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We investigate higher-twist contributions to inclusive meson photoproduction in the
context of perturbative QCD, demonstrating that the higher-twist subprocess yq ~Mq
contributes significantly to the inclusive cross section at large transverse momenta. The
normalization of the subprocess is determined entirely by the meson electromagnetic form
factor. We show that higher-twist effects are especially dramatic for p production.

I. INTRODUCTION AND FORMALISM

Among the fundamental predictions of QCD are
asymptotic scaling laws for large-angle exclusive
processes. ' These reactions probe hadronic con-
stituents at large relative momenta, or equivalently,
the hadronic wave function at short distances. Im-
portant examples of exclusive amplitudes are pro-
vided by the electromagnetic form factors of
mesons. These have been calculated within the
framework of perturbative QCD. ' Since there is
little direct evidence with which to compare the
predictions, it is fortunate that short-distance wave
functions also control a wide variety of processes
at large transverse momentum. In particular, the
meson wave function determines the leading
higher-twist contribution to meson photoproduc-
tion at high pT.

Contributions to inclusive meson photoproduc-
tion yp~MX fall into two categories: (1)
minimum-twist reactions, such as yq~gq, fol-
lowed by either quark or gluon fragmentation into
the observed meson; and (2) higher-twist sub-

processes, such as yq~Mq, in which the observed
meson is made directly. The minimum-twist con-
tributions depend on the quark and gluon fragmen-
tation functions Dq (z), Ds (z). The higher-twist
subprocesses are determined completely (to leading
order) in terms of the meson electromagnetic form
factor, Est(Q ).

We will show that higher-twist terms contribute
substantially to the inclusive meson cross section at
moderate transverse momenta. In addition, we
shall demonstrate that higher-twist reactions neces-
sarily dominate in the kinematic limit where the

transverse momentum approaches the phase-space
boundary. In both domains, the trigger-bias ef-
fects associated with quark fragmentation
suppress the minimum-twist contributions. Thus
we find that the reaction yp-+MX provides an im-

portant additional probe of the meson electromag-
netic form factor. Inclusive meson photoproduc-
tion represents a significant test case in which
higher-twist terms dominate those of minimum
twist in certain kinematic domains.

We begin by reviewing the formalism for the
meson form factor. s From Fig. 1 we see that the
amplitude divides naturally into a short-distance
Born amplitude folded together with two QCD-
evolved wave functions. (Note that only the lowest

qq Fock state contributes to the leading scaling
behavior; other Fock-state contributions are
suppressed by powers of I/Q .) The form factor
may therefore be written

~IAVl

FIG. 1. A leading contribution to the meson form
factor. Note that the amplitude divides into a short-
distance Born amplitude aud two QCD-evolved wave
functions.
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FM(Q') =I ~dx;~dY 5(1 x—, —x„5(1—y, y—„/st(yJ, Q ') Ttt(x;,p, ,Q')P&(x;, Q '),
I J

where

16irCpas(Q ) ei
Te(x;,y&, Q2) =

Q
(2)

and

2

PM(x;, Q )=x,xz ga„C„(x,—xz) ln
n=0 A

(3)

(4)

In Ref. 3, the scale-breaking terms in a, and P~ are evaluated at Q =Q . Note, however, that Q is not
determined in the leading-logarithmic approximation. It is only defined by higher-order corrections to Te
and PM. It has been suggested that these corrections are minimized by using a momentum-subtracted
two-loop version of a„evaluated at Q =

~
tg ~, where tg represents the momentum squared carried by the

hard gluon in Fig. 1. On average,

Ttt(x;,y&, Q ) represents the sum of all trm diagrams contributing to the hard-scattering subprocess

q&q2y~qiqz, where e, is the charge of qi and ez the charge of qz. In Eq. (2) we have implicitly restricted
M to a state of zero helicity. For mesons of nonzero helicity, angular momentum considerations suppress
Te by additional factors of m/Q. PM(x;, Q ) is obtained from a ladderlike integral equation in the axial

gauge; it is defined to contain all the qq two-particle-reducible bound-state graphs in the axial gauge. The
C„are the Gegenbauer polynomials, while the y„are the standard anomalous dimensions. The coefficients
a„are determined by the boundary conditions on PM(x;, Q ) at some Q2=Qp . Combining Eqs. (1), (2), and
(3), we recover the QCD form factor for helicity-zero mesons,

4irC~a, (Q ) Q2
FM(Q )=

Q n =pz4. . .

