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To analyze topological effects in quantum field theory, we propose a new scheme in

which quantum fluctuations are considered around topological singularities rather than

classical solutions. We study the (1 + 1)-dimensional CP ' model in detail, where topo-

logical singularities are labeled by the root lattice of SU{1V). In this scheme, once topolog-

ical singularities are extracted explicitly from field configurations, it is possible to calcu-

late quantum effects by applying Feynman graph techniques. We obtain the following

conclusions. (i) Ultraviolet as well as infrared divergences automatically disappear. (ii)

Topological effects remain finite in the large-1V limit. (iii) Topological effects do not lead

to the confinement of fundamental representation charges. {iv) The long-distance

behavior of the effective action is described by the SU(N) sine-Gordon model. All of
these results are direct consequences of the group-theoretical structure of topological

singularities, that is, their charges are on the root lattice of SU{Ã).

I. INTRODUCTION

An entirely new insight has been obtained in
quantum field theories since topological excitations
such as solitons and instantons were discovered. '

The structure of a Lagrangian system ~ould be
modified significantly from the perturbative one if
vacuum fluctuations are dominated by virtual crea-
tions of topological excitations. Such effects have
been calculated by making use of semiclassical ap-
proximations in the Euclidean functional integral.
However, there are at least two obstacles against
these methods. First, the knowledge of classical
solutions is indispensable in applying them. Thus,
topological effects cannot be considered unless

there are corresponding classical solutions. Second,
the set of field configurations generated by quan-
tum fluctuations around classical solutions might
occupy a negligible portion of the field manifold
over which we are to integrate in the generating
functional. The primary aim of this paper is to
present a new formalism in which we are able to
calculate quantum effects of all kinds of topologi-
cal excitations.

In this new formalism, we evaluate quantum
fluctuations around topological singularities instead
of classical solutions. These singularities are ex-
tracted from the field manifold by way of a change
of integration variables, which is known as a singu-

lar gauge transformation in gauge theories.
Under such a change of variables, the matter field
acquires a phase which is a multivalued function.
We have used the terminology topologrcal singulari-
ties to stress this specific feature, that is, the phase
field becomes multivalued with branch-singularity
points, lines, or sheets in the Euclidean space-time.

Actually this scheme has already been proposed
and applied to various models. " However, no
explicit calculations of quantum fluctuations have
yet been performed. In this paper, we present a
full detail of a quantum field theory of topological
singularities in the (1 + 1)-dimensional CP+
model. ' ' In particular, we carefully examine
cancellation mechanisms of various divergences in
this model.

A salient feature of this method is that, once we
have extracted topological singularities which are
pointlike objects, we are able to evaluate quantum
corrections by applying Feynman graph techniques.
Thus, calculations are considerably simplified as
compared with standard semiclassical methods. ' '

We shall use the 1/N expansion to calculate
quantum fluctuations around topological singulari-
ties. Because there are controversies on the rela-
tion of topological excitations and the 1/N expan-
sion, ' ' we wish to clarify the points as far as
our formalism is concerned. The first problem is
if the 1/X expansion produces topological effects.
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The second problem is if topological effects survive
the large-N limit.

The answer to the first one would be obvious
when we recognize that the 1/N expansion is a
technique to sum certain Feynman graphs in per-
turbation theory and that topological excitations
are not generated as vacuum fluctuations within
perturbation theory. Thus, by doing a simple 1/N
expansion, we certainly miss all topological ef-
fects. ' However, once we extract topological
singularities by way of a change of integration
variables, we are free to carry out the 1/N expan-
sion to collect important Feynman graphs involv-

ing topological singularities.
In order to answer the second problem, we need

to analyze the group-theoretical structure of topo-
logical singularities. First of all we emphasize that
we are not dealing with instantons but topological
objects in SU(N). It is essential to recognize that
our topological singularities are labeled by the root
lattice of SU(N) in the CP ' model, just as mag-
netic monopoles are labeled by the root lattice of
SU(N) in SU(N) gauge theories. ' Namely, each
topological singularity carries charge vectors which
are on the root lattice of SU(N). Then, it is quite
easy to prove that the contribution of each topo-
logical singularity to the generating functional is
exp[ —(self-energy)] and remains finite in the
large-N limit. (This self-energy is ultraviolet diver-

gent but it is absorbed into the bare fugacity. ) We
wish to remark that our result is not in contradic-
tion with that of Witten, ' who has argued that in-
stantons are suppressed since they behave as
exp[ —N(instanton action)]. This N dependence
follows because instantons carry the U(1) charge
and not the SU(N) charge. Therefore, instanton ef-
fects disappear but our topological effects remain
in the large-N limit.

