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Do narrow heavy multiquark states exist?
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We discuss the existence of states made of four heavy quarks in the context of poten-
tial models already used in the study of heavy mesons and baryons. We first consider the
situation where the quarks have the same mass and interact through a two-body potential
due to color-octet exchange. In this case, we show that for any reasonable confining po-
tential there is no state below the threshold corresponding to the spontaneous dissociation
into two mesons. We investigate in detail different possibilities of modifying this negative

result. This concerns the effect of hyperfine corrections, the case of orbitally excited
states, the case of unequal quark masses, and the use of the static potential derived from
the bag model treated in the adiabatic approximation.

I. INTRODUCTION

In nuclear physics, stable or metastable nuclei
exist with a great variety of values for the baryon
number. In particular, it is quite remarkable that
the a particle lies below the threshold for the de-

cay into two deuterons. In quark physics, one of
the most important problems today, experimentally
and theoretically, is whether or not narrow multi-
quark states do exist. In this paper we do not in-
sist (except at the end for P states) on the narrow-
ness due to the dynamical suppression of kinemati-
cally allowed decays, since the literature on

baryonium, etc.,' is already very rich. Instead
we concentrate more on the mass spectrum than on
the disintegration mechanisms and we investigate
in what way bunching quarks together affects their
binding energy. More explicitly, we compare the
masses of four-quark states (QQQQ) with the
threshold for the superallowed decay into two
quarkonia, i.e., (QQ) + (QQ). Our methods and
even some of our results can be generalized to the
case of more complicated quark composites.

Here and throughout this article, Q means a
heavy quark, i.e., c, b, t,... and possibly the strange
quark s. We exclude from the discussion the case
of light quarks since we use nonrelativistic poten-
tials, and, in one section, the adiabatic approxima-

tion of the bag model, which holds only if the
quarks move slower than the surface of the bag.
Moreover, the pion is so light that there is little
hope of satisfying the inequality M(qqqq) & 2M(qq3
with ordinary quarks. From the theoretical point
of view, there is an important difference between
light- and heavy-quark spectroscopies. In the
former case, the chromomagnetic force, or, more
generally, the hyperfine interaction, produces mass
splittings as large as the quark effective mass itself.
For heavy enough quarks, on the other hand, the
spin-independent interaction is presumably dom-

inant, so the existence of multiquark states should

rely less on a particular spin configuration. As a
consequence, flavor enters into the game in a dif-
ferent way. In light-multiquark spectroscopy one
prefers antisymmetric flavor combinations which
allow attractive coherences in the chromomagnetic
interaction. For heavy quarks, flavor acts mostly
through the mass of the quarks. As we shall see,
mixing quarks with very different masses helps to
bind them together and increases the chances of
getting a narrow multiquark state.

The main difficulty of our investigation consists
of choosing a model for the interaction between
the quarks. We first considered additive models
made of two-body potentials governed by the sim-
plest color dependence. Within such a frame, in
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the case of equal masses, the ground state lies
above the dissociation threshold as we shall show
in quite a general and rigorous way. Examples are
given using popular potentials such as "Coulomb-
plus-linear" or power laws. An objection could
be that, although these models are successful
phenomenologically in the mesonic sector, their
generalization to the case of multiquarks is rather
arbitrary. There are fortunately some quark-
antiquark potentials which, although less easily
tractable, have a deeper theoretical basis and can in
principle be extended to multiquark states without
any new parameters or new assumptions. Some at-
tempts have been made in the framework of instan-
tons. Another approach is the bag model, suitably
adapted to the case of heavy quarks. It has al-
ready been applied for mesons and baryons. s A
first attempt is made here to use it for four-quark
states, and the results are rather encouraging since
our rough estimate gives us some masses at the
edge of the threshold.

This paper is organized as follows. In Sec. II,
we discuss the general properties of the ground
state with a pairwise, color-octet exchange poten-
tial in the case of equal masses. The effect of mix-

ing quarks with different masses is discussed in
Sec. III. We study in Sec. IV the role of the multi-

body components contained in the potential which
is derived from the bag model. In Sec. V, we dis-

cuss the effect of hyperfine corrections. We con-
sider in Sec. VI the case of the P states. The last
section is devoted to our conclusions.

We first consider two-body potentials. Within
this drastic restriction, there is a crucial problem
concerning the color dependence of the force.
From several arguments, ' the only simple and
reasonable choice consists of assuming that the po-
tential is due to the exchange of color octets, i.e.,

Vg, g ——A, il,2Vs(ri2), (2.1)

where Q; denotes a quark or an antiquark. In the
latter case, A,; means —A, ;. Of course, a small
amount of nonconfining color-singlet admixture
cannot be excluded. It would, however, make the
model more complicated.

