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We give a JWKB proof of a relativistic duality relation which relates an appropriate
energy average of the physical cross section for e+e ~qq bound states —+ hadrons to
the same energy average of the perturbative cross section for e+e ~qq. We show that
the duality relation can be used effectively to estimate relativistic and radiative correc-
tions for bound-quark systems to order u, . We also present a formula which relates the
square of the "large" 'S& Salpeter-Bethe-Schwinger wave function for zero space-time
separation of the quarks to the square of the nonrelativistic Schrodinger wave function at
the origin for an effective potential which reproduces the relativistic spectrum. This for-
mula allows one to use the nonrelatiuistic wave functions obtained in potential models fit-
ted to the f and Y spectra to calculate relativistic leptonic widths for qq states via a rela-

tivistic version of the Van Royen —Weisskopf formula.

I. INTRODUCTION

Duality as used in the study of e+e annihila-
tion equates an appropriate energy average of the
physical cross section for e+e ~qq bound
states —+hadrons to the same energy average of the
perturbative cross section for e+e ~ free qq sys-
tems calculated in QCD, '

( trba d )—( trf „}+small corrections

This relation has been used extensively in the
analysis of data on heavy-quark systems, e.g., to
extract quark masses from the data, to predict lep-
tonic widths, and to test QCD.

The nonrelativistic version of duality has been

shown to hold in the JWKB approximation for
single-channel potential models of the qq sys-
tem, ' ' and has been checked by numerical cal-
culations. ' We recently extended the proof of
nonrelativistic duality to multichannel processes,
and showed using methods that go beyond the
JWKB approximation that the correction terms in
Eq. (I) are calculable. '

In this paper, we give a JWKB proof of the rela-
tiUistic duality relation. As part of our proof, we
investigate the connection of the Salpeter-Bethe-
Schwinger (SBS) wave function for the relativistic
bound qq system with the Schrodinger wave func-
tion used in the conventional nonrelativistic
description of the g and Y systems. ' We show, in
particular, that for SBS and Schrodinger descrip-

tions of the qq system which have the same spec-
tra,

I 0 s(0 0)
~

M„'
24~q U nonrel

~

t)'t„"s""'(0)
~

(2)

where U' and v„',„„~are the relativistic and nonrela-
tivistic velocities of a free quark in a pair with to-
tal energy M„' =2m~+E„—V(0). Here P„s(0,0) is
the "large" St component of the SBS wave func-
tion for zero space-time separation of the quarks,
and P„s(0) is the Schrodinger wave function of the
equivalent nonrelativistic system evaluated for zero
spatial separation of the quarks. This remarkable
formula allows one to use nonreltttivistic wave
functions obtained in potential models fitted to the
t}'t and T spectra to calculate relativistic leptonic
widths for qq states via a relativistic version of the
usual Van Royen —Weisskopf formula. '

The closely related proofs of the relativistic du-
ality relation, and of Eq. (2), are given in Sec. II of
the paper. We discuss the background of the prob-
lem in Sec. II A. In Sec. II B, we analyze the
structure of the complete SBS wave function for a
J =1 qq bound state, and derive a relativistic
expression for the leptonic decay width in terms of

i P„s(0)
~

. Some of the results on the SBS wave
function are apparently new. In Secs. II C and
II D, we consider the reduction of the SBS equa-
tion to Schrodinger form, and derive a JWKB ex-
pression for

~
t(„s(0)

~

in terms of the density of
states. In Sec. II E, we summarize our results and
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discuss the connection of the nonrelativistic and re-
lativistic wave functions.

We conclude the paper by showing in Sec. III
that the duality relation in Eq. (1) can be used with
the radiatively corrected free-quark cross section'
for e+e —+qq to estimate relativistic and gluonic
radiative corrections to the bound qq system. In
particular, we recalculate approximately the known
order-a, gluonic correction to the leptonic widths
of the S~ qq bound states, ' ' and estimate the
corrections of order a, . The relativistic and radi-
ative corrections are important for the cc and bb
systems (a, -0.2, (v /c ) )0.23 for the cc system,
and )0.08 for the bb system }.

II. PROOF OF RELATIVISTIC DUALITY

We note that u„"'""'=[E„—V(0)]'/ /m~'/ is the
velocity of a free quark with energy —,[E„—V(0)].

The nonrelativistic duality relation, Eq. (1), is
obtained by combining the above results, averaging
the cross sections over some energy range, and ap-
proximating the sum in Eq. (4) by an integral.
Singular potentials can be handled by modifying
o.r„, to include effects of the short-range (singular)
part of the interaction. As we remarked in the In-
troduction, the duality relation can be proven
beyond the JWKB approximation, and is quite ac-
curate when the calculable corrections are includ-
ed

The relativistic duality relation has heretofore
not been proven. The relativistic free cross section
(without radiative corrections) is given by

A. Schrodinger versus relativistic duality
W of„„=6vra eq u(1 ——,u ) . (7)

The nonrelativistic free cross section for
e+e ~qq is given by

The relativistic bound-state cross section is given

by

qgg2»~c& & &2e 2&»arel ~ &.norlrc&r gy ~ 2 (3) 1V ab,„„,——g 6u'I „(e+e )5(8'—~„), (8}

where f@' "(0}is the fry qq wave function for en-

ergy E=W 2m& —and v"" =(E/mq) /. With
conventional plane-wave normalization,

~

fE' "(0)
~

=1. The nonrelativistic cross section
for producing qq bound states in a confining poten-
tial is given by

W a"' "=+661'"' "(e+e )5(E—E„),

where M„=2m&+En is the mass of the nth qq
bound state, and I „(e e ) is given by a relativis-
tic version of the Van Royen —Weisskopf formula
which we will derive in the next section,

I „(e+e )= (16m' ee /M, ) I f~s(0)
I

(1—~ ) .