Q =4/ tg /
=4Q

for the form-factor calculation.
We shall adopt this approach. We set

1 Pi lnlnQ /A

PpinQ /A Pp ln Q /A

(5)

(6)

where A in (3) and (6) represents the QCD scale parameter in the momentum-subtraction (mom) scheme of
Celmaster and Sivers. In our calculation, we take A=A, =0.216 GeV, corresponding to AMs ——100 MeV
for nF 4(whe——re MS refers to the modified minimal-subtraction scheme). This value is representative of
the results for the most recent deep-inelastic scattering experiments. In addition, we allow for fiavor
thresholds in a, as follows:

nF 3, A=0——.251 GeV for Q & 1.65 GeV,

nz 4, A=0.216 GeV f—o—r 1.65 &Q &4.73 GeV,

nF ——5, A=0. 165 GeV for Q &4.73 GeV .

(7)

The A values for nF+4 are chosen to ensure con-
tinuity at the threshold boundaries. The one- and
two-loop contributions to the P function

2 38
13p

——11——,nF, Pi ——102——,nF

depend on Q through nF as specified in Eq. (7).
We shall treat the momentum dependence of PM

in an analogous fashion. In Eq. (3), we take

Q =
~ tg ~

=Q /4. Since higher-order corrections
to the PM scale breaking have not been computed,
we are forced to guess an appropriate value for A

in Eq. (3). This and other fine points of our
form-factor calculation are outlined in Appendix A.

&ur computation for F (Q2) is shown in Fig. 2,
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compared to available data. We have assumed

P~(x;, Qo ) ~ (xixz) ' at Qo
——2 GeV . We have

also normalized P~(x;,Qo ) against the weak decay
amplitude n+p. —v which requires ao v3f——. We
shall use this determination of F (Q ) in Sec. II of
this paper.

It is important to ask how sensitive the form-
factor prediction is to our input conditions. The
constraints of the low-Q data and the asymptotic
normalization ao do not entirely determine the
form-factor prediction. For instance, we have
compared our AMs ——100 MeV prediction with (a)

the leading-logarithmic fit of Ref. 3, with

P(x;,Qo )-(xixi) and A =0. 1 GeV; and (b) a
fit using our assumptions, with P(x;,Qo )

-(xixz) and A values corresponding to

AMs
——250 MeV. The form factor in case (a) is in-

distinguishable from our AMs ——100 MeV predic-

tion. The form factor for case (b) drops more rap-
idly at low Q and is plotted in Fig. 2 along with

the A—
s
——100 MeV prediction. We will make a

corresponding comparison for the higher-twist
cross section.

For longitudinal p's, Eq. (4) still applies. The
form for Fz (Q ) that we employ uses exactly the

same initial condition for Pz as for P, changing

only the overall normalization. We set ao
I

4
OJ

(3

P
OJ

I

402, 5 5 lo 20
Q (GeV2)

FIG. 2. The pion electromagnetic form factor, deter-

mined from Eq. (4). The data are from Ref. 6. The

upper curve is for AMs=100 MeV; the lower curve for

~Ms ——250 MeV.

=V 2v 3', where fz ——0.107 GeV is determined

by the rate for p~e+e . There is, of course, no

experimental form-factor data with which to verify

that our assumptions for Pz (x;,Qo ) are correct.

Indeed, some of the first experimental measure-

ments of I'& may occur through meson photopro-
~L

duction.
We now turn to higher-twist reaction yq~Mq.