Although topological effects remain finite in the
large-N limit, they have no connection with charge
confinement in the CP ' model. The reason is
as follows. This model possesses a local U(1)
gauge symmetry as well as a global SU(N) gauge
symmetry. The symmetry structure should not be
altered by topological effects. Therefore, if charge
confinement is to occur, it must occur by a long-
range force associated with the local U(1) gauge
symmetry. However, our topological singularities
do not carry the U(1) charge, as we have stressed.

For completeness, we should remark that charge
confinement is possible in models which have local
SU(N) gauge symmetry, such as the Georgi-Glas-
how model, the Higgs model, " and the Yang-

Mills theory. Just as in the CP ' model, topo-
logical effects must remain finite in the large-N
limit. However, in contrast with the CP
model, these models possess local SU(N) gauge
symmetries. For instance, in the (1+ 1)-
dimensional SU(N) Higgs model, topological ef-
fects recover the local SU(N) gauge symmetry and
the associated long-range Coulomb force confines
fundamental-representation charges. In higher di-
mensions, it has generally been recognized that
color flux would be squeezed into vortices and con-
fine charges by topological excitations.

We now discuss some technical points. In our
formalism, it is necessary to deal with two kinds of
ultraviolet divergences. One is of a dynamical ori-
gin and the other is of a kinematical origin.
Dynamical divergences refer to those which arise
due to loop integrals. We shall show that such
divergences are eventually canceled out because
topological singularities are characterized by the
root lattice of SU(N). Kinematical divergences
arise because topological singularities are pointlike
objects. They are separated as the self-energy term
in the effective action. Then, these divergences are
shown to be canceled by the corresponding diver-
gences in the Jacobian induced by the change of in-
tegration variables. As a result, our results are free
from any divergences.

We summarize our conclusions. First, topologi-
cal effects remain finite in the large-N limit.
Second, the effective action of topological singular-
ities corresponds to a statistical system of particles
bearing charges labeled by the root lattice of
SU(N). The long-distance behavior is identical
with that of a Coulomb gas. Hence, it is equiv-
alent to the SU(N) sine-Gordon model. Our result
agrees with that of instanton calculations for
SU(2)."' On the other hand, the short-distance
behavior is considerably different from that of a
naive Coulomb gas. When plus and minus charges
approach each other, a repulsive Yukawa force be-
comes dominant over the attractive Coulomb force.

This paper is composed as follows. In Sec. II
we review topological singularities and characterize
them by the root lattice of SU(N). In Sec. III, ex-

panding the effective action in a power series of
I/~N, we show that topological effects contribute
as an O(1) term. Sections EV and V are devoted to
explicit evaluations of the O(1) term of the effec-
tive action. We use the proper-time regularization
scheme and obtain an exact formula which deter-
mines the long-distance structure. Then, we per-
form a perturbative calculation and analyze the
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short-distance behavior. In Sec. VI we derive an
effective Lagrangian of the system. We also dis-
cuss the problem of charge confinement. Finally,
in Sec. VII we summarize our conclusions.

identified with the vortex center. It is easy to con-
vince oneself that topological singularities are in-

troduced as branch-singularity points of phase field
g in this model. Then, we are able to construct a
field configuration containing topological singulari-
ties in an arbitrary manner by requiring

II. TOPOLOGICAL SINGULARITIES
e„,d„B„X=2~+q~5' '(x aj —), (2.4)

Q= f d xeq„B„A, .2'
It is convenient to parametrize

/=pe', A„=U„—B„X .

(2 2)

(2.3)

Because p and U& become massive, it is obvious
that the phase field X carries the topological
charge. It is to be emphasized that field X is a
multivalued function when it carries a nonzero to-
pological charge. The branch-singularity point is

It is well known that topological charges are de-
fined as a global concept. ' This is essential when
we treat topological solitons, because for a soliton
to be a stable physical object it must carry a
superselection-rule charge. However, this defini-
tion is not adequate when we treat instantons or
any other excitations in order to analyze the vacu-
um structure, because in so doing we need to in-

tegrate over all field configurations in the generat-
ing functional. Thus, even if the functional space
is restricted to the topologically trivial sector, each
field configuration may contain "topological" exci-
tations as local lumps. Furthermore, the essential

property of topological excitations in this context
is not that they carry superselection-rule charges
but that they are not created as vacuum fluctua-
tions within perturbative field theory.

Let us call a field configuration singular when it
is not obtainable within perturbative field theory.
Then, it would be convenient to introduce a con-
cept of topological singularities so that a field con-
figuration is singular provided that it contains
these singularities. In gauge theories these singu-
larities are generated by performing singular gauge
transformations.