It has been shown by JWKB methods' ' that

~

f~"'"(0)
~

is related for nonsingular potentials
to the density of states dn/dE„by

m '~2 dE„
~

yaolu'cl(0)
~

2 'w [E V(0)]1/2ns —
4g n

dn

2
nonrel

4H
(6)

(4)
where I „"' " and E„are the leptonic width and en-

ergy of the nth qq bound state. I "„' " is related to
the bound-state wave function at the origin
f"„&""'(0),by the nonrelativistic Van Royen
—Weisskopf formula' '

I'"„""(e+e )=(4m'a eq /mz )
~

1(„"s""(0)
~

Here g„q(0) is the "large component" of the S-
state qq Salpeter-Bethe-Schwinger (SBS) wave func-
tion evaluated for zero space-time separation of the
quarks. 6„ incorporates in D-state effects and
terms which arise from spinor factors and "small
components" in the full relativistic amplitude, as
discussed by Bergstrom et al. , and approaches
(1——,u„) for nearly free quarks.

It is customary in most work on qq systems to
assume that the SBS wave function in Eq. (9) can
be replaced by a Schrodinger wave function.
[Furthermore, the factor (1 —b,„) is usually omit-
ted. ] With this replacement,

~
g„s(0)

~

is related to
dE„/dn by Eq. (6), and the relativistic free and
bound-state cross sections of Eqs. (7) and (8) are
not dual.

We will show that with a proper treatment of
the relativistic wave function, Eq. (6) is replaced
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for relativistic systems by

(10)

~
f~(0)

~

in Eq. (10) with M„' replaced by M„
and 4„' omitted was recently proposed ad hog by
Tainov~s as necessary to restore duality for rela-
tivistic systems. ]

where U„' is the relativisitic velocity of a free quark
with energy —,M„' = —,[M„—V(0)], and b, „' is a
correction for retardation and radiative gluonic ef-

fects. The relativistic duality relation, Eq. (1), is
then obtained by substituting Eqs. (9) and (10) in

Eq. (8), averaging the result over an appropriate
energy range, and replacing the sum on n by an in-

tegral. We will discuss this relation and give an

application in Sec. III. [The expression for

B. I „(e+e ) and
the Salpeter-Bethe-Schwinger wave function

The leptonic width I'„(l+l ) for the decay of a
J =1 qq system (vector meson) of mass M„
into a lepton pair through a single intermediate
photon is given by

I „(l+l )=(16nu e~ /M„)vI[1+2(mi/M„) ]—, g j i j i,
A,

j.= 0 ',y, o
2

(12)

(The factor I/W2 is introduced for later conveni-
ence. ) This matrix element can be expressed in
terms of the momentum-space SBS wave function

gi(M„,p) =f p.i(M„,p), a,P=1, . . . , 4, by

where j ~ is essentially the matrix element of the
quark current between the vacuum and the meson
rest state with spin projection k,

I

functions in Sec. II C, will complete the proof of
Eq. (10) in Sec. II D, and will discuss the connec-
tion of our results with the usual Schrodinger
description of the qq system in Sec. II E.

The general structure of Pi is easily determined.
We first separate fi into "positive-energy" and
"negative-energy, "or "large" and "small, "parts
with respect to the first and second Dirac indices
using the usual projection operators A+(p) for en-

ergy E(p)=(p +m& )'~ and momentum p( —p),

dp 14

(2n. )" 2

(13)

A=A" +4' +4 '+4
Here

(14)

where C =i y2yo is the usual charge-conjugation
matrix, and the trace is over the Dirac indices.

The 16-component wave function Pi(M„,p) is a
solution of the (relativistic) SBS equation given
below as Eq. (28). We would like to relate this
function to the wave functions which appear in
nonrelativistic Schrodinger models for the qq sys-
tem. We will first study the kinematic structure of
gi, and will show in the remainder of this section
that Pi can be described in terms of eight indepen-
dent wave functions for interacting quarks and an-
tiquarks: two S~, D~ combinations for the
"large-large" and "small-small" components of fi,
and two P)/2, P)/2 combinations which describe
quark —vector-meson and antiquark —vector-meson
interactions in the "large-small" components.
Only the S&, D& combinations enter j~ and I „.
We will consider the reduction of the SBS equation
to a Schrodinger-type equation for these wave

with

&Id~ p po) (15)

A+(y)=[E(y)+a y+Pm~]/2E(p)

= g(m&/E)u(y, s)ut(y, s), (16a)

A (p) = [E(p)—a p —Pmq]/2E(y)

= g (m~/E)v( —p,s)ut( —p, s) . (16b)

' 1/2
E+mq

u(p, s)=
2Nlq

X, , (17a)

The Dirac spinors u and U are given in terms of
two-component Pauli spinors g, by
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u( —p, s) =
1/2

E+mq
2mq

0 P
E+mq

1

We next extract the spinor structure of g)) im-
plied by Eqs. (14)—(17), and write 1(~—+ in terms of
a set of functions X;+, )) which depend on the spin
projections s, s' of particles 1, 2. Thus,

X ( —& 0'p)Xg (17b)
I

with

eapk(~n p po)= y(ms/E)ua (p s)up ( —p s )&m')), (~N p po)
$$

= g (ms/E)u"'(p, s)[—u '( —p,s')C]g+)+
$$

(18a)

~m')), = Qua (P»)up ( —P» ))tap;)).
++ (1)t (2)f

aP

=u'" (p,s)g))Cyou' '( —p,s'),

(18b)

(18c)

P~p g( W„,p,po) = g (m&/E)ua '(p, s)u'i) '(p, s')X,+;)„(8'„,p,po)
$$

= g(mz/E)ua '(p, s)[—u' '(p, s')C]g~ ~ (19a)

with

X~~ = Qua (P,s)vp ( —P,s')P )s, )),

aP

=u ' "
( p, s )gqCyou

' '( —p,s'),

(19b)

(19c)

etc., where we have used the relation u =Cu, and have treated gap ~ as a 4X4 matrix in Eqs. (18c) and
(19c). We will also regard the functions X;+, )) as elements of 2 X2 matrices in the two-particle spin space.

