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Construction of non-Abelian solutions to the classical Yang-Mills equations with sources
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The SU(2) Yang-Mills equations with static external sources pre considered. They are rewritten in a suitable form
so as to permit easy construction of the magnetic multipole solutions. It is shown that under certain conditions
magnetic multipole solutions can lead to non-Abelian Coulomb solutions.

I. INTRODUCTION

Recently much attention has been paid to the
study of classical solutions of the Yang-Mills
(YM) fieM equations in the presence of external
sources. ' ' The hope is that analysis of the clas-
sical problems may provide insights into the
structure of the corresponding quantum theory,
particularly with respect to the nonperturbative
property.

There are essentially two classes of classical
solutions: (A) solutions with sources of arbitrary
strength and (B) solutions with sources of critical
strength. ' The first example of class (B) solutions
was provided by Sikivie and Weiss' and is known
as the magnetic dipole solution, since for this
solution the non-Abelian magnetic field possesses
the long-range dipole behavior. The magnetic
dipole solution can in fact be generalized so that
one obtains magnetic multipole solutions. "
Recently numerical solutions were presented
by Jackiw, Jacobs, and Rebbi for both class
(A) and (B) solutions. Their class (A) solution,
in a suitable gauge frame, appears similar to the
Abelian Coulomb solution and is hence known as
the non-Abelian Coulomb solution or the type-I
solution. Their class (B) solution possesses two
branches when the external source strength ex-
ceeds a certain critical value and is hence known
as the bifurcating solution or the type-II solution.
Generalization to the SU(3) gauge field config-
urations has also been performed numerically
in Ref. 6. In Ref. 8, explicit closed-form expres-
sions for the non-Abelian Coulomb solution and
the type-II solution are given. On comparing
magnetic multipole solutions in Refs. 2 and 7 and
the non-Abelian Coulomb solutions in Ref. 8, one
cannot help feeling that there exists a relation
between the two kinds of solutions so that given
a multipole solution, one can readily write down
a corresponding non-Abelian Coulomb solution.

In this paper, we rewrite the equations in Ref.
2 in a suitable form so that explicit magnetic
multipole solutions can be more easily con-
structed. We then establish a relation between
magnetic multipole solutions and non-Abelian

Coulomb solutions so that by virture of it the
latter can be obtained from the former. How-
ever, the converse is not true. The relation
proves useful because magnetic multipole solu-
tions are easier to obtain than the non-Abelian
Coulomb solutions. Finally we illustrate our
results by constructing an explicit non-Abelian
Coulomb solution and end with some remarks.

II. YANG-MILLS EQUATIONS
WITH EXTERNAL SOURCES

The SU(2) YM equations in the presence of an
external source are

(D„E ") =j"= 5"p

&:=~'34(p x.)~r (2a)

gp
(2b)

p. =".e~g

where p'=x, '+x, , one obtains two coupled non-
linear equations for the functions P(p, x, ) and
A(p, x,),

(2c)

(3a)

&'A ——A. + (f)'A —0
p

(3b)

An expression for A(p, x,) can be constructed by
first linearizing Eq. (3b) to

& 8 — -2- Q=O,
p

and assuming that A(p, x, ) tends to 8 at large
distances in such a way so as to ensure finite
total energy and finite total charge. One then
derives P(p, x, ) and q, respectively, from Eqs.

(4)

and our metric is@«=-gpp 1 Here p, is the
external charge density and g the coupling con-
stant. We shall only consider solutions with
finite total energy and finite total external charge.

Substituting the following ansatz' into the YM
equations,
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(3b) and (3a,).
The expression for the function A(p, x,) can be

written as'"

at least as fast as

a(y) = 1+a,y',

f(y) =f.y',
(loa)

(lob)

A(p, x,) = cro, a (y), y = r/ro.