The various diagrams contributing to this subpro-

cess are shown in Fig. 3.' To leading order, we

write the invariant amplitude in the form

wh

graphs contributing to yqi ~(qiq2)q2 with qiq2
restricted to the spin state of M. The light-cone

momentum fractions x~ and x2 ——1 —x& specify the
fractional momenta carried by qi and q2 in the
Fock state. The determination of the "Q " scale

will be discussed shortly. The q&qq spin state used

in computing T may be written in the form

Y5PM'
v2 '

M

qq pL, helicity 0,

e+PM
pr helicity +1,

2
'

Ms
——Jmdx;5(1 —xi —xi)PM (x,"Q ")Trq (q y )q

l
I

ere T
~

-,
~

represents the sum of tree following equivalent forms for Pqq.
ml ~q~q2 ~q2

ii, (x 1PM ) u, (x2PM )

$(,$2

(10)

where the XS' s project out a state of spin s. The
1 2

factors (~x& )
' and (~xi) ' are purely conven-

tional and fix the leading-order normalization of

pM to be the same in Eqs. (1) and (5). In our cal-

culation we neglected quark masses and used the

where e+ ——+(I/V 2) (0,1,+i,0) in a frame with

(PM)i, 2 ——o
Evaluation of the x; integral for any given tree

graph is quite easy when pM(x; "Q ") is sym-

metric under x~~x2. This is a natural assumption

for mesons composed of u and d quarks and is in

fact a consequence of Eq. (3) for all mesons at

large"Q ". The x; integral is always of the type

4M(» "Q")
dx

0 x(1—x)
Ar(» "Q")

or = dx x(l —x)
x

or =IM ("Q ") or
1 1

2 2

(12)
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where we have set x~ ——x, x2 ——1 —x. From Eqs.
(1) and (2) we see that the form factor contains the
square of

2

(13)

y
I

I

I Xi M

gg ) Qvxxx
Xp

M
(f wv zv

This allows us to completely determine the
yq~Mq cross section in terms of the meson form
factor, through the relation

(b)

Q'+M(Q')
, =IM'(Q'),

4~cFa, (Q')
(14)

M
(P a sar M

$ vrra

with Q =Q /4 as discussed earlier. Note that I~
is the only object in either calculation which can-
not be determined entirely from first principles —it
requires knowledge of the initial nonperturbative
distribution amplitude P~(x;, Qo ). In principle,
experimental measurement of FM determines IM
and hence the yq —+Mq cross section.

We must now specify the values of "Q "at
which a, 's and IM's should be evaluated in the
yq~Mq subprocess calculation. As before, we
adopt the position that higher-order corrections to
the connection through IM between the form-factor
and photoproduction calculations are minimized by
(1) evaluating IM ("Q ") in Eq. (5) at

(15)

where tg is the average squared momentum
transfer carried by the hard gluon in a given sub-
process; and (2) using the momentum-subtraction
scheme for a, and evaluating the a, 's in each sub-
process at

I tsI.
For the s-channel graphs, Figs. 3(a) and 3(b),

rs =s/2, while ts =u /2 for the u-channel contribu-
tions of Figs. 3(c) and 3(d). (Here s, t, and u are
the standard Mandlestam invariants for the sub-

(c)

FIG. 3. The four leading contributions to the
higher-twist subprocess yq ~Mq. The hard-scattering
amplitude Tyq (q q )q

is enclosed by a box. %e
characterize (a) and (b) as s-channel graphs and (c) and
(d) as u-channel.

process. ) Higher-order calculations for both
FM(Q ) and yq~Mq are required to ascertain if
this procedure is successful. In particular, it
should be noted that tg is positive for s-channel
graphs but negative for u-channel graphs and
form-factor diagrams. Experience" with the
Drell-Yan p+p production process suggests that
higher-order corrections might be large for s-
channel graphs. In order to have some estimate of
the sensitivity of our calculation to the ansatz (15),
we have checked that the very different choice of
"Q~"= —t in all yq~Mq subprocess calculations
has no visible effect on our final results.