With this notation, the matrix element
~ )), Eq. (13), is easily reduced to a trace of products of Pauli spin

matrices with the X's,f, '
X[U "(—p, s')yu'"(p s)&'. ~

1 dp mq

v 2 (2m) E(p) a

+ —(2)( )y ())( )y+ —+—(2)( ) ())( )y
—+

+u "'(p,s')yU'"( —p s)X„g ] (20a)

E mq E mqf ~
Tr i err 0' — p cr p&g +'o p—cr 'p ( i o2)&). — '

2 (2n) E E

+ p (Xk+- Xk+) .
mq

The physical interpretation of the various terms in

Eq. (20) is shown graphically in Figs. 1(a)—1(d).
The X++ term describes dissociation of the vector
meson into a quark and antiquark [Fig. 1(a)]. The

I

7+ term describes the annihilation of a quark
and the vector meson into a quark [Fig. 1(b)],
while X + [Fig. 1(c)] describes the corresponding
process q V—+q. Finally, the X term describes
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V

(b)

meson rest frame, eq ——(0, e~), so 1(~ must be of the
form e~.P, with P a polar vector with C= —1.
Also, each antiparticle spinor in Eqs. (18)—(20) in-
troduces a factor —i02 when reduced to two com-
ponents [see Eq. (17b)]. The X's are consequently
of the form

g&++ = e~.A++( io—2), X~ =icr2e~.A

X~ =@~.A+, Xq+=io2e~ A +( io—z),
(21)

V

(c)

q

(d)

the annihilation to the vacuum of the vector meson
with the quark-antiquark pair [Fig. 1(d)]. Given
the above interpretation, we expect the X++ and

wave functions to correspond to S~- D~ qq
3 3

states, and the g+ and 7 + wave functions to
correspond to P&~2- P»2 qV and qV states, respec-
tively. The structure of the matrices 7-+-+ is deter-
mined by conservation of angular momentum, par-
ity, and charge conjugation. The wave function 1(t~

for a J =1 state must be proportional to the
polarization vector e~ of the vector meson. In the

FIG. 1. Schematic representation of the g functions
in Eq. (20). (a) The dissociation of a vector meson V
into a S&-'D~ qq pair described by P++. (b), (c) The an-
nihilation of q (q) with V in a P~q2-"I'~~2 configuration
to give a final q (q) described by P+ Q' +). (d) The
annihilation of a 'S)-'D~ qq pair with V described by
x

A (popo)K= —A ( —p~ —po)

'A+ (p,po)Ã= —A +
( —p, —po),

(22b)

(22c)

T ~

where A is the transposed matrix, and 4 = —io.2
is the 2X2 charge-conjugation matrix.

The most general form of the X matrices con-
sistent with these constraints is

where the A's are 2X2 matrix functions of po and
p. Because of the odd relativegarity of the q and

q in X++ and 7,A++ and A must be axial
vectors, and are therefore expressible as linear com-
binations of the two independent axial vectors o
and po'p. Similarly, A+ and A + must be po-
lar vectors, and therefore expressible as linear com-
binations of pl and o Xp.

Under charge conjugation, the quarks and anti-
quarks in Eq. (20) and Fig. 1 are interchanged. As
a result, p —+ —p, po~ —po, the initial and final
spin indices on the A's are interchanged, and (for
C= —1) we must have

'A++(p, po)K= —A++ ( —p, —po),

(22a)

&~ 01('s(
I p I, lao I

)+-, (36P~ f—~~.o Wn( I p I, leo I )](—i~a)
2

=i~2[ ~~ ~Ps(l p I Iio I)+ ~(3&~i"~P &~ ~MD(I p I

—
Ipo I)]2

x~ =(~g.pi+i~a. ~xP)[02p(I p I, lpo I)+io42p(I p I luo I)]
+(2~q pl —i~q. o xp)[&4P( I p I, Ipo I )+po&4P( I p I, Ipo I )],
~+2(~A, J «~ ~ xi )( —~~2)[@~+(—I p I li o I

) —5'o@2&( I p I leo I )]

+io2(2~q pl+i~q. o xp)( —io2)[f4~( I p I lpo I ) —po1('4, (
I p I Ipo I )] .

(23a)

(23b)

(23c)

(23d)

g++ and g are expressed, as expected, as
combinations of S~ and D& qq wave functions
(the spin-angle functions are normalized). The
spin structure of X+ R +) similarly involves a

combination of P&&z and P&&2 states for the vec-
tor meson and the incoming q (ql, expressed in
each case with particle 1 outgoing. However, there
are two "radial" wave functions fz and gp for
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each of these states, rather than the single func-
tions which would be expected nonrelativistically.
The extra functions are multiplied by po, and
therefore lead, upon Fourier transformation, to
space-time wave functions which are odd under the
interchange of t& and tz and vanish for t& ——t2.
While the complete equal-time wave function
therefore involves only the six independent "radial"
functions expected naively, the extra functions will
contribute in processes in which the time ordering
is important.

The decomposition of the full SBS wave func-
tion given by Eqs. (14), (18), (19), and (23), and our
interpretation of the terms, are apparently new.