Let us consider the (1 + 1)-dimensional Abelian

Higgs model as the simplest example. The model
is defined by

,Fq„+ ~ (dan+i—Aq )P
~

+ V(P),
(2.1)

F„=B„A —0 A„,
where the topological charge is

with qj being integers.
In quantum field theory we calculate the gen-

erating functional

Z= f [dg][dg][dA„]exp —f W

= f [pdp][dX][dU„]exp —f W

(2.5a)

(2.5b)

X=X +I
in (2.5b), or set

P=P"exp(iX"),

Ap ——Ap —B~X",

(2.6)

(2.7)

in (2.5a). Here, X" represents a particular solution
to (2.4) such that

(2.8)

0& being an azimuthal angle around singularity
point aj. We remark that the change of variables
(2.7) is precisely known as a singular gauge
transformation. It should be emphasized that in
our formalism the introduction of topological
singularities does not depend on the existence of
classical solutions.

We have analyzed the Abelian Higgs model in
detail, although what we have described is com-
mon knowledge of physicists. However, the gen-
eralization to the Cp ' model is much less trivi-
al. We now discuss this case.

The Lagrangian is given by'

N

~
(Bq+iAq )w~

~P (2 9)

In this formula we may recall that a field configu-
ration containing topological singularities is singu-
lar because a multivalued field 7 cannot be approx-
imated by Gaussian fluctuations around the vacu-
um (X=0). In order to analyze (2.5) within pertur-
bation theory, it is necessary to extract topological
singularities explicitly and then to evaluate quan-
tum fluctuations around them. Namely, we
decompose
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together with the constraint in (2.13a), where

N

a=1
iw i

=1. (2.10) X."=gq, o, ,
J

(2.18)

Wa~8 Wa,lg

Ap ~Ap —B~g,
(2.1 I)

in addition to a global SU(Ã) symmetry. The to-
pological charge is

Field A& is regarded as an auxiliary variable. This
Lagrangian possesses a local U(1) gauge symmetry,

0J. being an azimuthal angle around singularity
point aj . Then, we perform Gaussian integrations
over w'. We note that topological singularities a"t
effectively as point sources accompanied by
"colored" potentials A &'"'.

A a, ext y ag 6ta
J P J

J

g= ' fd .„„a„A„,
2m'

(2.12)
(2.19)

as in the Abelian Higgs model.
It is to be noted that the topological charge is

defined only with respect to the local U(1) gauge
symmetry; it is entirely blind to the global SU(Ã)
charges. In the case of the Abelian Higgs model,
the introduction of topological singularities is not
conceptually new because they carry the Abelian
charge after all. However, this is not true in the
CP"-' model.

The generating functional is given by

Z= g f [dwa][dw ][dA„]exp —f W (2.13a)
a

= g f [pgp ][dX ][dU„]exp —f W

(2.13b)

Thus, the whole problem is reduced to the evalua-
tion of quantum fluctuations in the presence of
external potentials (2.19).

A comment is in order. When 7" does not
depend on indices a, the change of variables (2.17)
is merely a local gauge transformation (2.11). It is
easy to check that the overall phase 7" is canceled
out completely from Lagrangian (2.9). Note that
the CP ' model is very different on this point
from the Abelian Higgs model, where such a
change of variables gives rise to topological singu-
larities. The reason is very simple: In the CP
model, the kinetic term for the gauge potentiai is
absent which is to acquire a nonzero contribution
from a singular gauge transformation. Therefore,
we should only consider topological singularities
such that

where we have parametrized

w =p exp(iX ),
A„=Uq ——g BpXa .

a

(2.14)
Ol

N

g x."=0
a=1

N

g qi =0.

(2.20a)

(2.20b)

e„, )„tB„X =2m g qi 5' '(x a) ), —
J

qJ being integers. In order to calculate quantum
fluctuations around them, we decompose

(2.15)

As in the Abelian Higgs model, topological singu-
larities may be incorporated by allowing P to be
multivalued:

a=1

As we shall show in succeeding sections, this prop-
erty removes ultraviolet divergences from the sys-
tem of topological singularities.

