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Monte Carlo study of compact U(1j four-dimensional lattice gauge theory
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Expectation values of the specific heat and of Wilson loops are presented for compact U{1)gauge theory on 4', 5',
and 6' lattices, calculated by averages over up to 7500 iterations through the lattice generated by Monte Carlo
methods. The calculations show clear evidence for a single second-order phase transition.

I. INTRODUCTION

Compact quantum electrodynamics (@ED) is
known' to undergo a transition from a phase at
strong coupling, where electrons are confined,
to a phase at weak coupling where free electrons
and photons are found. In this paper, we present
the results of a Monte Carlo investigation of com-
pact U(1) gauge theory on four-dimensional lat-
tices. ' 4 A second-order phase transition is seen
in which external sources are unconfined, which
is signaled by the Wilson loops changing from an
area-law to a perimeter-law behavior. ' It is
hoped that the introduction of fermions into the
system does not essentially alter this result.

II. MONTE CARLO ALGORITHM

A Monte Carlo process generates a series of
configurations of link variables on the lattice in
such a way that the mean value of an observable
measured over all configurations should converge
to the expectation value. We define our action as
a sum over unoriented plaquettes p, such that

P(8)dg=exp(ncosg)dg, 0«g«2)(
= Q(x)dIZ(x)], O=Z(x) 1

where

Z(x) =

()(x)= expIa cos —(1-g) -g
2

and ~ is a constant arising from the current state
of the links that interact with the link to be up-
dated. Two pseudo-random numbers are selected
from the uniform distribution on the interval 0 to
1, which we denote by Z and Z'. The variable x
is calculated from the inverse function to Z(x),

then to produce the weighting Q(x) this value of x
is kept only if

where U, is the product around a plaquette of link
variables p = exp(ig). The partition function is

g= dU exp -pSU

To simulate this system we use the heat bath, ' in
which link variables are updated by selection from
the Boltzmann distribution without direct refer-
ence to their current values. Given a link, we
generate its angle with probability

where Q =exp(0. 2105137') is the maximum of
q(x). This sequence is repeated until a value of
x is accepted. We refer to the application of this
updating procedure to every link on the lattice as
one iteration. Periodic boundary conditions are
used in all our calculations. In our calculations,
the first ten iterations through the lattice are ig-
nored.

III. THE RESULTS

P(8)dg= expt-Pb, S(8)]dg,

where b, S(8) is the contribution that would be made
to the action by that link. A practical technique
for reproducing this distribution is as follows. '
Making the change of variable

In Fig. 1 we show the average action per pla.-
quette (E) as a function of the inverse tempera-
ture p. For p ( 0.88 and p &1.13 we have used a
6 lattice. To achieve convergence in this region,
400 iterations through the lattice were found to be
sufficient. However, for 0.88» p «1.13 we sam-
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FIG. 1. The U{1) average action per plaquette (E) as a function of the inverse temperature P for a, lattice of size 64.

The curves are the leading-order high- and low-temperature expansions of Ref. 2.

pled up to 7 500 iterations through the lattice. Also
shown in Fig. 1 are the leading high- and low-
temperature expansions' given by

(g) =1-—+0(6')

and

1
4p

7

respectively.
The results for the average action per plaquette

(g) for an ordered and a disordered 4' starting
lattice are shown in Fig. 2(a). The data in this
diagram result from averaging over 7 500 itera-
tions through the lattice. We immediately note
the fact that there is more dispersion in the dis-
ordered starting data than in the ordered starting
data. This is somewhat surprising after such long
runs. A possible explanation' may be that on cool-
ing from disorder some sort of dislocations get
frozen into the lattice in a random manner. For
example, if one rapidly freezes water a lot of
internal energy is likely to be locked up in bound-
aries between separate crystal grains. However,
this cannot be the whole explanation for this effect
because the disordered starting data points are
almost as often below as above the ordered start-
ing data. This can be clearly seen in Fig. 2(b).