We now return to the current j ~ in Eq. (20b).
It is easily seen from Eqs. (23) that the X+ and
X + terms do not contribute to j ~ since the terms
proportional to p cancel or integrate to zero, and
those containing 0. have a vanishing trace. This is
illustrated in Fig. 2. The photon current acts at a
single space-time point, to which the two quarks
must connect, and there are consequently no
graphs which incorporate Figs. 1(b) and 1(c).
After calculation of the remaining traces, j ~
reduces to

(a)

V

FIG. 2. (a) and (b) give schematic representations of
the contributions of P++ and P to j ~, Eqs. (20b) and
(24). Because the current acts at a point, the q and q in
(a), (b) must emerge from (or annihilate with) V at equal
times. The g+ and g + configurations in Figs. 1(b)
and 1(c) cannot appear in equal-time diagrams, and
therefore do not contribute to j q.

d4j.=-. "'. ~ p. p. +: p. p. 1--":
(2m. ) 3 E

~j E mq—
~4D (

I p I I po I
)+ (1'D(

I p I I po I )l

16m' eq vl mlI „(l+1-}= ' 1+2
M„

It will be convenient for S states to extract the
dominant term g„s(0) from g, and write g as

(25)

g „=l(„,(O)(1 ——,
' a„), (26)

where the correction term 6n is of order v /c .
To this order, I „(e+e ) is given by the modified
Van Royen —Weisskopf formula of Eq. (9),

where g involves only equal-time SBS wave func-
tions.

Finally, the leptonic width I'„(I+l ) from Eq.
(11) is

We will show in the next sections that
I g„s(0) I

is related to the density of S~ states by
Eq. (10). The relativistic duality relation then fol-
lows. Our method involves the reduction of the
SBS equation for the exact relativistic wave func-
tions to an approximate Schrodinger equation for

This equation involves an energy-dependent,
slightly nonlocal potential. We then derive the
desired exPression for

I
llj„s(0)

I by a modification
of the JWKB argument given by Quigg and Ros-
nef.

We consider first the reduction of the SBS equa-
tion to Schrodinger form.

C. Reduction of the Salpeter-Bethe-Schwinger
equation to Schrodinger form

16~+ e&I „(e+e )=
2 ll(„s(0)

I
(1—b„) .

n
(27) The SBS equation ' is the wave equation for

the bound state g of two Dirac particles, in our
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case the q and q,

[S"'(—,P+p)S"'( —,P —p)] 'gi(M„p)

=i f K(M„,p, k )gi(M„,k ) . (28)
(2m. )

S" is the free one-particle propagator, P=(M„,O),
M„ is the total energy of the nth bound state, and

p is the relative four-momentum of the two parti-

cles. The kernel E includes the self-mass correc-
tions to the quark propagator (all one-particle-
irreducible graphs) and all two-particle-irreducible
interactions. We assume that this equation still
holds in the presence of a confining interaction, as
it does in the corresponding nonrelativistic case. '
The amplitude gi is normalized according to the

condition

d dk=f Pi(M„,p) I [iS'"(—,P+p)S"'( —,P —p)] '(2') 5 (p —k) —K(M„,p, k) ]pi, (M„,k)=&ii, .
(2~)' (2~)'

(29)

Equation (28) is a set of coupled integral equations for the eight wave functions fs, fD, . . . , discussed in

the preceding section. However, to calculate I „,we actually need only the equal-time (or "instantaneous"}

projections of the S- and D-state wave functions. We can obtain an equation for these quantities if, follow-

ing Salpeter, we omit the self-mass corrections and ignore the retardation effects in the kernel in Eq. (28),
that is, if we treat K as independent of po and ko, K=K(M, p, k). The corrections associated with these ap-

proximations can be calculated in perturbation theory 20, 2z, 24, 27

We again introduce the positive- and negative-energy projections gi--(M„, p,po) of p, Eq. (15), and define

the corresponding equal-time amplitudes P„+--+(p) (suppressing the subscript A,) by

d&o —++0'-'-(p)= f 2
0'-'-(M. , p po} (30)

Then, following Salpeter, we shift the inverse propagators to the right-hand side of Eq. (28) and integrate

on po, ko to obtain the Salpeter equations

3

[M„—2E(p)]$„++(p)=A'+'(p)A'+'( —p) f yo"yo 'K(M„,p, k)P„(k),
(2ir)

3

[M„+2E(p)]P„(p)=—A"'(p)A' '( —p) f &
yo"yo 'K(M„, p, k)P„(k),

(2n. )'

y+ —
y

—+ 0

(31a)

(31b)

(31c)

It is convenient to extract the spinor dependence of P„++ and P„as in Eq. (18) and to introduce wave

functions P„-+„(p) defined as

P„++(p)=g u,"'(p)u,' '( —p)P„+„(p), (32a)

where

Plq(p)= g v,"'(—p)v,' '(p)P„„(p),... E(p)
(32b)

~i. ~4.,s( I p I
)+ 2(3~i.P~ p ~i. ~)P.,n( I p I

} ( —i~2)
$$

(32c}

~ ei, .~4',s( I p I
)+ , (3&~'P~'P &~ ~—O'.D( I p I

}—
$$

(32d)

with

4.(IPI)= f 2 0.(IPI

We can rewrite Eqs. (31) as integral equations for the wave functions 4+-(p) or itj„s,g„D,

(32e)
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[M„—2E(p)]@„+,„(p)=(~++@„+)„(p)+(M+4„)„(p),
[M.—2«p)]~'. , (p}=(~ @, ) (p)+(~ 4„)„(p),

where the integral operators A" are defined by

(33a)

(33b)