To handle the interaction (2.1), we make an ap-
proximation for the treatment of the color degree
of freedom inside the color-singlet QQQQ state. In
a proper account of color mixing, the spatial wave
function would have two components and the po-

II. PAIRWISE OCTET-EXCHANGE POTENTIALS

tential would be a 2&2 matrix in color space. For
instance, if one uses the basis of so-called "true"
states (QQ-QQ) =(3-3) and "mock" states (6-6)
where the diquarks have a well-defined color, one
should set

and

QT(r }
I
3-3 &+&M(r }

I
6-6& (2.2)

(2.3)

with

8
VTT [Vs(r12 }+Vs(r34)]

4
V,(r;.),

i =1,2
j=3,4

4
VMM 3 I Vs("12}+Vs(r34)]

i=1,2

j=3,4

Vs(rgb ), (2.4)

4
VTM ~ [Vs(ri3)+ Vs(r24)

&2

—Vs( i4}—Vs( 23)1'

In our approximation, we assume that the color
wave function is factorized, say

P=g(r;)
I g, & (2.5}

with

~ ~

Sa--= ——n
gJ 3

i(J
where Vs(r) is a universal function, the same for
any pair inside any hadron. The interaction (2.6)

so each color operator in (2.1) is replaced by its ex-
pectation value (f, I

A,;Xj I g, &. Note that the
color mixing is forbidden or strongly suppressed by
the Pauli principle in some cases involving identi-
cal quarks. For instance, the ground state with
spin 2 has almost pure 3-3 color structure if the
two quarks or the two antiquarks are identical
since the 6-6 component is penalized by two de-

grees of orbital excitation.
For color-singlet multiquark states

I Qi,Q2, ,Q„I, we thus treat the octet-
exchange interaction (2.1}as a special case of one-
channel potentials of the type

(2.6)
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has interesting properties.
(i) Consider first the symmetric case

(a;.=a= —[16/3(n —I)] Vi &j) for various values

of n. Then, if M„' ' denotes the mass of the
ground state

below the symmetric ground state [ a,j a——Vij ].
We now suppose for simplicity that only two
values show up for the a,j.'s, say

a &2
——a34 —a

M M' M''
2 3 8

n
(2.7)

and

a )3
——a 23

——a )4
——a24 ——a

a„=g ' — g V, (rj).
, 2m 3(n —1), (2.8)

H„may be considered formally as a Hamiltonian
for (n + 1) particles where the last one plays no
role. Hence H„and H„+~act on the same Hilbert
space A and one may use the well-known princi-
ple

E„=min«~&y
~
a„~y) .

In particular,

E„&li„„~a„~q„„&

This means, that for instance, with an additive po-
tential of the type (2.1), one has M(Q ) )—,M(P)
(including the spin-spin corrections if one considers
Vs as being the spin-triplet potential). The proof
is easy. Let us denote by E„andP„the energy
and eigenfunction of the ground state of the sym-
metric Hamiltonian

Such a configuration appears generally in the prob-
lem of four colored quarks with the correspon-
dence a;J =

& A, ;Aj ) if one considers simple color
states. The two-meson case corresponds to

16 8a= ——, and a'=0, the true state to a=
3

4 4
and a'= ——,, and the mock state to a= —, and
a'= ——, , as shown by Eq. (2.4).

If the two distributions (1) and (2) are such that
a~'~&a' ~&a, it follows from the above-mentioned

concavity property of the lowest eigenvalue" that
the masses satisfy M'" &M' ' &M' '. In particu-
lar, this proves rigorously that with any additive
potential (2.1},a true state lies higher than the
threshold.

The comparison is, however, more difficult if
the two distributions break the symmetry in a dif-
ferent manner, i.e., a'" &a &a' '. This is the case
if one wants to compare the mass of a mock state
with the true one or with the dissociation thres-
hold. Intuitively one expects

E„+i, Q.E.D. ,n+1 2M(QQ) &M(6-6) &M(3-3) (2.12)

M„(a(~)&M„''. (2.10)

The proof is absolutely similar to that of (2.7).
Note that, since the Hamiltonian is a linear func-
tion of the a,j-'s, the ground-state energy is a con-
cave function of these parameters, " so it is impos-
sible to have any local minimum.

Intuitively, the generahzation is that the less
symmetric the a;J distribution, the more deeply
bound the ground state. Consider for instance the
case n=4. It is easy to prove that, for any poten-
tial Vs, the distribution ( a ~q

——6a, other a;j =0 j
leads to a mass lower than that of two mesons

( a ~q
——a34 —3a, other a;J =0 J, which in turn lies

where the symmetry properties of f„+~have been
extensively used.

(ii) We now consider the number of quarks n, as
well as the total strength g, a,j, as being fixed.
The question is what distribution of the a,&

gives
the lowest mass for the ground state. It is easy to
show that the symmetric case always gives the
worse result, i.e., for any distribution (a;j )

since the spreads of the distribution satisfy

) /a —a'/ (2.13)

Indeed, since the mass M is maximum for a sym-
metric distribution (a =a'}, there should follow
rather naturally a behavior of the type

M —M's' ~ —(a —a')'+. (2.14)

The hyperspherical formalism' sheds some light
on this point. In the hyperscalar approximation
(L =0), the effective hyperradial potential is

12
pa;;

'

Vo(g),mP&'&j
Vo(g)= f dIIsVo(r12)/ f d&s,

(2.15)

where g is the hyperradius and Qs the set of eight
angles describing the kinematics. One can see that,
in this approximation, any a,j- distribution with a
given sum leads to the same binding energy. The
differences come from the nonhyperscalar correc-
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Vgg(r) = ——, Vs(r)

4 &s
+A,r, (2.16)

V~n(r) = ——, Vs (r) =A +Br~ . (2.17)

