, )I 1 (lb)I 1 (l, )I 1 (ld)

I 1(L1„)I'1(L2bd)l 1(L3,b)l 1(L4«)

C "C ' C '"C ' C "C C "C C' C
L L L L L L 1 1 1 1 1/2

1) 13 1$ 12 13 14 1 Ib 1 1

X (l i l2
I
L12)(l3l4

I
L34)(l i l,s I

L i.s )(l24d
I
L2bd)(l3l&b I

L3&b)(l4l« I L4«)

X(l, l,
I is, )(4ld l4d)(ls41lsb)(lsid I

i«)

PL»2M»2( 2R)i)I11„M„( 2R')1$1 '1$21 '1$31 '1$41 '
X

(~2) 12+ 34

Xjl (sis3j)l, ($2$3)jl ($1$4)jl ($2$4)

XYl M (si)Yl M ($2)YI, M, (s3)YL, M, ($4)5(L,2
—l, —l2)5(L34 l3 l4) . (3.37)
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(The symbols (1;ll I
Ll.) stand for

I; IJ Lij

m; mj Mij

We must still equate the magnitude of the s's. For that we use the following expansion of the Bessel
functions:

co
( 1)k &2k4n

() 2 k!(2n+k+1)!!

There the s dependence ofjl (s)$3j)l,(s2s3j)l (s)s4j)l„(s2s4) looks like

2( k ) +k3 ) +lc +Ic ( (
2( k2 +k4 )+ Ib + ld ) (

2(k ] +k2 ) +Ic + lb ( ( 2( k3 +k4 )+ lc + ld
s)

I Is3 I Is4 I

Notice that in the expansion of (GG
I

P'
I
GG ), we arrived at an

I
s

I
dependence of the form

(3.38)

(3.39)

L („,L2bd, L3yb L4,d we have seen, can be fixed, so that we are left with a remaining sum in n), n2, n3, n4.
We can set them to zero, and look in the other expansion [the one of G((s2 —s) )/V 2, . . . )

G((s3 —$4)/V2, . . .)e
' ' '] for the matching powers. We have, therefore,

L3gb lg +lb +13+2(k) +k2), L2bd lb +Id+12+——2(k2+k4),

L„,=l)+1,+1,+2(k) +k3), L4d 1, +id+1——4+2(k3+k4),
(3.40)

but on the other hand, in the expansion of G((s2 —s()/3/2, . . . ) we had Clebsch-Gordan coefficients like

(1) 1-
I L)-) (12 lbd I L2bd) (13 l.b I

L3ab) (14 id
I
L4 d) T"ey imply

L)«& I&+I«, L»d & I&+Ibd, L3gb c13+1,b, L~g & 14+1,d,
the k s are positive quantities. Then they must be zero.

Returning tojl (s,s3)jl, (s2s3)jl (s)s4)jl (s2s4), we notice that

(2n+1)!!=I'((n)2"/I )(0) .

[Observe, that according to our notation, I )(0)=I ( —, ).] Therefore

Jl ($)$3) ' ' ' Jtd($2$4) I !k;=0! 1
$1

I 1
$2

I
1$3 I I

s4
I

(3.41)

(3.42)

s '~' s '~ s '~ s 4'"
=[r(0)]'

(~2)2(lc+Ib+Ic+ld )

This can be inserted in expression (3.37), to yield the final result [I )(0)=r( —, ) =3/m. /2]

I)+l3 I; Ij
NL)2 12 NL34M34 L(2+L34+2(l +I()+t +ld)

(V 2R)~~' (V 2R')

= «NL3 bM3 b(13)2) NL~dM~d(1334)1 I NL),M(.,(l )2) ((L2„M2M(1334) & ~ (3 44)

The products of ten Clebsch-Gordan and ten combinatorials are abbreviated by

I; Ij Lij L
and g Cl

J EJ

respectively.
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C. Results and graphical rules