(M++4„+)„(p)=g I i u,"'(p)u,'. '( —p)E(M„,p, k) u„'"(k)u,' '( —k)4„+ .(k),
(2n) E(p) E(k)

(34a)

(M+ 4„)„(p)=g I i u,
' '(p)u, ' '( —p)IC(M„, p, k) v„'"(—k)v„' '(k)4„~(k),

(2m) E(p) E(k)
(34b)

with similar expressions for 4 + and A . In matrix notation

(M„2E)5 —M++ ——M+- C+
+ —(M +2E)5N n

(35)

where

d k5= I &
(2ir) 5(p —k)5 5, ,

(2n. }
(36)

p
mq

p4 +~++ @+ E y+
4mq

3 n n n

(41)

The normalization of the momentum-space wave

functions is given in terms of the matrix M/ by

dcf p @t(~) B&l
BM„

(37)

L

Equation (33b) determines 4 in terms of e+,

4„=—[(M„+2E)5+M ]-'M +@+ .

(38)

[2E(p)—M„]4„+(p)+(A ++4„+)(p)=0 (39)

to order v2/ct, and is normalized so that

d BA"++dp +t 5
t}A

aM„
@+=I . (40}

We will work in the rest of the paper with Eq.
(39), although the results could be generalized.

Our final step in the reduction of the SBS equa-

tion of Eq. (28) is to expand E(p) =(p +m~ )'~

in Eq. (39) to obtain a Schrodinger equation with

relativistic corrections,

For the usual models for qq systems with only

scalar- and vector-exchange interactions, 4"+

and Pi" + are of order v /c2 relative to Xi ++ in

the nonrelativistic region. 4 is consequently of
order v /c relative to 4+ and can be neglected.

[Even for M+,M +-M++,
-O(v /c )4+.] 4+ then satisfies the equation

where E„=M„—2mq. This approximation is
correct to O(v /c ). Although Eq. (41) is in
Schrodinger form, it is not an "ordinary"
Schrodinger equation because the "potential"
A ++ is in general nonlocal and energy-dependent.
In addition, the p term should properly be treated
as a perturbation.

D. Evaluation of
~
P„s(0}~2

In Eqs. (25)—(27), we related the leptonic width
I „(e+e ) for the decay of a bound Jp=1 qq
system to

~
g„s(0) ~, the square of the relativistic

large component S-state SBS wave function at the
origin (zero space-time separation of the q and q).
Krammer and Leal Ferriera' and Quigg and Ros-
ner" used JWKB arguments to show for the ordi-
nary Schrodinger equation that

~
P„s(0)

~

is relat-
ed to the density of states dn/dE„as shown in Eq.
(6). (A higher-order JWKB discussion was given
recently by Pasupathy and Singh. ' The corres-
ponding relation for arbitrary orbital angular
momentum was derived by Bell and Pasupathy. '

)

We now extend this result to the relativistic case.
The coordinate-space analog of Eq. (41) for the

Salpeter wave function %„(r}—=%„(r,0} is

v' v4
+ + V %„=E„%„,(42)

mq 4mq
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where %„and V are the Fourier transforms of 4+
and A ++. V is a nonlocal, energy-dependent in-

tegral operator,

(Vq'„)(r)= I d'r'V(E„, r, r ')+„(r ') . (43)

4„ is to be normalized so that

Id r+„1— %„=1.
aE„

J

The real form of the SBS kernel E(M„,p, k),
hence of V(E„,r, r '), is of course not known.
However, models which treat the qq interaction as
local are strikingly successful in explaining the
properties of the cc and bb systems. ' This sug-
gests that any intrinsic nonlocality in K is small, or
is well approximated in the empirical potential.
The additional nonlocality associated with the spi-

nor factors connecting E to A ++ and V pertains
only over a range on the order of the Compton
wavelength of a quark. This will also have very
little effect in the region of the observed qq reso-
nances, where the empirical potential varies slowly
on the scale of a Compton wavelength. We there-
fore conclude that it is reasonable to treat V as a
local, but possibly energy-dependent, potential in
the following arguments.

Equation (42) is still a matrix equation in spin
space, and couples S- and D-state wave functions.
Since the S-D coupling and D-state effects are em-
pirically quite small in the cc and bb systems, we
will assume for simplicity that Vis spin indepen-
dent, and will consider only the S& states.

It is convenient to iterate Eq. (42) once to elim-
inate V in terms of E„—V. The modified S-state
equation for the radial wave functions
u„(v) =u 4nqI„s(r) is then given to order v /c by

Q~ = —mq(E„—V)u„+ [(E„—V)u„]+ (45a)

1 dv d&.

2mq dr dr
1, 1 d'V

m, E„——V+ (E„—V)'+, , u„+
4m " 4m' dr' (45b)

We can eliminate the term in du„/dr in Eq. (45b)—V/4m
by the substitution u„=m„e ', and find that
to order v /c

with

W~
+m~ (E„—V,rr) w„=0

dr

V,tr = V— (E„—V)
1

4mq
(47)

The (E„—V) perturbation term in V,ff is sig-
nificant only where it is small, (E„—V)/4m& « 1.
This condition is satisfied for the confining poten-
tials used to describe heavy-quark systems except
near the color-Coulomb singularity at the origin,
and for r~ ~, and is always satisfied on the aver-
age. As a practical matter, we note that the
Schrodinger wave function for a confining poten-
tial V decays to zero before the perturbation be-
comes large. We can therefore cut off the pertur-
bation at large r without changing our results to

l

order u /c, and with this proviso can treat V,rt as
a new confining potential "close to" V. The
color-Coulomb singularity is naturally smeared out
over a distance mq

'
by the nonlocalities discussed

above, but can also be treated separately. ' '
The Quigg-Rosner" derivation of Eq. (6) for lo-

cal potentials proceeds in two steps. The first step
relates

~
qi„s(0)

~
to the expectation value of

BV/Br, and is essentially unchanged for V nonlo-
cal. The second step uses a JWKB argument to
evaluate (BV/Br ) and requires some modification
for an energy-dependent effective potential. We
will sketch both steps.