We now discuss the group-theoretical structure
of colored charges qJ carried by topologica' singu-
larities. Taking one singularity point at the origin,
we express (2.17) as

Xa Xa +La 7

A„=A„' ——g a„X.",
a

in (2.13b), or make a change of variables

w =waexp(iXa'),

Aq ——A„" ——g BqXa',
a

(2.16)

(2.17)

w =exp(iOQ) w", (2.21)

(2.23)

where

N
Q=djag(qi, . . . , qa, . q+) g qa 0 (2.22)

a=1
in matrix notation. It is possible to write (2.22) in
terms of diagonal Gell-Mann matrices:

N —1Q=gqX,
H=1
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2
H(H+1)

1/2

diag(1, . . . , 1, H—,O, . . . , 0), (2.24)

with 1 appearing H times. The quantization con-
dition for charge q may be reformulated as

qz &

——(0, . . . , 0, 1, —1) .

exp(i 2m 0 )= 1, (2.25) Note that

with (2.22). Thus, the condition for charges rt is
given by (2.25) with (2.23). The same problem has
been analyzed in detail for the classification of
monopoles in SU(N) gauge theories. ' We only cite
the result. " It follows that an (N —1)-dimensional
vector rt =(rt', . . . , q ') is on the root lattice of
group SU(N). All these vectors are constructed
from N —1-independent elementary root vectors

2 for s=t,
1 for s&t .

An arbitrary vector q is written as

X—1

q= g n, q, .
s=1

(2.31)

N —1

'q g ns1s ~

s=1

with n, being integers. For instance, we may
choose

ri =(ei e2,

r, =(0, . . . , 0, (1—s)e, ~,e„.. . , Ne~ ~)

(with s —2 zeros),

r~ )
——(0, . . . , 0, (2—N)e~ 2,Nev (),

with

e, =l/[2s(s+I)]'~ (1&s &N —1) .

Note that

(2.26)

(2.27)

(2.28)

Identifying q with q, we also call q the root vec-
tor of SU(N).

We conclude this section by summarizing that
the charge of a topological singularity is labeled by
the root lattice of SU(N). Therefore, the indepen-
dent degrees of freedom in the generating function-
al (2.13) are given by field variables w" and A„" as
well as locations ajar and charges q of topological
singularities.

III. 1/X EXPANSIONS

The generating functional for the CP ' model
1s given by

1 fors=t,
for s+t . (2.29)

Z= J [dw][dw][dA„]5
~

w ~'— e
—S

(3.1)

Thus, topological singularities are characterized by
the root lattice of SU(N) .

In actual calculations, however, it is more con-
venient to use q charges rather than g charges,
where q is an ¹omponent vector

q = (q', . . . , q, . . . , q ). Corresponding to
N —1-independent elementary root vectors (2.27),
we may construct X —1-independent vectors q, by
way of (2.22) and (2.23):

q) ——(1,0, . . . , 0, —1),

with

S= J d x
~ D~ w ~, D~ ——Q„+ A„.

(3.2)

We have rescaled w by a factor (N/2f} '~ and A&
by N ' . We rewrite (3.1) as

q, =(0, . . . , 0, 1,0, . . . , 0, —1)

(with s —1 zeros preceding the 1),

(2.30)

with

Z= J [dw][dw][do][dA& ]e (3.3)
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S'= d x w—D&D&w+ m — o w w+ o2 2 i itv N
N 2

(3.4)

~ m a aw~=w~exp t Z, qj OJ

J
(3.5)

Ap ——Ap,

where qj (qj', .——. . , qj ) is a root vector of SU(N).
Note that topological singularities do not contri-
bute to the gauge potential A& owing to (2.20a).
When we rewrite (3.4) in terms of a new integra-
tion variable w~, special care is needed for the
phase factor in (3.5). To define it unambiguously
at the branch-singularity point aj&, we must use the
complex z plane, where B„=B,+ 8,,
8 =i(B,—8, ), and Bz

——4B,B,. Then,

i8ji= —, ln[(z a&&)/(z —a~&)]— (3.6a)

where we have introduced a mass parameter m ~ 0
which is irrelevant at this stage.

In order to separate topological singularities, we
make a change of variables (2.17), or

f [dw ][dw ]=Jj f [dw" ][dw" ], (3.10)

I

A comment is in order. The last term in the
square brackets of (3.9) has been derived by mak-
ing use of the formula B,(1/z) =m.5' '(x). We can-
not a priori neglect this term because it gives rise
to a contact term q; qj 5,15' '(x —ag) in I+I
When we carry out a perturbative calculation in

qj, it plays an important role in removing
kinematical divergences caused by the pointlike
character of topological singularities.

We next examine the Jacobian induced by the
change of integration variable (3.5). The indepen-
dent degrees of freedom are given by field variables
w" and Az as well as location aj{' and charge q of
topological singularities. Because this change of
variables involves only a linear transformation as is
obvious in the form of (2.13b} with (2.16), the asso-
ciated Jacobian is just a c number. ' Hence, it fol-
lows that

or

exp(i8,')=[(z —a&)/(z —a, )]' ' .