In order to compute the masses of the QQ, QQQ,
and QQQQ states, we use a variational method
which consists of determining the closest har-
monic-oscillator wave function, as done by Gromes
and Stamatescu, by Dias de Deus, Henriques, and
Pulido, ' and by many others. For the QQ ground

tions which, for the ground state, are given by the
L=2, 4, 6, . . . , harmonics. In the case where all
the strengths afJ are equal, one needs at least L=4
to get again a completely symmetric harmonic, so
the hyperscalar approximation is almost exact (as
in the case of baryons ' ). For a nonsymmetric
distribution, the ground state may contain some
L =2 component. The negative shift due to the
L =2 admixture to the dominant L =0 piece is
roughly proportional to the square of the transition
potential ( L =0

~

V
~

L =2), i.e., essentially to the
quadratic variance of the distribution of the a,z's.
More detailed expressions can be easily written us-

ing the formulas given in Ref. 12. For a distribu-
tion of the type (2.11), there is only one L =2 har-
monic directly connected to the L =0 one and one
has (L =0

~
V

~

L=2& cc (a —a'). So, for small
(a —a') the solution of the coupled L =0 and
L =2 equations leads to the behavior in the formu-
la (2.14).

One should stress that dramatic effects can oc-
cur when high internal color excitations like sextet
or octet are involved. As shown by Greenberg and
Lipkin, ' with a too sharp confinement like rp
with P & 2, the total Hamiltonian is unbounded
below for 6-6, and the inequality (2.12) can certain-

ly be violated or become meaningless. Assuming a
smooth behavior near the maximum, as in Eq.
(2.14) or a saturation of the ground-state wave
function by a few hyperspherical harmonics, as in
the previous paragraph implies indeed implicitly
that the potential is not too sharp. On the other
hand, our rigorous result 2M(QQ) &M(3-3) im-

plies that there is no difficulty with the color 3-3,
in agreement with Ref. 13.

To illustrate our inequalities (2.7) and (2.12) we
choose two realistic phenomenological potentials,
namely the popular "Coulomb-plus-linear"' model
and a simple power law which has recently been
shown to describe successfully all heavy mesons'

as well as the 0 .' They are

state, we use Pa: exp( ——,ar ) and minimize

M (a)=2m+ ——+ ——,a,va3a 2 }(, 4

2 m n a

or (2.18)

M (a)=2m+ ——+A+BII 3 cx

2 Nl

with respect to a. Similar expressions exist for the
P state. For a symmetric QQP baryon, we use the
trial wave function g cc exp ——,a(gi + g2 ) where

gi ——x2 —xi and g~
——(2xs —xi —x2)/V 3. For a

four-quark state, we introduce the Jacobi variables

pi= x2 —xi, (2=xi —x4,

g3 —(x3+ x4 xi x2)/V 2

and the trial wave function

2 ~ 2 1 2
P=N exp( ——,ai g i ——,a2(2 ——,a3(3 )

(2.19)

(2.20)

=0.0266 . (2.21)

%ithin the harmonic-oscillator approximation
(HOA), the agreement is not impressive for both
M(QQQ} and M(QQ },but for lDf we get the fair-
ly good value EM=0.0256. Similarly a quantity
like the mass gap between a state and its threshold
is presumably well estimated with the HOA. Also,
as it has been noted, ' the HOA satisfies the virial
theorem and the proper scaling properties' in case
of power-law potentials. Moreover, the HOA
preserves the inequalities (2.7) and (2.10) which we
have derived for additive potentials of the type
(2.7). Indeed our basic ansatz for the proof is the
variational principle (2.9}and we now simply re-

place the Hilbert space A by the subset made of
the Gaussian wave functions.

To fix the parameters of model I, we impose, to
fit within the HOA, the 1S and 1P level of char-
monium, i.e.,

allowing us to calculate analytically any matrix ele-
ment of the type (rz~). We recognize the crude-
ness of such an approximation, but we feel that
this procedure is convenient for our purpose since
the different configurations with n=2, 3, or 4
quarks are treated consistently. For instance, with
the potential II, the rigorous solution of the
Schrodinger equation (with unit mass and strength
B) gives

hM =M (QQQ) ——,M (QQ )
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M ( I&)= ,M—(Jly)+ ,M—(r/,)

=3.067 GeV,

M(1P) =[M(XO)+3M(X))+5M(X2)]/9

=3.523 GeV .

(2.22)

III. THE CASE OF UNEQUAL MASSES

We choose the same quark mass m =1.35 GeV as
in the bag model we consider later (Sec. IV). This
leads us to a, =0.44 and A, =0.194. If one com-
pares it with standard fits, the latter value is
slightly too high, due to the systematic error in-
duced by the HOA. For the model II, we use the
parameters and masses from a fit to quarkonium
masses by Martin, ' a fit which is a little distorted

by the HOA. Inspection of our results in Table I
shows that the four-quark states are rather far
from the threshold. With such a large phase
space, they will decay immediately by a "superal-
lowed"' rearrangement into two mesons and never
show up as structures in the spectrum.

To get some narrow heavy-multiquark states,
one needs changes or improvements to the simple
additive model (2.1). We shall discuss some possi-
bilities in the following sections.

M(QQQQ) & 2M(QQ). We now show that this is
not always true with unequal masses. We shall
give some explicit examples and later discuss the
problem more generally. Of course, we always as-
sume that any mass is large enough to justify a
nonrelativistic potential picture. We also restrict
ourselves to central potentials which do not depend
on the mass of the quarks. Such a property is ex-
pected in QCD, apart from small deviations due to
recoil effects, as, e.g., in Darwin type of correc-
tions to the static potential. Analyses based on ex-
plicit phenomenological models, ' ' on general
properties of the Schrodinger equation, or on ap-
proximate solutions of the inverse problem ' show
that, indeed, the present data on heavy mesons do
not require a mass dependence of the QQ potential.