We first write
~
+„s(0)

~

in terms of the radial
wave function by using the identity

'2
1 ~ d d~n

i e„,(0) i'= — J dr . (48)

We next use Eq. (45a) to eliminate the second
derivative of u„and find after some partial in-
tegrations that

E„—V(0) mq gV M„' gV
(
qi„s(0) ('= 1+ " '

)
u„(r) [' dr=

2mq 4a 0 " ar 8m ar

M„' =M„—V(0), where we assume V(0) is finite. [If this is not the case, one must treat the perturbation

(49)
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terms in Eq. (45) more carefully. ] This expression is identical to the nonrelativistic formula for

I
P"„s"""(0)

I
except for an overall factor M„'/2m~.

The normalization of the radial wave functions is determined by Eq. (44). It will be convenient to intro-
duce the normalization integral explicitly in Eq. (48), and write

I
%'„s(0)

I
as

f dr Iu„(r)
I

I

I
q'.s(0)

I

'=
8m

2 BV
dr Iu„(r)

I
1—

(soa)

r

f dr Iw„(r) I' 1+
T

M„'

8m E„—Vf dr w„(r)
I

1+ 1
BV'
BE.

(sob)

—V/4m ' and have introduced factors of

(51)

I

f drIu I' = E„' 1+ (52)

where we have expanded the exponential in the relation un =one
Mn/2mq in both the numerator and denominator.

To evaluate the ratio of integrals, we follow the procedure of Ref. 11, approximate the w„'s in Eq. (50b)
by the JWKB solutions to Eq. (46),

w„=(E„—V,ff )
' cosP,

integrate only to the classical turning point ro, and replace cos P by its "average" value —,. We again as-

sume for simphcity that V is nonsingular at r =0. Singular potentials require a more elaborate treatment. '

We can then evaluate the integral in the numerator explicitly,
1/2

(53)

where E„' =E„—V(0). The integral in the denominator can be related to the JWKB expression for the ener-

gy eigenvalue E„,
r&

n'(n —
~ ) ms dr(E„V,rr)

'r . —
0

Differentiating with respect to E„,we find that

277 dn
n eff

mq 0

BV,ff

En
1— ro

dr E„—Vff
—1/2 E„—V

1+
2mq

BV
BE„

Then, combining terms, we obtain our final result:

(54)

m '"
I
+„s(o)

I

'=M„' ', E„'n
8 2 n 4

M„' v„' dM„

]6~ dn

dn
(ssa)

(55b)

where M„' =2m&+E„—V(0) is the total energy of
the pair at the origin and v„' is the velocity of a
free quark with energy —,M„',

' 1/2

1—
M'

n

Although the proof of Eqs. (55) would seem, as
given, to involve rather drastic approximations in
the JWKB evaluation of ( d V/dr ) for low-lying
states, and in the (unnecessary' ) restriction to non-
singular potentials, the corresponding nonrelativis-
tic result in Eq. (6) has been checked numerically
and is remarkably accurate even for n small. " We
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believe that Eqs. (SS) are equally reliable. Higher-
order JWKB results are discussed in Ref. 14.

E. Summary of results and relativistic duality

It will be useful to summarize our results and
comment on the connection between the nonrela-
tivistic and relativistic descriptions of the bound qq
system before deriving the relativistic duality rela-
tion.

The relativistic leptonic width for the decay of a

qq bound state is given in Eqs. (25)—(27). For the
e+e decay

where V„s(0) is the Salpeter wave function for an
instantaneous qq interaction, and 6„' incorporates
retardation effects and gluonic radiative correc-
tions. These corrections are discussed in detail in
Ref. 24.

The value of
I
'P„s(0)

I
is related to the density

of states dn/dM„(or dn/dE„) in Eqs. (55). The
corresponding result for a nonrelativistic Schrod-
inger system is given in Eq. (6). If we compare
Eqs. (6) and (55a}, we see that the wave functions
for relativistic and Schrodinger systems with
(necessarily different) spin-independent effective
potentials fitted to the same spectrum are related
by

16@a eqI'„(e+e )=,
I
1t„s(0) I

(1—5„),
n

(57)
M'

I q„,(o,o) I'=, , I
y"„; "(o)I',

4mq U nonre1

X(1—&„)(1—&„'), (58)

where f„s(0) is the large S-state component of the
exact qq Salpeter-Bethe-Schwinger wave function
at the origin, and 5„ includes the relativistic and
D-state corrections to the current matrix element
given in Eq. (24). Alternatively,

167Ta eqI „(e+e )= IV„(0) I

(59)

where v„',„„~——(E„'/m~)'~ . This formula allows us
to convert results obtained in nonrelativistic poten-
tial theory to "equivalent" results for a relativistic
theory, and should be a useful tool in heavy-quark
phenomenology.