In light of the above discussion, we express the
cross section for the higher-twist subprocess in
terms of I~.

dc'

dt a I' 2g( —r)
9 n4~ g$ Q

M =pT

Sn aC~ 2[b,(s,u] +, M=m. ,pLs( t) s u—
(16)

where

b, (s,u )= ue&a,

T

s s—IM
2

+$82CE
Q IM
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~ tg
~

sets the scale of I~ and a„' and IM is relat-
ed to the form factor through Eq. (14). The trans-
verse p cross section has been summed over final
helicities. It vanishes in the forward direction be-
cause of helicity-conservation conditions implicit in
the tree graphs for yq —+(qq)q.

Note that Iz is well defined even though

FM(Q ) differs from Eq. (4) for transverse mesons

of nonzero helicity. Since Iz and F& (Q ) are no

longer linked through Eq. (14), photoproduction
will be the most direct experimental handle on Pz .
In our calculation we set Pz (x;, Q02) =Pz (x;,
Qo ), evolving Pz to higher Q with the anom-

alous dimensions appropriate for mesons of helicity
one (see Appendix A).

Thus we see that the higher-twist cross section
depends both on the momentum subtracted a, and
on the form factor Fst(Q ) through Ist. Roughly
the relation takes the form (do /dt)

~ yq Mq
~ u, I'M. It is then interesting to ask how sensitive
the higher-twist predictions are to the value of AMs

employed. In Table I we give the a, ' (Q2) values
for AMs ——100 MeV and AMs ——250 MeV. At low

Q it is clear that a, ' is substantially larger for
the higher AMs value. However, as demonstrated

in Fig. 2, the form factor is generally somewhat
smaller at low Q for the higher AMs. Thus we

will discover that the predicted higher-twist cross
section is only mildly infiuenced by the choice of
AMs. It should, of course, be kept in mind that
this discussion of the sensitivity to AMs is in the
context of our assumptions that the use of
a, '

(
~ tg ~) minimizes the higher-order corrections.

%e have also repeated the higher-twist calculations
using a leading- logarithmic one-loop form for a,
with A =0.1 GeV, in conjunction with the
leading-logarithmic A =0.1 GeV fit to F (Q2)
from Ref. 3. The results are very comparable to
those for the AMs=100 MeV case.

The two subdiagrams contributing to the
minimum-twist reaction yq —+gq are shown in Fig.
4. The corresponding cross section is easily veri-
1ed:

dO

dt
yq~gq($&t, u )

TABLE I. Values of the momentum-subtracted mov-

ing coupling constant.

Q (GeV')
a, (Q )

AMs=100 MeV
a, (Q )

~Ms=250 MeV

5

10
25
50

100

0.24
0.22
0.19
0.18
0.17

0.39
0.31
0.27
0.24
0.21

b,st E(yp ~——M+X) E(yp —+M —X)
dp dp

M+ M

The other subprocesses involving gluons or anti-
quarks contribute equally to X~+ and XM and

cancel in the charge difference.
In our calculation, we ignore hadronized pho-

tons. Hadronized photons make major contribu-

tions to X + and X at low to moderate pr.

evaluated in the momentum-subtraction scheme, at
momentum scales

~

s
~

and
~

t ~, representing the
off-shell momenta carried by the hot quark propa-
gators in Fig. 4. Other authors' have made other
choices, such as 2stu l(s +t +u ), a form first
employed by Feynman and Field. ' Higher-order
calculations are needed to determine the correct ar-
gument for a, . Numerical results appear to be
fairly insensitive to the choice of argument.

In general, many other subprocesses contribute
to meson photoproduction, including (1) yq~gq
with g~M, (2) yq —+gq with g~M or q ~M, and
(3) yq~Mq. The subprocesses calculated earlier,
however, dominate the minimum- and higher-twist
cross sections. Indeed, they are the only contribu-
tions to the inclusive-cross-section difference,

(a) (b)
eq a a, (s)—+a, ( t)—

Following Ref. 6, the a, 's in Eq. (18) have been

FIG. 4. The two leading contributions to the
minimum-twist subprocess yq —+gq, q ~M. The hard-
scattering amplitude is enclosed by a box. D~~~
represents the quark fragmentation function into a
meson M.
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These contributions tend to cancel in the charge-
difference cross section

bent.