Let us first consider a system QQQ 'Q ' involv-

ing two masses m and m' and interacting through
the chromoharmonic potential

V~J ———KA,;A,jr,i2 .

Using the same Jacobi variables as previously [see
Eq. (2.15)] and keeping to distributions of the type
(2.11) with only two different color factors
a = (A, ~A2) and a'= (A, ~A3), the Hamiltonian can
be written

So far, within the additive potential model (2.1),
we were restricted to quarks or antiquarks having
the same mass. The main result is that for any
color wave function (assumed to be factorized), a
four-quark state is above the threshold, namely

Ptl 7Pg p

+E(a +a')(g& +$2 )+2Ea'g3 (3.2)

with p=2mm'/m +m'. (As in Sec. II we disre-

TABLE I. cc, ccc, and cccc masses with potentials I and II in the harmonic-oscillator ap-
proximation. Units are GeV and GeV .

Model I Model II

CC

CCC

CCCC

{1S)3

1S

1P

{1S)'

3-3

6-6

a
M

CX] =CE2

Q3

M
a~ ——a2

3.067
0.343
3.523
0.223

4.765
0.259

6.437
0.249
0.195
6.383
0.186
0.319

3.082
0.431
3.513
0.273

4.778
0.328

6.450
0.316
0.247
6.400
0.236
0.404
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gard the effmt of color mixing, included in Ref.
22, for the case m'=m. ) The binding energy of a
four-quark state can be easily compared to that of
the threshold. For a mock and a true state the re-
lative differences are, respectively,

R6 ——

and

E(6-6)—E(1-1)
E(1—1)

W3(1+v x )—(1+x)'i (4—v 5)
4(1+x)'

E (3-3)—E (1-1)
E(1-1)

3(1+v x ) —(2@6—v 3)(1+x)'
2v 6(1+x)'"

(3.3)

(3.4)

M(3-3) & 2M(Q'Q)

(M(6-6) . (3.5)

In particular, with the potential of Martin'
(p=0.1), the true state is bound for x & 18. So,
within the present limit on the mass of the t quark
a ttss would be found. For p-2, the ordering be-

comes

M(3-3) &M(6-6) &2M(Q'Q) (3.6)

as already mentioned. For large P, as P=3, one
has

where x=m'/m. The above expressions exhibit in-
teresting patterns. At x -50, the true state be-
comes lighter than the mock one. When x contin-
ues to increase, the true, and later the mock state
go below the threshold 2QQ '. This appears at
rather large x, at x=300 and x=3000, respective-
ly. For more reasonable values of x -5—20, the
states, although still above, are not very far from
the threshold.

We have examined the effect of the mass differ-
ences with several other potentials, always using
the HOA. From our investigations it appears that
the ordering of the states at large x depends upon
the shape of the potential. Consider for instance
the case of power-law potentials r~. For R ~ 0
(nonconfining) or 0&p(1.9, the asymptotic order-
ing in the HOA is

large x, say x & xo. The value of xo as a function
of the lightest quark mass m is displayed in Table
II. Inspection of the results shows that a ttcc state
should be narrow, provided one takes seriously this
simple potential and the color transformation (2.1).

Now it seems worthwhile to compare the effects
due to unequal masses with our previous results for
identical quarks. Remember that for equal masses
the lowest QQQQ state is obtained through the
strongest asymmetry of the color factors giving the
level ordering (2.12} (1-1)& (6-6) & (3-3}. In the
case of unequal masses, there is another type of
asymmetry which consists of clustering the two
heaviest quarks together with the maximal color
interaction between them. For a QQQ 'Q ' configu-
ration, the latter asymmetry favors the (3-3) state
and, as shown by our above analysis, can become
the leading pattern for some kind of interactions.
For instance, a harmonic potential gives at large x
the level ordering (3.6) in complete opposition to
the result for equal masses.

Another interesting example is provided by the
configuration (QQ'QQ ') which possesses two thres-
holds T& ——(QQ) + (Q'Q ') and T2 ——(QQ') + (Q'Q).
The general concavity property, " if applied to the
inverse reduced mass, tells us that, for any flavor-
independent potential, T& (T2. Again it appears
more economical energetically to enhance the
asymmetry when distributing the masses. In T&,
indeed, the two heaviest masses are clustered to-
gether, whereas in T2, they are mixed with the
lightest ones. It is clear that a (QQ'QQ ') quark
composite would hardly beat the T~ threshold
which cumulates the maximal asymmetry in the
distribution of the masses and in the distribution
of the color factors a;J. We therefore conclude
that the states which are the most likely to appear
in the spectrum are (QQQ 'Q ') rather than
(QQQ'Q '), i.e., precisely those whose exotic flavor
quantum numbers will give an unambiguous signa-

TABLE II. Minimum value of the quark-mass ratio
xo required to get the true state QQ-Q 'Q ' below the
threshold with the Coulomb-plus-linear potential (in the
BOA).

m (GeV)

M(6-6) (2M(Q'Q)

(M(3-3) . (3.7)

With our "Coulomb-plus-linear" potential (2.16),
we also get the true state below the threshold at

0.5
1

2
5

16
12
10
8
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ture as multiquarks. We are of course aware that
producing and identifying such an exotic heavy
meson would not be an easy experimental task.

