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High-precision evaluation of contributions to g —2 of the electron in sixth order
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Five graphs contributing to g —2 of the electron in sixth order are evaluated to high

precision. With these results, the dominant error in the theoretical prediction for g —2
arises from the eighth-order uncertainty. Updated comparisons of theory and experiment

are given. The techniques employed are briefly characterized.

I. INTRODUCTION

Continued improvement in the experimental pre-
cision in determining the g factor of the electron
requires further refinement of the theoretical pre-
dictions. The predictions to order u and a are
known analytically. ' In order a, 27(46) of the
40(72) Feynman graphs (the number in parentheses
refers to a graph counting scheme in which a graph
and its mirror image are distinguished) have been
evaluated analytically; 3(5) more have been re-
duced to one-dimensional integrals and are known
to eight decimal places; another 2(6) (the light-by-
light) graphs have been evaluated to better than
three decimal places. We report here a careful
evaluation of 5(10) of the 8(15) remaining graphs.

In the next section, we give the results and the
implications for g —2. Using Kinoshita s prelim-
inary estimate for the eighth-order result we show
that theory and experiment are in reasonably good
agreement. The greatest source of theoretical error
is now from the eighth order.

In Sec. III, we outline the technique used. It is
a hybrid of analytical and numerical methods. By
a combination of hyperspherical and dispersive
techniques, we reduce the evaluation of each graph
to a three-dimensional integral, which is then
evaluated numerically. The usual Feynman param-
eter techniques require the evaluation of a seven-
dimensional integral. To our dismay, the round-
off problems in our three-dimensional approach
were very severe and necessitated the use of
multiple-precision floating-point techniques
designed by one of us (MJL). These multiple-
precision evaluations are quite slow compared to

hardware double precision evaluations, and so our
running times were quite long.

G. RESULTS

The graphs we evaluated are shown in Fig. 1

and the results are given in Table I, together with a
comparison with previous evaluations. We can see
that the error has been reduced by a factor of 30
compared to the most precise previous evaluation,
and that our result is slightly more than one stan-
dard deviation below that estimate. If we write

1 3
g —2 C Q a= a&—+a4 — +a6

2 '~ ~ m

r W 4
C

+88 +
7r

+ weak-interaction effects

+ strong-interaction effects

+ effects due to Is's, Ys, . . . ,

we know that'

l
Clg 2

197 m sr ln2 3g(3)
144 12 2 4

=—0.328 479. . . .

25 Oc1982 The American Physical Society



2206 M. J. LEVINE, H. Y. PARK, AND R. Z. ROSKIES 25

FIG. 1. The Feynman graphs for which new values
are reported in this paper. Graph numbers follow Ref.
6.

where the error is essentially all due to the graphs
of Ref. 8. If we combine this result with Kino-
shita's preliminary estimate

a8 ———0.8+2.5

and using the value

a ' = 137.035 963+0.000 015,

we find

=( 1 159652455+127
theory

+17+73)X10 ",
where the errors come from the errors in a, a6,
and a&, respectively. (Weak- and strong-interaction
effects, and the contribution of p's and r's, amount
to less than 5X 10 ' .)

The best experimental value for (g —2)/2 is'

g —2
2

exp

= (1 159652 200+40) )& 10

Combining our results with the previously quot-
ed results, and a numerical evaluation of the 3(5)
remaining graphs, we find

a 6 ——I.1765+0.0013,

Thus theory and experiment are in reasonable
agreement. Earlier discrepancies between theory
and experiment have been reduced in two ways.
First, our new value for the 5(10) graphs is smaller
(by slightly more than one standard deviation) than
the most accurate previous estimate. Secondly,
Kinoshita s estimate for az is negative. Both these
effects operate in the same direction and reduce the
disagreement between theory and experiment.

Another way of reporting the results is to as-
sume the validity of QED, and to estimate a from
the experimental value of g —2 and the theoretical
calculations. The result is

a ' = 137.035 993+0.000005

+0.000002+0.000009,

where the errors come from experiment, a6, and
a&, respectively. This estimate for a ' agrees
roughly with that used above.

III. TECHNIQUE

To illustrate the technique, we concentrate on
one of the graphs in Fig. 1, for example graph 9.
The momenta are chosen as in Fig. 2. The partic-
ular routing is explained below. One writes the
usual Feynman rules for the amplitude and pro-
jects out the F2 form factor. Since the magnetic
moment is the coefficient of the linear term in q in
the overall vertex function, it suffices to keep only
terms linear in q. That is, we expand a term like

(p —m —q/2) (p —m) —q. (p —m)

1 q. (p —m)1+
(p —m) (p —m)

(3.1)

TABLE I. Contributions of the graph and its mirror image to a6, in the Feynman gauge. Infrared divergences pro-
portional to logA, or log A, have been omitted.

Graph No. 17 27 Total

Our new values

Previous evaluations
Levine and
Wright (Ref. 6)

Cvitanovic and
Kinoshita (Ref. 7)

—2.670546
+0.000030

—2.664
+0.020

—2.6707
+0.0019

0.617727
+0.000 121

0.625
+0.006

0.618 9
+0.0064

0.607 660
+0.000240

0.613
+0.013

0.609 7
+0.0034

—0.334698
+0.000011

—0.330
+0.013

—0.3182
+0.007 2

1.861 992
+0.000240

1.854
+0.013

1.8572
+0.008 6

0.082065
+0.000362

0.0970
+0.023 0

0.089 3
+0.0060
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FIG. 2. Momentum routing chosen for graph 9.

After projecting out the integrand contributing
to (g —2), we isolate the terms dependent on k (the
inner loop). For each of these, we write a disper-
sive integral of the form"

d kf(k, k Ik m)

(k —1)[(k—l)2 —1](m —k)

1 I dip(~, 1',m') (3g)
A —(l —m)

where f(k, k I, k m) is a polynomial in its argu-
ments. f is not more than quadratic in k. (This
refiects the choice of momentum routings. If we
had chosen the routing of Fig. 3, f could have had
up to quartic terms in k, and several of the dt.'nom-
inators on the left side of (3.2) would have been
squared. ) Appropriate ultraviolet counterterms are
subtracted, as well as infrared pieces which render
the entire integral finite.

Having inserted the dispersion integral into the
entire expression, it is straightforward to continue
analytically to Euclidean space and to use the
hyperspherical techniques to perform the remain-
ing angular integrations over the directions of I
and m. What remains is a threefold integral over
A, L, and M where L and M are the magnitudes of
the (Euclidean) vectors l and m. The integrand in-

FIG. 3. Bad choice of momentum routing, necessitat-
ing evaluation of many more discontinuities.

volves rational functions, square roots, logarithms,
and Spence functions of its arguments.

We could not see how to perform any of the
remaining integrations analytically. So we resorted
to numerical integration. We wrote the integrand
as a sum of terms, where each term was a product
of a function of L and M', times one of the
discontinuities which occurred from the right side
of (3.2), times a factor occurring from performing
the angular integrations in L and M.

To give an idea of the size of the final integrand,
evaluating it at one point required 1/45 sec in dou-
ble precision on the PDP-10 at the University of
Pittsburgh. Thus to do the integration at 40&40
)&40 points requires less than 25 min, a very
manageable time. Unfortunately, we ran into
severe round-off problems and had to resort to
multiple-precision routines which one of us (MJL)
wrote for running on a VAX11/780. The arith-
metic precision is automatically varied across the
integration space to guarantee negligible round-off
error in the final results.
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