2-(0"+24'/y)+( -- 4(a/)/)'=q, (6a)

a ——a'+r, 'p'a=0. (6b)

The prime means differentiation with respect to
y. In order to ensure the total energy to be finite,
a(y) must vanish as

a(y) =y' —O(y') (7a)

Here the constant c is the norm of A(p, x,) and the
parameter xo indicates the size of the external
charge distribution. The function a(y) can actually
also depend on the spherical coordinate 0 but for
our purpose here we shall restrict it to be a func-
tion of y only. From Eqs. (3) and (5), one gets

where a, and f, are constants. For large y, a(y)
must tend to one and f(y) must vanish at least as
fast as

a(y)=1+a, y ',
f{y} fiy '.

(1 la)

(lib)

Here a, and f, are constants. To construct the
non-Abelian Coulomb solution, the method is
again to solve Eq. (9b) first subject to the asymp-
totic conditions (10) and (ll). One then evaluates
the source density q(y) from Eq. (9a). In this way
the expressions a(y) and f(y) are the solution cor-
responding to the charge distribution as obtained
through Eq. (9a). We note that the asymptotic
conditions (10b) and (lib) of the function f(y) can
in fact be derived from those of the function a(y)
by using Eq. (Qb).

at small ~, and it must tend to one at least as
fast as

~())=1—0(—
) (7b)

A;=n'f{y)/(gr), n'=e/r,

Af = e...n' [a(y) —1j/(gr).

The external source is specified in the radial
frame"

(8a)

(8b)

p, =~, (f(y)/(gr, '). (8c),

This ansatz simplifies Eqs. (la) and (lb) and the

following nonlinear differential equations result:

-f" + 2a'f/y'=yq,

-a + (a' —1 -f ) a/y
' = 0 .

(9a)

(9b)

The finite-energy requirement imposes boundary
conditions on the functions a(y) and f(y), and for
the non-Abelian Coulomb solution, the following
asymptotic behavior must be fulfilled'. for small

y, a(y) must go to one and f(y) must approach zero

at large y. Explicit expressions for magnetic
multipole solutions are then constructed by choosing
the appropriate function a(y) which satisfies the
boundary conditions (7) and yields a real function

@(x) from Eq. (6b). Of course a(y) must be regular
everywhere. In passing we note that boundary
conditions of (t)(x) and q(x) are governed by those
of a(y).

The spherically symmetric non-Abelian Coulomb
solution is derived by employing the following
ansatz for the gauge field potentials'.

III. MAGNETIC MULTIPOLE SOLUTIONS

Equation (6b) can be written as

2, l/
r y(y)= —a'-a a0 y

(12)

u= ey' (13)

and e is a positive real parameter, we find that
Eq. (12) can be simplified as

r,@ =3(eu )
2 1/3 1 CPQ

0 cpu

This implies that

1 d2
, =K(u),

0 Qu
(15)

where K(u) is a function which is non-negative
everywhere. The asymptotic behavior of a( y),
as given by Eqs. (7), permits us to make a further
simplification by requiring a (u} to be positive
everywhere. With this constraint for a (u), we ob-
serve that an explicit magnetic multipol. e solution
emerges whenever a(u) possesses the asymptotic

This equation does not readily allow us to write
down an explicit expression for a (y) in terms of
elementary functions such that the boundary con-
ditions (7) are fulfilled and the function (t) (y} is
real, although undoubtedly a large class of the
required a(y) exist. However, by a suitable choice
of variable we now show that Eq. (12) can be
written in a convenient form which is more easily
solvable. Trading the variable u for y, where
u is given by
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TABLE I. Explicit magnetic multipole solutions and their asymptotic behaviors.

a(u)
Asymptotic behaviors

u=o

(a) tanhu

(b) u tanh(l/u)

(c) u(b" + H~')-'~",
b&0, n=2, 3,4, . ..