IV. THE BAG MODEL

The simple additive model (2.1) is far from be-

ing a completely satisfactory choice for the poten-
tial energy between quarks. Its main motivation is
certainly simplicity. Now, QCD seems quite in-
volved in the infrared region, so simplicity is not
necessarily a good agreement in guessing the quark
dynamics. Let us be more precise. One of our
major arguments in Eq. (2.1) for the suppression of
a sizable color-singlet exchange component is that
it would lead to confining forces between ha-
drons, or, say, between an antiquark and a
baryon. However, if the octet exchange potential
(2.1) is taken seriously, it still produces disturbing
van der Waals forces between hadrons' ' ' in
contradiction with the standard Yukawa picture
which works very well at large distances. It is pre-
cisely the bag model which eliminates the problem
of spurious van der Waals forces, since the gluons
which mediate the interaction cannot escape out of
a bag and propagate in the medium to reach
another bag. Some interesting attempts have
even been made to generate a coupling of the bag
(in the case of ordinary hadrons) with the pion
field and hence to recover, at large distances, the
traditional one-pion exchange potential. To sum-

I

marize, our impression is that the bag model is a
powerful phenomenological tool, which keeps con-
tact with the speculation on confinement in non-
perturbative QCD (existence of two phases).

The MIT group has used the bag model in the
fixed-cavity approximation and has obtained a
good fit of the ordinary hadrons. Later, Jaffe
studied multiquark states made of light quarks. '

For heavy quarks, the cavity approximation is
inadequate. Another method was proposed in
1975. It is called the adiabatic approximation and
is very much reminiscent of the Born-Oppenheimer
treatment of the molecular spectrum. In this
method, the interquark potential is first deduced
from the bag equations and then plugged into the
Schrodinger equation. Such a model has been
shown to provide a good fit of heavy quarkonia
(J/f and Y families) and some speculations on
heavy baryons such as chic, ccb, . . . , have also
been made. An interesting property in the case of
baryons is that the potential does not follow the
additive rule (2.1) and contains manifestly three-
body components. By accident, the QQQ potential
does not differ too much numerically from the
naive extrapolation (2.1) of the QQ case. This does
not mean, however, that the additive rule (2.1) will
hold also for multiquarks.

We have repeated the calculation of Refs. 7 and
8 for a bag including four heavy quarks. For sim-
plicity, we have retained only spherical bags cen-
tered at the center of mass. In this approximation,
the energy of the whole system is

4
E(rg, R)= , rrR Ag4+ , a—,g—R 1——ln 1—

R2 ~2 R R2
l

+a, g kl' Arj
l +J i r; —rj i

(R +r. r —2R r'r )'

r r (R +r r. —2R r..r. )'

R 2 2R' 2R
(4.1)

which gives the potential

V4(r;)=minI E(r;,R);R &r; J . (4.2)

a, =0.385, Az ——0.23S GeV,

m, =l.35 GeV, mb=4. 75 GeV.
(4.3)

We have used the same parameters as in Refs. 7
and 8, namely

I

Using the HOA, i.e., the trial spatial wave function
(2.20) and a frozen factorized color wave function,
we get the masses displayed in Table III. The re-
sults are deceiving, i.e., states are above the thres-
hold. Does this mean that the static potential de-
rived from the bag model will never give narrow
multiquarks? Probably not. Some improvements
to our calculation indeed remain to be done.
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TABLE III. cccc masses in the spherical bag model.
Units are GeV and GeV2.

Color state a~ ——a2 a3

3-3
6-6
1-1
8-8

6.276
6.252
6.221
6.260

0.382
0.310
0.374
0.312

0.312
0.372
0.25S
0.362

~' V(GeV)

(i) As in the case of empirical pairwise poten-
tials, the use of unequal masses can help. For in-

stance, a true state in the present calculation is
found at b,m3 ——166 MeV above the threshold for
cccc kin 3 —227 MeV for bbbb, but only b,m i 97——
MeV for ccbb.

(ii) Departures from the spherical approximation
could help to push some states below the threshold.
Let us discuss this point in some detail. To get a
narrow four-quark state, the potential energy
V4(r i, r2, r3 r4} should be "rather often" below

V,h ——V~(ri —r2) + V~(r3 14}which has the
threshold as ground state. Here V~ means the

QQ potential in the same bag model. The poten-
tials V4 and V,h are shown in Fig. 1 in the case of
a symmetric tetrahedral configuration. V4 is more
attractive than V,h for any interquark distances.

Q~ ~Q
I L I

I I

gf
(a)

)iV(GeV)
/

(b) /

/
/

/

-0,2- /' V~
/

r'

-04-
r

-0.6-

-0.8 ----—

0-

VH1

Note that, when r~o, V4- V,h since both reduce
to the one-gluon exchange contribution which fol-
lows the additive rule (2.1). For finite r, the
volume energy in Eq. (4.2) plays a role and is re-

sponsible for V4 being smaller than V,h. There
are, however, cases where V4 & V,h. Consider, for
instance, a rectangular configuration of length L
with, at each end, a color-singlet QQ pair with in-

terquark separation I [see Fig. 2(a)]. The quantity
V4-Vth is shown in Fig. 2(b) as a function of L for
I= 1 GeV '. It becomes positive for L &La-2. Sl.
Clearly, for very large L, two small bags represent
less potential energy because of the volume term.
At intermediate distances L -Lo,' however, the

L(o v")

(GeV ")

FIG. 1. Comparison of the QQQQ potential V4 with

the potential V,h governing the threshold QQ + QQ.
The quarks are in a symmetric tetrahedral configuration
with interquark distance r.