Now, we obtain

NS'= f d x 4 g w~D+D w"
a=1

(3.6b)

where indicates the integration over locations a ~
J

and the summation over charges q; the vector q
runs over all points on the root lattice of SU(N).
Thus,

)~ = XX II N, f II(~4'»
n=0 q

(3.11)

where

i+ m —~ o' —~ Gp/tv

i~N
0( w 'w'+ o.

2
(3.7)

where A,o is a bare fugacity. It has dimensions
[(mass) ] and must be there on dimensional
grounds. Since the topological singularity is a
pointlike object, we have A,O-5' '(0). By regular-
izing a singularity by

D+ ——I++ A+, 5' '(x)= f exp(ikx},(2) d k
~

k &h (2~)
(3.12)

with

D~ =I~-
N

A+=( A„—~iAy) /2,

(3.8) we obtain A,o——cA, where c is an inessential nu-

merical constant.
We go on to perform a Gaussian integration

over w~. We obtain

I+ ——exp i gqj 8& B—,exp i gqJ. 8J.
1 1

Z= f f [do][dA&]exp( —S,ff),
where

(3.13)

I =(I )t. (3.9)

a
=8,+ g +~(z —a~j. )5' '(x —aj(')

z —aj&

S,rr =Q Tr ln 4D+D
C

(3.14)

i 1+ m —~ (T ~ E~v5+„

+i f d xo(x) ..~iv
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The effective action can be expanded in a power
series of 1/V ¹

The O(1) terms are found to be

g(2) g(2) + y pa (3.20)

v=1
(3.15)

i Tr((r—G„»), (3.16}

where

d 2 ip(x —y)

G„y ——

(2m) p +m
1

Eo(m ~x —y ~
)

2m.
(3.17)

is a modified Bessel function. For x =y, it reads

G~= ln(A /m ),xx 4
(3.18)

A being a momentum cutoff. Then, the saddle-
point condition S' '=0 may be imposed, which is
equivalent to choosing the arbitrary parameter m

such that

It should be emphasized that topological singulari-
ties are labeled by the root lattice of SU(N) and
that charges q& assume values in a special set
(2.32). Therefore, the contribution of each topolog-
ical singularity to the effective action is O(1). We
note that, if topological singularities carried the
U(1) charge, the contribution had been 0 (N).
Hence, as in the absence of topological singulari-
ties, ' ' the O(V N) term is given by

S")= ' f d'xo(x)
2

where So ' is the contribution in the absence of to-
pological singularities, and

I =Trln(4I+I +m ) . (3.21)

IV. CALCULATION OF DETERMINANTS A

In this section we analyze (3.21) by making use
of the proper-time regularization. Let us start
with a brief review of this method, because it is
not yet a common tool of physicists.

The first problem is to extract the ultraviolet
divergences from Tr lnQ, where Q is an elliptic
operator

Q = g)'"B„B,+—a)'B„+b . (4.1)

Let A,; be a nonzero eigenvalue of operator Q. We
note that

An explicit expression of So ' has been given in
Refs. 13 and 14. Our major task is the calculation
of (3.21), which is the topic of the following two
sections.

As is obvious in (3.20), there are no interactions
between topological singularities and gauge poten-
tial 2& in the leading order of 1/N. Their interac-
tions appear in O(1/v N) We s.hall postpone the
analysis of O(1/V N) terms to a future paper.

We summarize that the contribution of topologi-
cal singularities to the effective action is O(1) and
given by formula (3.21) in the large-N limit.

2= 2 2m
m =A exp (3.19) —exp( —tk; )=—ink, ; lnee—

e

Thus, m is the renormalization-group-invariant
mass of w particles. It is to be remarked that the
mass of i() particles is not modified by the existence
of topological excitations.

+O(e'), s &0, (4.2)

with a=A, A being understood as an ultraviolet
cutoff of the theory. Therefore, we may write

~dt
gTr lnQ = — —Tr(e '~—II)—(ultraviolet-divergent terms),

e
(4.3)

where II is the operator subtracting the zero modes (A,;=0). It is possible to define the regularized Tr lnQ
by formula (4.3) in the limit e~0. This scheme is known as the proper-time regularization.

In order to determine the ultraviolet-divergent terms, we may use the Seeley expansion ' which is valid for
t=+0;

e ~Q= g E (Q)t(n —d)/2

n=0
(4.4)

where d (space-time dimension) =2 in our model. The coefficients E„(Q}have been calculated in the litera-
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(4.5)

ture. ' By substituting (4.4) into (4.3), the ultraviolet terms are explicitly fixed. Then, subtracting these
terms, we obtain the regularized TrlnQ as

d —j.

Tr lnQ =- — —Tr(e ~ —II )—g a„e —(ae —p) lne,2 (g gf)/g

t =o"

where a„=TrE„and p is the number of the zero
modes.