2415

We have

( I 0L) M( NL2igiM2~
@13 )

g ( —1) ' 'pi. „si„(v2R)pi.„~,„(v2R')
I l, mj

12C 34C lacC 3abg 2bdC 4cdg acC bdC abC cdL L L L L l l l l
l ) l3 l f l3 l2 l4 l lb la I

l ) l2 L )2 l3 l4 L34 l ) l„L)ac l2 lbd L2bd
X ~]2 m3 m4 ~34 m ] mac ~lac 2 bd 2bd

l3
X m

l,
X

ma

m,b M3ab m4 m,d M4c ma mc mac, mb md Mbd

b lb

mp Mgb m mg M g (
~2)2(l +lb+1 +ld)+L)2+L34

lgb L3gs 14 l,g L4' 1, 1, 1„ ls ld lsd

X5(lgs —1,—lb )5(l,d —1,—ld )5(l„—1,—l, )5(ling —ls —ld )

X5(L3gp —ls —l,b)5(L2bd 12 lb'—)5(Ligg—lj lgg )5(—L4gg—14 l,g), —(3.4—5)

where one sums over all contributing 1's and m's (L i2, Lq4 are fixed by external conditions).
One can deduce from the above expression a simple graphical rule.
(1) Draw straight lines representing the mesons, and also two straight lines to represent the relative angu-

lar momentum between them (dashed lines); see Fig. 5.
(2) Connect all lines except for the connection (L i2, L34) as is shown in Fig. 6. Note that the lines that

connect any meson with a relative angular momentum line are different from the others (wiggly).
(3) Identity "propagators" (Fig. 7).
(4) Identity "vertices" (Fig. 8).
(5) The value of a particular diagram is obtained by multiplying all the vertices and propagators. Sum

over all possible intermediate "states."Note that for moderately low 1's, only a few diagrams contribute.

IV. INCI.USIONS

The matrix elements of the exchange operator between two mesons for arbitrary angular momenta have
been derived. A straightforward extension to include radial excitations is possible. By explicit calculation
we have seen that the exchange operator for pure angular momentum states (no radial excitations) does not
excite intermediate radial excitations. This is a considerable simplification. If we allow some of the mesons

L 3ab, ~3ab L1ac H1 L 3ab, 13ab la "lac, ~1ac

Ll, cd, &l,cd L2bd, ~2bd Lecd. l, cd LZbd, 2bd

L12 L3 L3

FIG. 5. Rule 1. FIG. 6. Rule 2.
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yerter type A:

L3ab la

Verter type 6:

L12

Llab lab 1 la

l b'' 6 (L12 — (1-!2I

L'
L!ab 1/2 l1 lab L1ab l lab, 1/2 ( la lb lab

x C
l1 m1mab Mtab) la . Lmamb mab

FIG. 7. Rule 3. 6 lL1ab- l1 — (ab) 6 !lab- la - lb)

FIG. 8. Rule 4.

P and/or the relative wave functions between them to have radial excitations, we are forced to sum over a
family of interna1 radial excitations and the number of diagrams which contribute for a given process is

comparatively much larger.
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APPENDIX A

We start by considering the functional generator G(s,p). There it is a straightforward piece of algebra to
show that

2

Now we use property (3.13-ii) to expand G(V 2s, (pi+ pz)/V 2). Expanding also each of the G( s, p;)
(i =1,2) we have

.l )+l~
l

n )l)m)

n&l&m&

4~'

ni!nz!I (n, +l, + —,)I (nz+li+ —, )

1/2

~-
~

'"~+"i'+'~+'~
s

1&m&(S) l&m&(S)42n&l&m& (Pl 0)2n&l&m& (P2 )

l
L.