The correction factor 5„ in Eqs. (57) and (58)
may be obtained from Eq. (24). To order v /c,

d4
&.=-', [q'.s(0)] 'I, ' [q'.s( I P I

Po)+&2q'.D( I P I Po}]
(2n) E

4mq d d
[V„s(0)] ' I dr Eo(mar) 0 „s(0,0)— [r%'„s(r,o)]+ v 2'P„D(0,0)—W2 [rip„D(r, o)]

3m dT

(60)

where Eo(mar) is the exponentially decreasing hy-

perbolic Bessel function. For nonsingular poten-
tials, we can expand the wave functions in Eq. (60)
in Taylor series, and find that

[E„—V(0)]+, +0~2 iP„'ii(0)

3mq my ns
3

1 p (0) v2 q'Io(0)
+ +0

me me 0'ns(0) 3
mq

(61)

where p„(0) is the momentum of the quark at the
origin. This is just the result which would be ob-
tained by approximating (E m}/E by p /2m& —in
Eq. (60) and identifying the resulting integrals with
(V %}(0). the exact result involves an averaging
over a region of radial extent mq ', and can be
used for singular potentials.

Relativistic effects on qq spectra and leptonic
widths have been discussed by many authors, but
are generally ignored in potential-model fits to
heavy-quark data except in connection with the hy-
perfine splittings of the states. 3 The usual pro-
cedure is to determine the nonrelativistic potential
V and wave function P"„'s"' (0) by fitting the ob-
served spectrum. The leptonic widths are then cal-
culated from the approximate Van Royen —Weiss-
kopf formula

I „(e+e )-
I

f"„'""'(0)
I

(1—b,„') .
n

(62)

This differs from Eq. (58) by the replacement of
the relativistic wave function by the Schrodinger
wave function, and by the omission of the correc-
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n

e-

(63)

(64)

(65)

(66)

tion factor (1—b,„). Nevertheless, as noted by property co-rrected nonrelatiuistic Schrodinger
many authors, this (incorrect} procedure gives description of qq systems.
good results for the ratios of leptonic widths, and We now have all the ingredients for a derivatio
absolute widths which are acceptable given the un- of the relativistic duality relation for nonsingular
certainty in the radiative correction 4'„. We obtain potentials. By duality we mean the approximate
a relativistically correct expression for I'„ in terms equality of an appropriate energy average of the r
of

~
P"„s "(0)

~
by using Eqs. (59) and (61) in Eq. lativistic cross section for e+e ~qq bound states

(58). The corrections increase the predicted widths with the same average of the free (noninteracting)
for the first three S~ states in the g system [as- cross section for e+e ~qq,
suming m, =1.45 GeV and V(0) =0] by factors of
1.037, 1.111,and 1.125, and increase the ratios
I (2S)/I'(1S) and I (3S)/I'( 1S) by factors of 1.071 The free cross section is given in Eq. ('7),

and 1.085. We conclude that relativistic effects W2 6 2 2
1

& 20'tree=&ra eq u
should not be ignored in calculations of leptonic
widths, and note that they may affect attempts to The bound cross section in the absence of (singu-

reconstruct the effective qq potential from the lar) short-range gluonic interactions is given by
data. We emphasize, however, that Eqs. (58) and Eqs. (8), (58), and (55) with b, 'n =0 and

2 1

(59) provide theoreticaljustification for the use of a ~n =pn (0)/3mq 3 vn r Eq. (61),
I

W ob,„„q——g 6n I „(e+e )5( W —M„)=6ma eq u„ 1 ——,u„g(W —M„) .
n n

[We assume for simplicity that V(0) =0. ] We obtain the duality relation correct to order v /c by convo-

luting W ab „nq with a smooth function of energy and converting the sum on n into an integral,

(W ob,„ng)= f f(W —W')W' ob,„„~(W')dW'

= 6m a eq gf( W —M„)u„ 1 ——,v„2
n 71

=6qra eq f f(W —W')u' 1 ——,v' dW'+corrections

= f f(W —W') W'2crtr~(W')dW'+corrections

= ( W o t„,) +corrections,

where the corrections may be estimated from the
experimental data by using the Euler-MacLaurin
summation formula. '

While we have derived the relativistic duality re-
lation only for nonsingular potentials, it has been
shown elsewhere that nonrelativistic duality holds
for singular potentials provided one incorporates
the short-range effects of the potential in at, .'3'6

The present results can be extended to singular in-
teractions in a similar way.

III. APPLICATION: RADIATIVE CORRECTIONS
TO LEPTONIC WIDTHS

To illustrate the use of relativistic duality, we es-
timate the radiative corrections to the leptonic
widths I „(e+e ) for bound qq systems by using
known results for free qq systems. We find that
our radiative correction agrees to order 0., with
that given by Barbieri et al. and Celmaster. We
are also able to estimate higher-order corrections.

To estimate the radiative corrections to I „,we
use the local version of duality, in which the ener-

gy average in Eq. (66) is over small intervals 5W
which straddle individual bound states. ' Using
Eq. (65) and assuming that the confining potential
vanishes at the origin, we find that

I „(e+e )=
2 f W ot«, (W}dW, (67)

{)~ hW

where, as noted in Sec. II E, we must use a free
cross section in Eq. (67) which includes the effects
of the singular short-range gluon exchanges be-
tween quarks. ' ' (In the duality averaging pro-
cess, only the effects of the long-range confining
interaction disappear. ) This "free" cross section is
given in terms of the Salpeter wave function for a
color-Coulomb interaction by

W ot. = 6qra eq u
~

qr w(0)
I

(1—6)( 1 b )

(68)

where 5 and 6' are free analogs of the bound-state
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I'„(e+e ) =I „' '(e+e )(1—b,„)(1 b,„'),— (69a)

relativistic and radiative corrections 4„and 6„'.
The local duality relation in Eq. (67) has been

used in the past without the correction factors to
predict leptonic widths for qq states. ' ' We are
interested in the corrections to I „,or equivalently,

~
V„s(0) ~, so will rewrite I „,using Eq. (58), as

8' ot„,= 6m.a eq v(1 ——,u )

X [1+ , a,f—(u)+,a, '+. . . ] .
(72)