'3 They cancel com-
pletely for photoproduction off isoscalar targets.

We now incorporate the higher-twist (HT) sub-
process yq —+Mq into the full inclusive cross sec-

tion. From Fig. 5 we see that the photon and the
meson may be viewed as an effective current strik-
ing the incoming quark line. With this in mind,
we write the complete cross section in formal anal-
ogy with deep-inelastic scattering, '

HT
=g (yp +M-X) =—f dx 5(s+t+u )sGqyp(x, t) —

~ rq stq(s, t, tt),
d 3p q t&

where the subprocess invariants

s =xs,

are given in terms of the invariants of the overall reaction

(20)

(21)

s =(p~+pr) & t=(pr pM) =—— (xii —xp) & tt =(p~ —pl)'= ——(x„+x~) (22)

with xR =(XF'+xT')'". Here XF =2(PM }li/Ws and XT=2(PM)l/Ws =2PT/Ws sp~ify the longitudinal and
transverse moment~ of the mmon. In te~s of thee the rapidity of M is given by

y = —, in[(xg+xF)/(xR —xF)].
For the minimum-twist (MT) contribution, we find'

g
X =E (yp +MX)-= —'

I dx f 'S(s+t+tt)s G / (x t)Dst/q(z& t) ~ rq~gq(s t &)&& (23)
0 zi dt

Xtls=xs, t= —,u =
2 2

(24)

D~&q(z, t ) represents —the quark fragmentation
function into a meson containing a quark of the
same flavor.

For pions the fragmentation function has been
chosen in two ways: (a) from the data for
vp~p m+X, which measures D + (z, t ) direct-—

P xkkt

FIG. 5. The embedding of the higher-twist subpro-
cess yq~Mq into the inclusive cross section. Note that
the photon and the meson may be viewed as an effective
current striking the quark line, in analogy with deep-
inelastic scattering.

ly and (b) from the Feynman-Field analytic form
for D +& (z, t), which repres—ents a good global fit
to a variety of data. ' The two choices are com-
pared in Fig. 6. We found little difference in the
results for (a) and (b) and will use (b) in Sec. II of
this paper. For p's, of course, direct data is not
available. We shall use the Feynman-Field forms
for Dz/q (z, t ), also illustrated —in Fig. 6.

In our numerical work we use the Buras-
Gaemers parametrization for the quark distribution
functions Gq~z(x, t ).' These ha—ve been extract-
ed directly from deep-inelastic data for 8'2(x, Q ).
From Fig. 5 we see that regarding the photon and
the meson as an effective current fixes Q = —t,
where t is precisely the squared momentum
transfer absorbed by the quark. This choice should
minimize higher-order corrections. '

Finally we note that although we evaluate our
minimum-twist subprocess yq~gq with external
lines on shell, we do not allow for transverse-
momentum fluctuations of the initial quark. It has
been demonstrated' that such a procedure is in-
correct, and that one should simply expand the
cross section in terms of minimum- and higher-
twist subprocesses convoluted with @CD-evolved
distribution functions. Inclusive meson photopro-
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)Oi-

elastic data

an- Field

).0—
an-Field

0.0&,
~ 2 .5 .4 .5 .6,7 .8 .9 &,0

2

FIG. 6. The quark fragmentation functions
(a) D + (z), from deep-inelastic neutrino data; (b)

D + (z), from the Feynman-Field analytic form; and

(c) D + (z), from Feynman and Field.p+ /u

duction is one of the simplest cases for which this
expansion, including the relative normalization of
the various contributions, can be computed sys-
tematically within the framework of perturbative
QCD.

II. RESULTS AND DISCUSSION

We now turn to our results. We have computed
the M+ and M inclusive cross sections X + and

X as well as the charge-difference cross section

h~ ——X~+—X~, considering only the dominant

contributions to inclusive meson photoproduction:

labeled MT for minimum twist, and

yq ~Mq

labeled HT for higher twist. Our calculations were
performed for M =n, pL, , and pT at v s =7, 14.1,
and 25 GeV.