When the operator Q is of the form

Q = Dp —Dp+X, (4.6)

&0(Q) =(4~) ', &2„+)(Q)=0,
Z, (Q) = —(4~)-'"X,
F.,(Q)=(4~) '"( ,'X'-,', -F„,'—+—,'a'X), —

etc., where F&„ is the curvature.
We proceed to use the above method for the

(4.7)

D& being a covariant derivative in flat space-time,
the Seeley coefficients are particularly simple '

evaluation of (3.21), that is, of I ~=TrlnQ~ with

Q =4I+I +m (4.8)

J+ =8, + —, g qI~(z —ag)
J

JC (JC )$

omitting the last term in (3.9). Then,

(4.9)

In the proper-time regularization, however, opera-
tor Q is required not to contain singular functions.
We need to regularize singular quantities. It is
quite easy to show that the net effect is just to
drop off the contact term in I+I . Therefore, we
introduce operators

Ja Ja Ia Ia y (qa)25(2)(x
J

c yx —a~y
(4.10)

[J+,J ]=~gqj 5' '(x ag) . — (4.11)

We may use J+ as the regularized expression of I+. Hence, we find that operator Q is formally of the
type (4.6) with

(4.12)X=m +2m. g qj 5' '(x a&&) . —
J

In formulas (4.9), (4.11), and (4.12), it is understood that (z af) ' and —5' '(x —ag) have been smeared out.
Now, the Seeley coeKcients (4.7) may be explicitly calculated. As a result, we obtain

I' = —f Tr(e '—~ }+ (A —m2lnA ) J 12x —pe lnA,
4~ J

(4.13)

where we have set II=0 because operator Q has
no zero modes (Q &0). When singular functions
are smeared out as we have stated, there are no
other divergences but those displayed in (4.13).
Here, the second term corresponds to
Tr ln( —8 + m ) and should be canceled by nor-
malization. On the other hand, the third term is
proportional to the total topological charges g.qj .
However, for each topological singularity, the net
contribution is exactly zero because g q&

——0, as
~ dt

5TrlnQ = —5 f —Tr(e '~ ),0
(4.14)

we have stressed in Sec. II. Thus, quantum fluc-
tuations around topological singularities do not
produce any ultraviolet divergences.

The next problem is to analyze the finite part of
Tr lnQ . Although it is impossible to calculate it
explicitly, we are able to determine the dependence
of Tr InQ~ on locations ag of topological singulari-
ties. Following Ref. 15, we evaluate
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where 5 denotes a variation of parameters aJ&. We
have set e=O in (4.14) because TrEo and TrE2 do
not depend on parameters aJ&.

It is convenient to rewrite (4.9) as

&'(o +o )=2m. gqj 5'2'(x —ag) .

Then, by setting

(4.17)

J+ ——exp( —o )B, exp(o ),
where

(4.15)
R+(t) =exp( 4tJ+—J ),

(4.18}

a~= —, gqj ln(z —aj(') .
J

Note that

(4.16) R (t) =exp( 4tJ —J+ ),
for notational simplicity, it follows from (4.14)
that

5TrlnQ =4 f dt Tr[5(J+J )e '& ]

—~m2 ~=f dte ' —TrI 5(o +o }[R+(t)—R (t)]] .
Bt

(4.19)

Let us assume that the mass parameter m is very large, since we are mainly interested in the infrared
behavior of TrlnQ . Then, the integration region t=O is important in (4.19). Therefore, we can use the
Seeley expansion of R (t):

R+(t) —R (t)= g t'" ' [E„(4J~J ) E„(4J J—+)] .
n=0

Inserting (4.20) into (4.19), and integrating over t, we obtain

(4.20)

5TrlnQ = g I +1 m '" 'Tr{ [E„(4J+J ) E„(4J J+)]5—(o+o) I .
n=2

(4.21)

Here, all the terms with n & d vanish in the limit m —+ 00.
Then, keeping only the first term in (4.21), we obtain

5TrlnQ =—f d x gqj 5' '(x —ajar)5(o +o ),
J

where we have used formula (4.7) together with

X =2m g q~
5'2'(x —ag)

J

(4.22)

and relation (4.11). The symbol = indicates the equality of the infrared structure. Finally, inserting (4.17)
into (4.22), we obtain

5TrlnQ = —,5 f d x[5„(o +o )]

=5[——, gq; qj ln(af af) ]— (4.23)

or

Tr lnQ = ——, g q; qj ln
~
af aj't

~

+(t—erms independent of a' s) . (4.24)