The function f(u) is given to good approximation
38

where I „'
' is the width calculated from the un-

corrected Van Royen —Weisskopf formula,

f(u)= ——g(u)
4

2U 7T

with

(73a)

16 e

M„
The Salpeter wave functions 'Pir(0) and 'P„s(0) in

Eqs. (68) and (69) are calculated for the same in-

stantaneous short-range interaction [plus, in the
case of 'P„s(0), the long-range confining interac-

tion], and are dual by the results of Sec. II and

Refs. 13 and 16,

(69b)

2 2

I'„"(e+e-)- ' J u
~
e'er(0)

~

'dW . (70)

(71b)

We next identify 5 and b, '.
In perturbative QCD, the free cross section for

e+e ~qq is calculated to be'

Finally, then, the corrections to the bound-state
leptonic widths can be identified through duality
with the corrections in Eq. (68),

2 2

I"."(e+e-)&„= ' I u ~q (O) ~'~dW,
h, W

(71a)
2 2

I'„' '(e+e )6„' — I u
~

4 (0)
~

5'dW.
b, w

g(u)=1+0.046u —u(1 —u) (73b)

The velocity dependence of the coefficient C2 of
the a, term is not known, as this correction has
only been calculated for massless quarks. The nu-
merical value of C2 also depends on the renormali-
zation scheme used in the calculation. We will use
the value obtained by the modified minimal-
subtraction scheme, '

C2 ——1.98—0.115Nf, where

Nf is the number of quark Aavors.
The short-range part of the instantaneous in-

teraction between quarks is just the color-Coulomb
interaction ion. Thus the potential is

4 as
V(r) = —— + V'(r),

3 T

with a, the value of the strong-coupling constant
at the mass scale of the qq system, and V'(r) a
smooth confining interaction. Vir(0) is the Sal-
peter wave function calculated using only the
short-range part of the interaction, and could be
determined to order a, by solving the Salpeter
equation [Eq. (39)] for a color-Coulomb interac-
tion. In the absence of such a solution, we will
approximate

~

4'ir(0)
~

by the standard Coulomb
factor

(0)~ = '1—e
3v

2
—4' /3U

&
2mas 1 2ma,

) '=1+ +- + 0 ~ ~

3v 3 3U
(75)

This expression sums the leading terms in powers
of a, /u in the complete QCD result. This choice
for

~

qiir(0)
~

defines the correction 6', which
must incorporate such distinctive QCD contribu-
tions as the three-gluon term of order a, /v. We
note that 4ma, /3u is not a small parameter for the

g and Y systems, so it is desirable to use the exact
form of Eq. (75) rather than the expansion in cal-
culations.

We now examine Eq. (72) term by term to bring
it into the form of Eq. (68). The factor (1——,u )

I

is identified with (1 —b, ) by Eq. (61). The factor
[1+(n./2v) —,a,], from the first term in f(u), is
clearly to be identified with the expansion of

~
'Pir(0)

~

in Eq. (75) to first order. The contribu-
tion from the rest of f (v) must therefore give the
first-order radiative correction b, '

16as
g(u) .

377

As may be seen from Fig. 3, g (v) does not vary
much for 0 & u & 1, ranging in value from g (0)= 1



25 RELATIVISTIC DUALITY, AND RELATIVISTIC AND. . . 2325

(70) that

I.O—

16a,
g(U„) .

3m
(77)

0.9

,'~ b

0.8 -~

1.0

FIG. 3. (a) Plot of the radiative-correction function
g(U), Eq. (9) and Ref. 38. Note the suppressed zero on
the ordinate. The approximation in Eq. (73b) is barely
distinguishable from the exact g(U) on this scale. (b)
Schwinger's approximation to g(U), Ref. 38, Eq. (5-
4.203).

to a minimum g(0.3)=0.87 to a maximum

g (1)= 1.05. As a result, we may approximate the
integral in Eq. (71b) by evaluating g (u) at the mass
of the resonance in question, and find from Eq.

This result is insensitive to the choice of hW and
the possible corrections to duality, and agrees with
the radiative correction obtained in Ref. 20 using
the static approximation v =0 in bound-state cal-
culations, b,„'(0)=16a,/3n. . Our result is slightly
smaller for the f system. Bergstrom et al. obtain
a much smaller value of 6„' from the authors in
Ref. 20. They make a nonrelativistic approxima-
tion in part of their calculation but use that result
for the entire range of U. The resulting g(U) is neg-
ative for U & 0.7 and gives a much smaller b, „' for
any U & 0. They also omit the contributions of qqg
final states. We do not believe their approxima-
tions are valid for heavy-quark systems with large

40

We next estimate the order-a, contribution to
This has not been calculated previously. Our

method is to rewrite the last factor in Eq. (72) as

~

%~(0)
~

multiplied by a residual correction fac-
tor. Unfortunately, the velocity dependence of C2
is not known, so we use the U =1 limit of Eq. (75)
for

~

%s (0)
~

to extract the correction. Our result
1S

2' as 1 277as
~
%g (0)

~

(1—b, )(1—b, ')= 1+
3U 3 3U

'2
1 16as C2 2(1——,U ) 1 — g(U)+ a,3' 772

(78a)

where

C2 ~, =) ——C2+22. 28 . (78b)

We then conclude by an argument similar to that
above that to order a,

It is interesting to note finally that the radiative
corrections do not depend to this order on the de-
tails of the confining potential V'(r) in Eq. (74),
the effects of which appear only in I „' '.

16a, a
g(U„)—(C2+22.28)n —

3 n 7r'
(79)

6n' -0.340—0.096=0.244 . (80)

with C2 ——1.98—0.115 Nf. ' This is a significant
correction: for Nf ——5 and a, =0.2,
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