We illustrate the general features of our results
with an example which can be compared directly

to the minimum-twist results of Fontannez et al.
for m production at Vs =14.1 GeV. ' A plot of

and X vs pT at y =0.5 appears in Fig. 7(a)

and of 5 and X vsy at pT ——3.0 GeV/c in Fig.
7(b). These plots are for the A values of Eq. (7)
corresponding to A„—,s

——100 MeV. The minimum-

twist results for 4 and X are slightly smaller

than those of Fontannez et al. because of the
smaller value of AMs we have employed. To indi-

cate the sensitivity to AMs of both minimum- and
higher-twist terms, we present in Fig. 7(c) the re-
sults for 6 and X as a function of pT, comput-

ed using the a, values and form-factor fit corre-

sponding to AMs
——250 MeV. In Figs. 8 and 9 we

plot the ratios of higher twist to minimum twist
for X +, X and 6 computed in the AMs=100
MeV case.

These figures reveal the following general
features. In the AMs

——100 MeV case, the higher-

twist contribution to X is generally comparable

to the minimum-twist contribution at all transverse
momenta. The effect of higher-twist diagrams on

is smaller because X + -X at moderate pT
(near 4 GeV/c in this case). Nevertheless,

/6
l

y 1 at the highest pT values. In the
AMs=250 MeV case, the higher-twist contributions

are somewhat larger. The minimum-twist predic-
tions are also somewhat larger with the result that
the relative contributions of minimum- and
higher-twist processes are fairly independent of

MS'

The general features of these graphs are easily
understood:

(a) X"+=X" at some pT since X + ~ G„q~eg

while X ~ Gd/pe„, where this leading behavior

is extracted from the dominant u-channel contribu-
tions to the higher-twist subprocess. The change
in quark charge tends to compensate the change in
distribution function, leading to higher-twist cross
smtions X + and X of approximately the same

order.
(b) X + &X at all pT since X + ~G„~&e„

while X ~ Gd/p ed . The smaller quark charge

ed and the smaller distribution function Gd/p both
work to suppress X . Thus, combining with (a),

it is not surprising that X =X in most kine-

matic domains, while X + is generally larger than
XHT

m+'

(c) Higher twist tends to dominate minimum
twist near the phase-space boundary. Naive power
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30 (a)

4)0
N

C9
iO

Xl

=&4.1 GeV
Y =.5

48.0—
(b)

40.0—
C40

0) 32.0—

CL

)
24.0—

~s = 14. 1 GeV

pT
= 3.0 GeV/c

MT
MT+ HT

$0 I 6.0—

8.0—

~o 8
$.0 2.0 5.0 4.0 5.0

p (GeV/c )

Q

I

6.0

(c)

-(.0 -0.5 0.0 0.5
RA PI DIT Y

&s =14.1 GeV
Y =.5

(.0
I

2.0

IQ

4)

IQ
D

I08
I.O 2.0 3.0 4.0 5.0

p (GBV/c )

l

6.0

FIG. 7. Minimum- and higher-twist contributions to inclusive m production at &s =14.1 GeV. AMs=100 MeV for
(a) and (b); AMs=250 MeV for (c).

counting gives

l —x
yHTgp o Ta,

Pr

versus

5

yMTgpo Tl —x
a,

PT

The necessity of making M indirectly in the
minimum-twist case suppresses the MT mechanism

as xT~1, despite the lower associated pT power
damping.

(d) The difference in powers of a, and pT men-

tioned above means that higher-twist reactions are
more rapidly enhanced as p~ decreases. Thus
higher-twist processes can become dominant at
lower transverse momenta. We do not present re-
sults below pT ——2 GeV/c, however, because pertur-
bation theory becomes increasingly less reliable in
that domain.

(e) X + ~ X at high pT whereas the reverse is
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&.0- +s =14.1 GeV

Y=.5

I-0
N

N

.6—

.2-

I

&.0 20
I I I

5.0 4.0 5.0
I

6.0 7.0
pT ( GeV/c )

FIG. 8. X" /X at v s =14.1 GeV, AMs=100
MeV.