(c)

FIG. 2. (a) Rectangular configuration considered.
The QQ pair at each end is assumed to be a color
singlet. (b) Comparison of the QQQQ potential V4 and
the sum V,h of the two QQ potentials, for 1=1 GeV
(c) Comparison of the bag shapes for the threshold

QQ+ QQ and the quark composite QQQQ. The dashed
curve corresponds to a tentative improvement of the
spherical approximation.
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ordering of V4 and V,h depends crucially on the
spherical approximation we used for the bag. In
Fig. 2(c), we show for 1=1 GeV ' and L=4
GeV ' the two QQ bags with energy V,i, and the
single spherical QQQQ bag leading to the potential
V4 & V,h. By the dashed curve, we show an intui-
tive guess of an optimal shape which would tenta-
tively lead to an improved potential V4 & V,h. A
rigorous deformed-bag calculation of V4 remains,
however, to be done.

(ii) We considered the color wave function as be-

ing definitively frozen. In the absence of con-
straints from the Pauli principle, e.g., with quarks
bearing different flavors, one may argue, in the
spirit of the adiabatic approximation of Born and
Oppenheimer, that the color wave function as well

as the bag shape and gluon field can evolve when

the quarks move. This means that, for any given
set of quark coordinates, one has to consider the
most general color-singlet wave function, e.g.,

~ Q, }=cos8
~

3-3}+sin0
~

6-6) and, in computing
the potential energy, minimize on 0 as well as on
the parameters describing the bag shape. Such a
new freedom would, of course, lower the energy of
the ground state.

As an illustration, we have considered the ficti-
tious case of two quarks and two antiquarks with
the same mass m, (for simplicity) but without con-
straint of antisymmetrization. We have kept the
spherical approximation for the bag. With a fixed
color wave function, the ground state always lies
above 6.22 GeV (see Table III). If one now mini-
mized on the color angle 0 at each point, the
ground-state energy is lowered up to 6.075 GeV,
which is actually below the threshold since the
same bag model gives a quarkonium mass
M(cc)=3.055 GeV (both values in the HOA).

The conclusion of this section is that the bag
model seems to offer the possibility of binding
several heavy quarks together, especially if those
bear different flavors. This is, however, not
achieved in the approximation of a spherical bag
and a factorized color wave function. In line with
the present study is the work by Chao who con-
sidered two heavy quarks and two light quarks and
in a Born-Oppenheimer-type treatment, derived an
effective QQ potential describing the QQqq dynam-
ics inside the bag. His estimate

M(QQqq) —M(QQ)-600 MeV illustrates that,
within the bag model, the multiquark states are not
pushed very high in the spectrum. [Remember
that, experimentally, the spin averaged qq mass is
4M(n) + 4M(p)=610 MeV.] This was already

shown by Jaffe" when he estimated the masses of
states made of several light quarks in the fixed-
cavity approximation. The main reason, common
to all those bag-model calculations, is that the
volume energy increases less rapidly than the num-
ber of quarks enclosed into the bag.

Since the work of De Rujula, Georgi, and
Glashow, there has been a great deal of activity
on the spin-dependent forces between quarks as a
test or an application of QCD. In particular, the
chromomagnetic interaction due to one-gluon ex-
change

~ss(ij ) = '—7;7,o(.o,5'(rj. )
6m;mJ

'J ' J 'J (5.1)

had been recognized early as playing a crucial role
in multiquark spectroscopy. ' For consistency, the
virtual annihilation into one gluon should also be
accounted for, as in the case of positronium in
QED.

In early works on "color chemistry" the
masses were estimated rather crudely. First, the
values before spin corrections were given by empir-
ical mass formulas rather than computed from a
specific interaction. Also, due to the lack of expli-
cit wave functions, the matrix elements (5 (rJ ) }
involved in the spin-spin term (5.1) were not calcu-
lated but simply taken from the meson or the
baryon case and therefore overestimated (compare,
e.g., the values of the a's in Table I for QQ, QQQ,
and QQQQ). Here we shall try to calculate the hy-
perfine splittings in a more realistic way.

First, we rewrite (5.1) as (for equal masses)

I/ss(i'j) = CS'(r J )Xgkj a; o;— (5.2)

and we determine C by imposing the reproduction
in the HOA of the experimental hyperfine splitting
of charmonium

hill =M(J/f) M(r,)—
=0.112 GeV . (5.3)

With (5 (r)) =(a/n)3~ and the oscillator parame-
ters in Table I, this gives

C =0.146 GeV

C =0.103 GeV
(5.4)

Note that with purely phenomenological potentials,
the hyperfine constant C has no direct connection

V. HYPERFINE CORRECTIONS TO THE S STATE
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with the strength of the central force and can be
treated as an independent parameter. Such a stra-

tegy was adopted for instance in Refs. 10 and 15.
Here C" is only slightly modified due to the use of
HOA instead of exact wave functions. For a po-
tential with an explicit Coulomb piece like (2.16),
C can be in principle deduced from the central po-
tential if the 1/r term is seriously understood as
one-gluon exchange. This would give