To illustrate how quickly the lattice comes to
equilibrium outside the critical region, we show
in Fig. 3(a) a plot of the average action per pla-
quette versus the number of iterations through
the lattice for the inverse temperature p = 0.55.
At p = 0.55, we obtain the same result for the aver-
age action per plaquette if we average over the
first 50 iterations, the first 500 iterations, or any
higher number of iterations through the lattice.

We can thus equilibrate the lattice outside the
transition region with very few iterations through
the lattice.

It was found by I.autrup and Nauenberg' that,
in the region of the critical point, the approach to
equilibrium is not always monotonic but has some
discontinuous jumps. We illustrate this in Fig.
3(b) by plotting the first 360 iterations through a
64 lattice at an inverse temperature of p = 1.000.
The rapid change near 180 iterations is clearly
evident. Because of this it was found necessary
to make 7 500 iterations through the lattice in
order to obtain smooth results. In order to cut
down the computation time for 7 500 iterations
through the lattice, we used a 4' lattice.

In Fig. 3(c) we show the average action per pla-
quette against p for the inverse temperature
p = 5.50 which is well beyond the transition region.
As was found in Fig. 3(a), the lattice soon comes
to statistical equilibrium. Here the average over
the first 30 iterations is substantially the same as
the average over 80 iterations through the lattice.

We would next like to investigate the effect on
the measurement of the average action per pla-
quette of the lattice size. Figures 4 and 5 show
the results for 5 and 6 lattices obtained by
averaging over 6000 and 3000 iterations, respec-
tively, through the lattice. We only plot the data
over the range 0.88 =P =-1.13.

The Wilson loop P'(S, 8) is defined by

where Q is a closed path of links and 5 is the lin-
ear dimension of the loop that is being calculated.
In general, we know that
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FIG. 2. (a) The U(l) average action per plaquette (E) as a function of the inverse temperature P for a lattice of size
4 . The data points result from averaging over 7500 iterations through the lattice. (The uppermost data set repre-
sents an ordered starting lattice while the lowermost data set represents a disordered starting lattice. ) (b) The U(1)
average action per plaquette (E) for an ordered starting lattice (open circles) and a disordered starting lattice
(crosses) .
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where lime „g -1 and lime, g1-0 are the lim-
iting behavior of the Wilson loops. As the loop
gets bigger, g gets smaller.

We present the square Wilson loops against the
inverse temperature p in Fig. 6. All these re-
sults have been obtained for a 64 lattice by aver-
aging 400 iterations through the lattice.

In Fig. 7 we show the expectation values of
square Wilson loops as a function of the lattice

size for p = 1.50 and p = 3.00, respectively. We
see that the loops of up to one link stabilize after
a 34 lattice, while those of up to two links stabi-
lize after a 5' lattice. The loops of up to three
links have almost stabilized after a 6' lattice, but
loops of up to four and five links are still chang-
ing at a 6' lattice. This gives the rough rule that
finite-size effects show up in Wilson loops larger
than half the lattice size.
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FIG. 3. The U(l) average action per plaquette (E) as a function of the number of Monte Car1o iterations through a 4
lattice with an ordered start. (a) P= 0.55 (the solid line results from averaging over 400 iterations through the lat-
tice), (b) P = 1.000 (the solid and dashed lines result from averaging over 400 and 7 500 iterations through the lattice,
respectively), and (c) P= 5.50 (the solid line results from averaging over 80 iterations through the lattice).
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Figure 8(a) presents the square Wilson loop
W(S, S) versus the loop side S for various values of
p. We see that this is almost a straight line so
that

Wz(S, S) = exp[-B(p)S],

where B is the slope of the curve. Since Fig. 8(a)
is almost a straight line this proves that in the

low-temperature region the square Wilson loops
obey the perimeter law.

In Fig. 8(b) we present a plot of the square
Wilson loop against the loop side squared $' for
the inverse temperature below the critical tem-
perature. Again we observe an approximate
straight-line behavior indicating

Ws(S, S)= exP[-)((P)S'j,
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FIG. 4. The U(l) average action per plaquette (E) as a function of the inverse temperature P for a 54 lattice with an
ordered start. The data points result from averaging over 6000 iterations through the lattice.
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FIG. 5. The U(1) average action per plaquette (E) as a function of the inverse temperature P for a 6 lattice with an
ordered start. The data points result from averaging over 3000 iterations through the lattice.

where X is the slope of the curve. Figure 8(b)
shows that the square Wilson loops obey the area
law below the critical region.