Ws= 14.1 GeV

Y= .5

.03—

.001
2

PT (GeV/c)

FIG. 9. ~4" /A
~

at vs =14.1 GeV, AMs=100
MeV.

true at low pz because Gz/~(x)/6„/~(x) -(1—x)—higher transverse momenta probe higher values
of x [see Eq. (20)], suppressing the d quark neces-
sary for ~ production. At lower transverse mo-
menta G~/~ becomes comparable to G«~, favoring

production because of the quark charge argu-
ment outlined in (a) above. Thus b, becomes
negative for lower pT (in the range of 2 GeV/c to
3 GeV/c). For larger values of v s the region over
which 5 ~0 extends to larger pT since x de-
creases with V s.

The rapidity dependence of X and b,~, shown

in Fig. 7(b), illustrates the tendency of the higher-
twist terms to be enhanced in the domain of nega-
tive rapidity. In this region u must be small be-
cause the overall subprocess center of mass always
moves with positive rapidity. Only the higher-
twist subprocesses have the I /u structure necessary
to enhance this region. The minimum-twist sub-
processes have I/t terms which prefer the forward
direction.

Plots similar to those presented at v s = 14.1

GeV are given for vs =7 GeV and vs =25 GeV
in Figs. 10 and 11 respectively, for A—

s
——100

MeV. In these cases we have chosen to plot the pT
distributions at y =0 and the rapidity distributions
at pz ——3 GeV/c. These choices are fairly represen-
tative, with higher-twist contributions to b on the
same order as those of minimum twist. As expect-
ed from Eq. (25), we see from Fig. 10(a) that the
relative higher-twist contribution to X is largest

for lower v s values at fixed pT. Nevertheless,
even at ~s =25 GeV, Fig. 11(a) shows that
higher-twist contributions are important to 6
below pT ——3.5 GeV/c. Although not shown, they
are also important above pz

——12 GeV/c, near the
phase-space boundary. At vs =25 GeV, HT con-
tributions are important to X at all values of pT.

The preceding results demonstrate that higher-
twist contributions must indeed be considered in
regions of low to moderate pT as well as near the
phase-space boundaries at all energies in ~ produc-
tion. Higher-twist contributions are even more im-
portant in p production. It becomes difficult to
find a region of v sand pT in which higher-twist
terms are suppressed. In fact, over much of the
moderate Vs region we have studied, higher-twist
terms dominate those of minimum twist. The
reasons behind the relative enhancement of higher
twist in the case of the p are quite simple:

(i) The minimum-twist contributions to p pro-
duction are generally comparable to or slightly
lower than those for reproduction. . This follows
simply from the fact that the rho fragmentation
functions D +/ and D /d are generally smallerp+/u p /d
than the pion fragmentation functions D +& and

D /z as shown in Fig. 6.
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FIG. 11. ~ production at &s =25 GeV, AMS=100
MeV.

(ii) In contrast, the contributions from higher-
twist terms are generally larger. The longitudinal

pq cross section is normalized to be a factor of
2f& /f =2.5 times larger than the corresponding
m cross section. The transverse pT cross sections
are generally at least as large. Of course, all three
polarizations contribute, further enhancing the
higher-twist cross section.

Thus we have the situation illustrated in Figs. 12
and 13, computed for AMs

——100 MeV. At y =0.5
and v s =14.1 GeV, Fig. 12(a), higher-twist terms
dominate even the X + cross sections at all values

P
of pT. The rapidity dependence at pT ——3 GeV/c
and v s =14.1 GeV, Fig. 12(b), demonstrates that
this is generally true for all y. We find substantial
contributions from higher-twist terms at Vs =25
GeV, y =0. Figure 13(a) shows that only in hz
where the higher-twist terms tend to cancel above

pT ——6 GeV/c can one find a domain where
minimum twist dominates. In the two separate
cross sections, X + and especially X, higher-twist

P P
terms are very significant at all pT. Note that

Ap & 0 for p T & 3 GeV/c, wel 1 into the pertur-
bative domain (pT & 2 GeV/c). This signature
alone would provide dramatic confirmation of the
presence of higher-twist contributions. Figure
13(b) shows the rapidity dependence at v s =25
GeV, pr ——3 GeV/c. Again, the dominance of
higher-twist terms is apparent at this value of pT
and all values of y. For A—s=250 MeV, the
higher-twist terms are even more important.