C' = =0.126 GeV
6m

(5.5}

2' &cx3(5(r„)& =
n(ai+a3)

3/2

The results are displayed in Table IV for the cccc
case and potential I. They are almost identical for
potential II. This is not surprising as soon as both
models are adjusted on the experimental J/f
splitting. The hyperfine corrections are small and
repulsive except for one of the 0+ states. Since
during the same time, the threshold has been
lowered from the spin-averaged 2M(cc }to
2M(g, )—a negative shift of 168 MeV—it is clear
that all cccc states remain far above the threshold
in those potential models. The color mixing,
which has been neglected here, does not seem suffi-
cient to bring the 400 MeV of extra attraction
which are necessary. Note also that the annihila-
tion term, if included, would give a repulsive con-
tribution

Our numerical study supports our statement in
the Introduction that heavy multiquarks cannot

TABLE IV. Diagonal hyperfine corrections for the
cccc S states in the case of potential I.

in rather good agreement with the empirical deter-
mination (5.4).

It is easy to calculate the diagonal hyperfine
corrections to the masses calculated in Sec. II,
since in the HOA

' 3/2
a&

(5(r»)) =

rely upon chromomagnetic forces to achieve their
binding below their dissociation threshold.

VI. I' STATES

We now turn to higher states with negative pari-
ty. For simplicity, we keep to the cccc case. Vari-
ous types of P states can be considered, the true
state (QQ)i-(QQ)3, the mock one (QQ)6-(QQ }6,
where the diquarks and antiquarks are pure S
waves, a state (QQ }s-(QQ}s, or more general super-
positions. All are, of course, expected to lie above
the absolute threshold for natural dissociation
2M(QQ)„made of two quarkonia in the ground
state. One may argue, however, that the decay
into the lowest channels is sometimes suppressed
by the dynamics of the quark-rearrangement pro-
cess. For instance, a pure (QQ)-(QQ) P state with
S-wave diquarks would not decay into two S-wave
mesons, but should produce at least one P-wave
meson. Such rules, which have been derived by
Gavela et al. for the harmonic oscillator, are ex-
pected to be almost exact within any potential
model.

In a spontaneous dissociation, the quarks are
simple spectators, so the spin and the total orbital
momentum are separately conserved in the superal-
lowed decays. This gives further interesting re-
strictions. Consider for instance a 1 T state
with total quark spin 2. It cannot decay easily into
only J/P or rk's, since the overlap integral of ini-
tial and final wave functions vanishes. Moreover,
the q,XO and g,X~ channels are excluded by total
angular momentum and quark-spin conservation,
respectively. So, it will decay mainly into QXO,

whose threshold is at around 6.51 GeV. The prob-
lem is now whether or not this 1 (cc-c~c states
lies below the PX0 threshold. Some hope relies
upon the spin-orbit and tensor interactions, which
are not negligible. Remember, indeed, that those
forces are responsible for the rather large splitting
of the X states of charmonium.

To estimate the mass of these P states, we use
the following trial wave function:

Color state
Unperturbed
mass (GeV) JP ~ (GeV)

f =N'exp[ ——,ai(gi +gz ) , ai(3 ]g—z—
(6.1)

6-6
3-3

6.383
6.437

0+
0+
1+
2+

0.017
—0.011

0.003
0.032

(m =+1 or 0) which are analogous to those of Eq.
(2.20) for S states. Here g& joins the center of the
diquark to that of the antidiquark. As for S states
we neglect color mixing whose effect on orbital ex-
citation has been studied by Gavela et ul. in the
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case of harmonic forces. After minimization on
a& and a3, we get the results displayed in Table IV.
With both additive potential models I and II, the
masses turn out to be rather high, above any ggi
dissociation threshold.

We now work out the spin corrections in the
case of the potential I. The effect of the spin-spin
forces (5.2) is easily estimated for the wave func-
tion (6.1). The relevant matrix elements are
(5i2) =(ai/~) and (5,i) = [a&/(ai + a3)]
[2aiaq/m(ai + ai)] . The spin-spin splittings are
dominated by the terms internal to the diquarks,
which are always repulsive. The exact value is
given in Table V.

In addition, we have spin-orbit and tensor com-
ponents

tance r;i is replaced by g3. As a result, we get ef-

fective tensor and spin-orbit operators between the
diquark and the antidiquark. Their contributions
are displayed in Table VI for the lightest P states.
Also shown is the lowest superallowed threshold.
We note that all the splittings are extremely small
and the masses remain very high.

Summarizing, it seems hopeless to get narrow
cccc P states within additive potential models. Of
course, there are some uncertainties in our esti-
mates. Our masses are, however, too high to be
pushed down below the disintegration threshold by
refining the calculation. In fact, drastic changes in
the quark dynamics would be necessary to modify
our conclusions.

VII. SUMMARY AND DISCUSSION

as
..3
EJ

3 k
4 re

Og + CTJ.