NLM

1/24v 2'
Yg (

N!I'(N+1+ —, )

pi+p2 !„!2N+LI /, 2N+L» —(p& —p&)/4

Integration in Yrlir(s), and using the fact that

I) l2 L)2

and also—see Appendix B—that
I

I ) I2 L )2

m) m2 M)2

is expressible in Clebsch-Gordan coefficients, we are led into
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l1 l2 L 12
3/2g

l,

2ni!n2!I (L12+ —, )

1/2

2{m )+n2)+l)+l2
02 n& I& m&

( Pl )02 n&l 2m2(P2 )
I

&
I

v2
' N'I'(&+L 12+, )

1/2 p1+p2 2N+L)2 —{p, —p 2) /4 ~ 2N+L)2
I( 21VL12M1 (A3)

The integration in FLM(s) fixed for us on L 12. Now if we set N =0, then

, 2(n] 4.nz)+l +lz
I

L12sI —= Is (A4)

The Clebsch-Gordan boundary condition L 12 (l1+l2 implies that n1 ——n2 ——0 and L 12 ——l1+I2.
The harmonic-oscillator wave function $21vL, M„[(pi+p2)/W2] contains a term that goes like exp

[(pi+p2) /4]. This term multiplied by exp [(pi —p2) /4] yields exp ( ——,pi ——,p2 ), which cancels

against similar exponentials (coming from $1,,$1,) on the left-hand side of expression (A3). We get, there-

fore,

l1 12 L12
l&+12L )2 m 1 m 2 M12l 1 m1

12m2

1/2
2~'/2r(L „+-,' )

Cl,
"

1(l, +-, )1(l +-, )

X
I pi I

'
I P21 I'11m&(P1) I'l2m&(P2) (pi+ p2) I'L12~12(pl+2) ~

where pi+2 (pi+ p2)/ I pi+ p2 I

APPENDIX B

li l2 L12

m1 m2 M12

1(11+-,)I (4+-, )

21r / I'(L12+ —, )

We are going to prove that
P 1/2

l1 l2 L 12
0 )1/2

m1 m2 M12
(81)

By definition

4
m1 m2 M12

'I 1

4 Li2 li 4 Li2

m1 m2M12 0 0 0
(211+1)(212+1)

4'(21p+ 1)
(82)

0

prove that

2 12 L12 2L12 1 2
0 O

——Ci, "/(C21,")' (83a)

and that
1/2

I (L12+ ) 2L +1
' 1/2 1/2

C2l&+2 /(2l2+ 1)Cl&+1
I'(l, + —,)I (l + —, ) 7r'" (83b)

Substitution of (83a) and (83b) in (81) leads us to

I'(L 12+ —, )

I'(l
1 + —,)I (4+ —, )

1/2 '
l1 l2 L12

m1 m2 M12

1/2
l2 1

11+1 CL12
l(+1

l i 12 L12
12

~2 3/4 '1 m, n22 M» (84)



2418 J. E. RIBEIRO 25

Noticing that

I)+1 C 12 C 12
)1+1 )1

we arrive at (Bl).
Proof of (83a). From the definition, we have

(B5)

I) I2 I.)2

0 0 0
(I, +12)!(2l, )!(212)!

[2(li + l2 )]!(li!)'(l2!)'
12 g(c 12 )1/2

1 1
(B6)

Proof of (83b). From the definition, we have

~(N
3

)
(2N+1)!!~(

3
)2 2' 2

Then it is a simple algebraic manipulation to show that

~(N M ) 2i est (2N+2M+1)!(N+1)!~(N )
(2N+2)!(N+M )!

In the case N =0,

(B7)

(B8)

(B9)

Then,
3

(N™) 2(M)!(2N+2M+ 1)!(N+1)! 1

1 (N+ —')1 (M+ —') (2M+1)!(2N+2)!(N+M)! 1-(—')

Multiplying the right-hand side by (N 1)!i(M—1—)!, we obtain, after trivial mariipulations,

r(N+M+ -,
'

)

r(N+-', )r(M+-,' )

Equation (Bl 1) for the case N =l i, M =I& yields (B3b).
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