In conclusion, we have seen that the reactions

yp ~mX and yp —+pX receive very significant con-
tributions from the higher-twist subprocess
yq~Mq. These probe the meson form factors
over a large range of "Q " [—u /2 and +s/2 in
(16) and (17)]. For pT ——2 GeV/c„s/2 never falls
below 10 GeV, while —u/2 is always greater than
2 GeV . At larger values of pT, s/2 ranges as
high as 300 GeV and —u/2 as high as 150 GeV .
In Table II we present sample values of "Q "for
pT =2 GeV/c and for pT near the phase-space
boundary. From this table we see that the
kinematic domains in which the higher-twist con-
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MeV.

tributions dominate meson production provide a
truly unique and direct probe of the form factor of
the meson. The cross sections for negative meson
production, X and X, are especially sensitive

P
to the higher-twist subprocess. A careful study of

the meson photoproduction reactions over the full
range of Fermilab Vs values and at high pT is
highly desirable, both as an important probe of the
meson form factor and as a significant test of
higher twist in @CD.

TABLE II. Sample "Q2" values probed by higher twist.

V's

(GeV)
PT

(GeV/c)

—u/2
(GeV')

s/2
(GeV')

7.0
7.0

14.1
14.1
25.0
25.0
25.0

0
0
0.5
0.5
0
0
0

2.0
3.4
2.0
6.17
2.0
6.0

12.4

2.8
11.2
2.6

67.8
2.2

23.7
152.5

9.8
23.1

11.2
94.3
27.2
98.6

307.5
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APPENDIX A

In this appendix we provide more details about
our determination of the tr and pI form factors.

We first specify the anomalous dimensions y„
used in Eqs. (3) and (4),

The two-loop expression for a, is used in the
form-factor calculations, as specified in the text.
We have chosen A in Eq. (3) to be equal to AMs.

We have compared the pion form-factor predic-
tions for two values of AMs, 100 and 250 MeV.
The form factor in each case was constrained to
agree with the low-Q pion data, and we imposed
the correct normalization on ao in both cases. The
starting forms of (() were

(x ix2)o 2s, AMs
——100 MeV,

~M(xi. Qo ) +I+ (x x )
.

, AMs
——250 MeV

(A4)

at Qo =Qo /4 with Qo ——2 GeV .

The constant NM is chosen so that

Cy &+~ 1 h]h2
y„= 1+4

Po k zk (n +1)(n +2)
(Al)

ao ——3 d(xi —x2)Co (xi x2)itiM—(xr Qo )
3/2 2

—1

(A5)

2
po ——11——,nF, (A2)

with nF depending on Q through the flavor thresh-
olds:

3, Q &1.65 GeV,

nF 4, 1.6——5 &Q &4.73 GeV,

5, Q &4.73 GeV.
(A3)

where 5& ~ ——1 for ~'s and longitudinally polarized
1 2

pL 's and 5~ g
——0 for transverse pT's. We use the

1 2

one-loop beta function in y„,

yields

ao =~3f (f =93 MeV) (A6)

ao t 6' (fz 107——MeV)—— (A7)

for both longitudinal and transverse p's. The two
pion fits are compared in Fig. 2. These fits in-
clude a subasymptotic multiplication factor of
(1+m z/Q ) . In addition, we reiterate that the
A =0.1 GeV leading order fit of Ref. 3 is indis-
tinguishable from our AMs=100 MeV fit.

for the pion fits. When making predictions for the

p form factor we used the same starting (()M forms,
renormalized by requiring
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