(6.2)

Vr(i,j)=— Jz, a;(3o, .r,i a,"'rV —o,"oi)
16m, r,J-

(6.3)

The linear confining term is assumed here to be a
Lorentz scalar, as indicated by the phenomenologi-
cal analysis of the spectrum of mesons and bary-

ons. ' Note that the expression (6.2) needs in prin-

ciple some corrections when the (i,j) pair is not at
rest. Summing the contributions from all pairs
involves some tedious algebraic manipulations. To
get a first rough estimate of the splittings, we re-

place, as in previous works, ' the operators 1IJ,
i =1,2, j=3,4 by the classical value 1/2 where 1

is the angular momentum between the diquark and

the antidiquark. Similarly each interquark dis-

In this paper, we have investigated several ways
of binding four heavy quarks together, in an at-
tempt to get narrow states, i.e., lying below any
threshold for spontaneous dissociation. The result
depends on the assumptions made on the quark
dynamics and on the flavor combination in which
the quarks enter.

We first considered the very general class of ad-
ditive models V=+, X;X~V,(ri). Such a choice
is made rather often in the literature. By diagonal-
izing such a QQQQ potential in the color space,
Lipkin accounted for the effect of color mixing,
ignoring possible restrictions due to the Pauli prin-
ciple in the case of identical quarks. He showed
that in some cases of optimal attraction, the four-
quark potential is above the potential governing the
dissociation threshold, i.e.,

V(QQQQ) & V(QQ)+ V(QQ) .

This rather general result is violated only for po-
tentials with unreasonably sharp variations. It
strongly suggests that the QQQQ states are un-

TABLE V. cc-cc P-state mass spectrum.

Model I Model II

3-3

6-6

Q] =F2

Q) =F2

6.718
0.224
0.164

6.832
0.141
0.270

6.714
0.279
0.201

6.822
0.173
0.332
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TABLE VI. Spin effects of the lowest P states, in the case of potential I.

Color gP Threshold
Unperturbed

mass
Spin-spin

shift

Spin-orbit
and tensor

shift

6-6
3-3

1
0-+

g, 'g (6.4)
(6.39)

QXO 16.51)

6.832
6.718
6.718

0.011
0.010
0.020

0
—0.023
—0.024

stable, i.e.,

M(QQQQ) &M(QQ)+M(QQ), (7.2)

since the configurations of optimal attraction are
likely to attract a large amount of the wave func-
tion and hence to play the dominant role. There
are, however, other configurations where the in-
equality (7.1) is reversed, casting some doubt on
the ordering (7.2) of the masses. This is the case,
for instance, when the two quarks are close to each
other and form a color-3 diquark spatially separat-
ed from the antidiquark. In fact, a rigorous proof
of the inequality (7.2) requires a four-body calcula-
tion. This was done by Gavela et al., who com-
puted the masses of the QQQQ ground state and
orbital excitations in the case of identical quarks
interacting through a harmonic potential. They
found all states rather heavy. In particular, their

QQQQ ground state lies above the dissociation
threshold, i.e., satisfies the relation (7.2). In this
paper, we simplified the treatment of color, as ex-
plained in Sec. II. Within this easier framework,
we proved that in the case of identical quarks,
there is no stable QQQQ state, a result independent
of the shape of the confining potential Vs. Using
phenomenological interactions, we found for in-
stance the first cccFstate around 300 MeV above
the threshold made of two charmonia, and the
spin-independent corrections do not appreciably
reduce this gap.

We also considered some examples of orbitally
excited multiquarks, namely the cccc P states.
Under some assumptions on the decay mechanism,
one may argue that, for some of those states, the
first threshold is fX instead of rl, rl, . Even so, we
did not find any narrow cccc I' state emerging
from our calculation.

There are alternatives to these simple additive
models. Barbour and Poriting for instance, did
not assume that color-octet exchanges govern the
long-range potential. Instead, they took seriously
the rule given by the elongated bag model, which is

Vzz ~ I zz/V Cz, where Cz ——Cz is the SU(3)
Casimir operator associated with the color charge
born by the subsystems A and B at each end of the
string. Note that their potential is not of the
two-body type any more. The work of Ref. 37
concerns baryons and multiquarks made of light
quarks. For the case of heavy quarks, we know
that the cylindrical-tube limit of the bag is rather
elusive. ' So, to derive the potential, it is more
appropriate to start from a spherical bag, as done
in Sec. IV. We got multibody forces which pro-
vide additional attraction at short distances. This
seriously increases the chances of having narrow
multiquarks. For configurations like cccc or bbbb,
we indeed obtain masses not too far from the
threshold. However, we can hardly draw conclu-
sions on the stability of the states from our rough
four-body calculation done with the spherical ap-
proximation for the bag and the usual simplifying
hypotheses like the neglect of surface tension or
the leading order in a, inside the bag. It would be
worthwhile, in our opinion, to investigate this bag
model in more detail, even if the technology in-

volved is not easy, to see whether it leads, contrary
to the naive additive model, to a proliferation of
heavy multiquarks.

An important point concerns states made of
quarks bearing different masses. Although for our
calculations in Sec. III we used additive models,
our qualitative conclusions are certainly rather gen-
eral. The cryptoexotic configuration QQ'QQ ', lies
above its lowest dissociation threshold QQ+ Q'Q'.
On the other hand, the genuine exotic QQQ 'Q '

can be stable against dissociation if the ratio of the
quark masses is large enough. Our predictions
concern states like ttss which are far from the
present experimental possibilities of production and
detection. Such exotic objects, however, could not
be misinterpreted as orbital, radial, or gluonic exci-
tations of ordinary mesons and would provide
unambiguous signatures of their multiquark struc-
ture.
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