(d) 1 —(1+bu)" exp(-u),
b)0

(e) —tan ~(u)
2

u 3u
1

u —2u exp(-2/u)

1-—(u i /b)"u 3
b n

(b+1)u —(2+ b+ b )u

—(u-3u )
2 1 3

7r

1 —2 exp(-2u)

1- (3u )

ib/g(/$)n3
n

1-exp(-u)/(bu)

1 —2/(7t'u)

(f) u tan ((1/u) 1- (3u') '

behavior (7) and obeys the following inequality:

d g &0. (16)

Thus the construction of explicit magnetic multi-
pole solutions is made relatively easier by
requiring the function a to fulfill conditions (16)
and (7) instead of (12) and (7). In passing we
observ. e that the asymptotic expressions (7) also
satisfy the inequality (16) as they should. We
emphasize that in the above consideration, it is
assumed that a(u) is positive everywhere.

In Table I, we list some explicit expressions
for a (I) whose second derivatives are negative.
The list is of course not exhaustive. Solution (a)
was first presented by Sikivie and Weiss, ' and
solutions (b) and (c) were given in Ref. 7.

IV. THE RELATION

In Ref. 8, we obtained analytic closed-form
expressions for the non-Abelian Coulomb solu-
tions

a(y) = I+ (b/y) tanh(u), b& 0 (17)

a(y) = 1+ by tanh(1/u), b& 0. (18)

a(y) = 1+ b a (u)/y, b & 0 (19)

where b is a positive parameter. We now wish
to show that the relation (19) is valid in gen-
eral; that is, given a magnetic multipole solu-
tion one can immediately write down the non-
Abelian Coulomb solution by virtue of Eq. (19).
Before commencing the proof, we observe that

Qn comparing with the magnetic multipo1, e solutions
(a) and (b) in Table I, it is easy to see that

asymptotic conditions of a as given by Eqs. (7)
will guarantee the correct asymptotic behavior
of a(y). However, the converse is not necessarily
true. The asymptotic behavior of a(y) will not in
general lead, via Eq. (19), to the correct asymp-
totic conditions for c. Hence one cannot expect
in general to construct, via relation (19), the
magnetic multipole solution from the non-Abelian
Coulomb solution.

A non-Abelian Coulomb solution is obtained if
we can write down an appropriate expression
for a(y) which satisfies the boundary conditions
(10a) and (11a) and which gives rise to a real
function f(y) from the Eq. (9b). Equation (9b) can
be rewritten as

2 2 «3af =-y a +a -a.
Applying the relation (19), this becomes

d2g 't

ef =(9e()e' (e'—, l+ (I jee) )'e 3(l e/e)'.du' ]

(20)

(21)
For the magnetic multipole solution, the in-
equality (16) holds and a is positive everywhere.
This implies that a(V) is also positive every-
where, and as a consequence a real function f(y)
results from Eq. (21). The function f(y) so con-
structed will have the correct asymptotic behavior
as this is determined from the asymptotic condi-
tions of a(v) and the Eq (20). .

Thus starting from a magnetic multipole solu-
tion, a non-Abelian Coulomb solution is easily
derived by using Eqs. (19) and (20). In other
words, one obtains a(y) and f(y) from a valid
a(y).

Although Eq (19) establ. ishes a relation between
a and a(y) it has no bearing on the properties of
the magnetic multipole solution and the non-Abelian
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Coulomb solution. In fact they are quite distinct
as the magnetic multipole solution 'requires a
source of critical strength to sustain itself where-
as the non-Abelian Coulomb solution exists for a
source of arbitrary strength. However, the rela-
tion (19) is useful because in view of the inequality
(16), the ma. gnetic multipole solution is easier to
construct than the non-Abelian Coulomb solution,
and the reLation (19}enables us to obtain the Latter
from the former.

V. NON-ABELIAN COULOMB SOLUTION

2.0
1.9-
l.8-
l.7.

a(y)
'l.6-

l.4 .
l. &.

I.&.
l. l .
'l.o
0.9

Q.O0,5 j.Q l.5 2.02.5 &.05.54.0 4.5 5.0

As an illustration of the results obtained in Sec.
IV, we construct a non-Abelian Coulomb solution
from the magnetic multipole solution (d} given in

Table I,

a = 1 —(1+bu) ' exp(-u), b) 0. (22}

From Eqs. (19) and (20), the non-Abelian Coulomb
solution is

FIG. 1. The function a(y) for the solution (23) with e
=1. Starting from the lowest curve these correspond to
b = 0, 2, 4.

of the source distribution. We have also plotted
graphs for fixed b but different e. There is no new
feature.