In Fig. 9 we show the fitted slope of the square
Wilson loop versus the inverse temperature p.
The sudden crossover from an area decay to a
perimeter decay is evident near p =1.0. This
change of the loop behavior is a clear indication
of a phase transition. '

In order to see the phase transition more clear-
ly, we plot for comparison the smoothed average 0.9— X1x1

action per plaquette data for 4', 54, and 64 lat-
tices in Pig. 10. These curves were obtained from
the data shown in Figs. 2(a), 4, and 5, respec-
tively. These data consisted of 89 data points in
the range 0.88- p 1.13 resulting from averaging
3000, 6000, and 7500 iterations through 6', 5',
and 44 lattices, respectively. We must keep in
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FIG. 6. The square Wilson loops W(S, S) for S=l, 2,
3, 4, and 5 as a function of the inverse temperature P
for U(l).

FIG. 7. The square Wilson loops W(S, S) for S=1, 2,
3, 4, and 5 as a function of the lattice size for U(1).
(The dot represents the data for P=1.50 while x repre-
sents the data for P=3.00.)
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mind that the scale in Figs. 2(a), 4, and 5 is
considerably enlarged over that of Fig. 1. There
are some fluctuations in the system in the critical
region still remaining after the averaging over
7 500 iterations through the lattice. These are
due both to residual thermal fluctuations in the
system which cannot be eliminated and to finite-
size effects. The critical temperatures are given
by the values p, = 0.978 + 0.005, p, = 0.993 + 0.002,
and p, =1.003+0.001 for 44, 5', and 64 lattices,
respectively.

Lautrup and Nauenberg' found similar results
from a quantity they call the normalized specific
heat. The normalized specific heat is not the same
as the specific heat, the quantity we calculate.
The specific heat for constant volume C~ is defined
by

FIG. 9. The coefficients of the area- and perimeter-
law behavior of the square Wilson loops W(S, S) as a
function of the inverse temperature P. The crosses and

solid circles represent the coefficients of the area law

y( p) and the perimeter law B(p), respectively.

s(z), s(z)
aT ap

In order to evaluate this expression, we first
smooth the average action per plaquette data.
These smoothed data are then interpolated by



2192 K. J. M. MORIARTY

I I I I I I I I I I I I I I I I I I I I I I I I

0.56—
0.54

0.52

0.50

0.48

0.46

0 44

0.42

0.40

0.38

0.36

0.34

0.32

0.28

I I I I I I I I I I

0,88 0.90 0.92 0.94 0.96 0.98 1,00 1.02 1.04 1.06 1.08 1.10

FIG. 10. The smoothed U(1) average action per plaquette (E) as a function of the inverse temperature P. (The dashed
curve represents the smoothed data for a 4 lattice, the dot-dashed curve represents the smoothed data for a 5 lat-
tice, while the solid curve represents the smoothed data for a 6 lattice. )

means of cubic splines. ' Once one has obtained
the cubic spline interpolation of the smoothed data,
the first derivative results immediately. The
equation above then yields the specific heat for
constant volume. The results are shown in Fig.
11 for 44, 54, and 64 lattices. Using these curves
we calculate values for the critical inverse tem-
perature p, which agree with those quoted pre-
viously in relation to our discussion of Fig. 10.
Finite-size scaling theory has been applied" to
our specific heat results and the results given in
Ref. 10. Preliminary results on the string tension
are reported in Ref. 11.

We have studied the average action per pla-
quette, square Wilson loops, and the specific heat
for a lattice gauge theory with the gauge group
U(1). We see clear evidence for a second-order
phase transition in all three quantities near p,
= 1.0. Guth' has shown, using Griffiths-Kelly-
Sherman inequalities, that U(1) lattice gauge the-
ory has at least one phase transition. Since U(1)
is the gauge group of quantum electrodynamics,
this confirms that photons and electrons can exist
as free particles.
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