This is the main result obtained in this section. It
gives the exact formula which determines the
long-distance structure of topological singularities.
We note that it is not surprising to have a loga-
rithmic interaction since our topological singulari-

ties are quite similar to those in the XY model.
The short-distance structure cannot be obtained by
this method. We shall solve this problem in the
next section.
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V. CALCULATION OF DETERMINANTS B

In this section we calculate (3.21) in a power
series of qj . Before evaluating Feynman integrals
explicitly, we make some comments. As we have
stressed in the previous section, we would not have
any ultraviolet divergences due to quantum effects
except the one which is linear in qj [see (4.13)].
Therefore, provided that this term is subtracted
out, no specific regularization methods would be
necessary such as the dimensional or the Pauli-

Villars methods. On the other hand, we will get
ultraviolet divergences which have a kinematical
origin because topological singularities are point-
like objects. To deal with them, we represent these
objects consistently in the momentum space and
use a momentum cutoff as a transient means. In
actual calculations, keeping track of all 5 func-
tions, we find that cancellations between various
would-be divergences actually occur.

Let us start calculations. First, inserting (3.9}
into (3.21), we obtain

(2) (x —ag)qB„I =Trln —8 +m +gq. 2m.5' '(x a~—) 2i—e „
J J

(x gj~)~(x——Qf )p+gq;q, 2~5;;5'"(x —ag)+
(x —ag) (x —af)

(S.l)

The contact term 2n.5,&5' '(x —ag) in the last set of square brackets has arisen as a crossing term between
the last two terms in (3.9). The existence of this term is crucial in removing ultraviolet divergences of the
kinematical origin.

The first-order term in qz is easily extracted from (S.l), which reads

I
~

——Tr 2n. gqj 5' '(x af)G„» =—gqj 1n(A/m) .
J J

(S.2)

This is precisely the last term in (4.13}that has been derived in the proper-time formulation. As we have
noted there, this divergence is harmless since we have Q,I, =0 because of the property (2.20b).

We now calculate the second-order term in qz . It is necessary to analyze the terms which are proportion-
al to (qj ) and q; qj (i') separately, because there is a contact term 2n.5,1.5' '(x —aj ) in (S.l). First, we
consider the term (qJ ) . Without loss of generality we may place a singularity point at x =0. The relevant
terms are collected from

Trln 1~ 2iqe„„"—6„»+q G„»+2mq5'2'(x)G„»+2mq 5'z'(x)G„» (S.3)

where G„» is given by (3.17) and q =qj . We evaluate each term in momentum space. For instance, we use

x& d k ik]" g= —277 e'
X (2m) k

Then,

Tr(x G„»)=In(A/p) 1n(A/m),

Tr[2rr5' '(x)G„»]=1n(A/m),

Tr[2n5' '(x)G~2n5' '(z)G~]=[in(A/m)]

Tr[(2x e„„x&B„G~)]=—[ln(A/m)] +ln(eA/p)[21n(A/m) —1],
where p is an infrared cutoff:

lnA ep
d k 1 1

(2m. ) k 2'
As a result, we obtain

(S.4)

(S.S)

(S.6)
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I; J
——, g(qj )~in(A/p) .

J
(5.7)

Thee divergences originate in the fact that a topological slngul~ty is a pointlike chmga obj~t Indm
I; J is nothing but the "classical energy" of topological singularities:

g(q )~ f d x [a„@[2.
J

We proceed to evaluate the term proportional to q; qj, i' I.t is easy to extract relevant terms from (5.1)
and to summarize them as

I $/2 r

4 2

1— 1+
k

{4m +k )' +k
ln

(4m +k )' —k

r,.~, = ——, gq;qj Ko(m lag —aj(l) +2m.
2 2 exp[ik(a; —ag)]2

i+J 2~' k'

(5.8)

Explicit integrations are tedious. %e only give the result:

I';~~ ————, $q; qj ln ~a; —af ~ poi'
+gq; qj [m (af ag)—(K& Ko—) m—~af af ~KO—K, ],

IAJ
(5.9)

where Ko ——Ko(m
~
af ag

~

)—and K& —— Ko are m—odified Bessel functions, while po is an infrared cutoff in-
troduced by

d' 2k e lkx

ln16po x e-'-'~,
(2n. ) k

y being the Euler constant.
Here we make a comment. In calculations (5.5)—(5.8), we confront a

which appears as indefiniteness of the coefficient ( —,) in (5.7) and of the
brackets of (5.8). We have determined them so that the effective action
ous section, Eq. (4.24), in the infrared behavior.