VI. REMARKS

1a= 1+ —
i
1-

y

e"
b&0l, b. )i

(23a)

+ 3 + p (23b)

u' 2b b " e
a '=9 1+ 1+

y 1+bu) 1+ bu 1+bu

We make a few comments:
(a) In Sec. IV, we have shown that construction

of magnetic multipole solutions is made easier
by using the inequality (16}. One might enquire
whether the same technique can be used to find
non-Abelian Coulomb solution. The answer is
no. By writing a(y) a,s

a(y) =1+V(y),
u=ey', e& 0. (23c)

then from Eq. (9b) we obtain
The asymptotic behavior can be easily found. Thus
at small y, we have

( y'v &"'
f(y)=

i
V'+2V- )1+ t/' j (28)

a = 1+ (b+ 1)ey' —O(y'),

f= 3' '(b+1)ey +O(y'),

(24a)

(24b)
Assuming V(y) is positive everywhere one might
think that the inequality

and at large y, V '(y)(0 (29)

1a= 1+ —,
31/2 jy

(26a)

(26b)

will result in a real function f (y). But this will
not occur because the function V(y) must possess
the following asymptotic behavior:

q = —12(3)"' ' e+ O(y),(—'+ b+ b')
1+5 (26a)

and at large y,
4(3l/2 3 1/2)/ 5 (26b)

One can also estimate the asymptotic behavior of
the source density q(y). At smaLL y, q(y) behaves
as

2.2r
2.0-
l.S-
l.e-
l.4-

&(y)
l 2 .
I.O
0.8
0.6
0.4
Og
O.O

0.0 0O l.0 l.5 2.0 2.& M) M
The graphs of a(y), f(y), and q(y) (see Figs. 1-4)
are as shown and they appear similar to the num-
erical solution of Ref. 4. The general shapes of
a(y) and f(y) are not very sensitive to the change

y

FIG. 2. The function f (y) for the solution (23) with e
=1. Starting from the lowest curve these correspond to
b = 0, 2, 4.
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FIG. 3. The source density q(y) for the solution (23)
with e=l, b= 0, 2, 4. The curve with the smallest (larg-
est) amplitude corresponds to b=0 (4). Here El means
the q axis is scaled by a factor 10, e.g. , 16E1= 160.

FIG. 4. Profiles of the function yq(y) for the solution
(23) with e=l, b = 0, 2, 4. The curve with the smallest
(largest) amplitude corresponds to b = 0 (4).

V(y) = a, y'

at@=a, and

V(y) =sr ,y '. (3Oa)

(3ob)

at y =~. The requirement that V(y) be positive
everywhere restricts the constants a, and a y to
positive values only. Hence nei. ther condition
(30a) nor (30b) can ever fulfill the inequality (29).
Thus the non-Abelian Coulomb solution cannot
be obtained as easily as the magnetic multipole
solution and the relation (19) is useful.

(b) We have constructed analytic expressions
for the non-Abelian Coulomb solution in the
SU(2) case. ' The method can be extended to the
SU(3) case.

(c) In Ref. 9 it is shown that if the source density
vanishes exponentially at large distances, then
the field strengths, provided they also decrease

exponentially, have to vanish at least as fast as
the source, It is well known that the source in
the SU(2) Yang-Mills equations does not deter-
mine the solutions uniquely. Thus for magnetic
dipole solutions' given as solution (a) in Table I,
although the source densityq vanishes exponentially
at large distances, the magnetic field has the
dipole behavior I/y'. For the non-Abelian Coulomb
solution (23) we find that at large y the field
strengths approach zero as y '. From Eq. (26b),
we see that the source density decreases faster
than the field strengths at large distances.
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