Combining (5.7) and (5.9) we obtain

$ I 2 =——,
' $ $ q, qj ln

~

a s aJ'i
~

A—
a i'

1+g gq, qj [m'(af —ag}'(K,'—Ko') —m ~af af ~K,K—, ]+—,

a i+j

(5.10)

'2

g qJ in(A/p),
a j

(5.11)

finite renormalization ambiguity,
constant (1) in the last square
(5.9) agrees with that of the previ-

where we have chosen p =p,o. This is the main re-

sult obtained in this section. %e remark upon
some prominent features therein. First, the in-

frared divergences are canceled out in the charge
neutral sector g. qz

——0. Hereafter, we considerj J
only this case because the charged sectors do not
contribute to the generating functional. Second,
each topological singularity is accompanied with a
cloud of to~ particles. The structure of this cloud

I

is transparent in (5.11). We shall come back to
this point in the next section.

Although it is possible to continue perturbative
calculations in qj, it would not be interesting.
This is so because they do not change either the ul-
traviolet or the infrared structure of the theory;
they could only modify the detailed structure of
the w cloud around a topological singularity.

VI. EFFECTIVE I.AGRANGIANS

In the preceding sections we have calculated effective action (3.14) to the leading order of 1/¹ We have
shown that
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Serr=So +Sr +O(1/YN),

with So ' being the term independent of topological singularities, and

S'"= ——,
' g q;.q, ln

~
aP a,~—~

A
i+J

+g q; q [m (af —aj~) (K~ —Ko ) —m ~af a—~~~KoK~],i'

(6.1)

(6.2)

(6.3)

This term has originated entirely from the cloud of m particles. Hence, the self-energy includes a dynamical
effect. The ultraviolet divergence is merely due to the pointlike character of topological singularities. By
separating the self-energy terms, we may represent (6.2) as

where qj is a root vector of SU(N) defined by (2.32). Let us extract the self-energy of each topological exci-
tation. For this purpose, we take a pair of charges q;= —qj and set

~
a; —ag

~

=A ' in (6.2). The result

must be twice the self-energy of a topological singularity carrying charge qj. It follows that

S,'fr = —, g qj ln(A /m ) .
J

S2 ——S„]f+Sg(2) (2) (2)

where

(6.4)

Sz' ' ——. , ——, g q; q ln
~ a/ a&~ ~—

l+J

+g q 'qz[m (aP ag) (K—i Ko ) —m
I
af—a) IKoK~—] ':i' (6.5)

Here, the colon indicates that the self-energies have
been removed, or equivalently that the normal ord-
ering has been made.

The generating functional is given by

Z —ZQZ2

where

Zo= f [do][dA„]exp( —So )

(6.6)

(6.7)

and

(6 8)Zz=]f exp( —S2 ') .

The symbol ~~L' has been defined by (3.11). It is re-

markable that, if and only if qJ ——2, the diver-

gence in the self-energy term (6.3) is precisely can-
celed by the bare fugacity A,o, A,o

——cA . When

qJ & 2, the cancellation is imperfect and the gen-
erating functional Z2 vanishes. As is obvious from
(2.30) and (2.32), this fact implies that charge vec-
tors q are given by elementary root vectors of
SU(N). Therefore, (6.8) is equivalent to

J g(A,„d ag),„o -, Ns!
(6.10)

where A,~ is a renormalized fugacity; A,z ——cm .
Here, the symbol g'- indicates that charge vector

qJ runs over only a set of elementary root vectors.
Formula (6.9) together with (6.5) gives the grand

partition function of topological excitations. As
far as the infrared structure is concerned, it de-
scribes a system of Coulomb gas bearing charge
vectors labeled by the root lattice of SU(N). On
the other hand, the ultraviolet structure is signifi-
cantly different from that of a naive Coulomb gas.
It is well known that the naive Coulomb gas
suffers an ultraviolet divergence when plus and
minus charges approach each other. However,
there are no such divergences in (6.5) because the
Yukawa-type repulsive force dominates over the
Coulomb-type attractive force for
~af ag( (m-

In what follows we shall mainly analyze the in-
frared structure of effective action (6.5):

Z2 ——)I„' exp( —Sz )
(2)

with

(6.9) S„'"=": ——,
' g q; q, ln

~ a/ ag ~—i' (6.11)
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It is interesting to examine the CP model by ex-
trapolating this formula to X =2. In this case,
there are only two elementary root vectors:
q=+(1,—1). Hence, (6.11) reads

r

S„'"=": —$ q;qj ln [ aP —ag f

l+J
(6.12)

where

N(N —1)

jeff= 2 (BpU) + ni g:cos(2V 'irU'7/ ):
p=1

(6.14)

with U(x) being an (N —1)-dimensional vector
field. Note that we have used (N —1)-component
root vectors q instead of J-component root vec-
tors q. In this formula, gp are nontrivial elemen-
tary root vectors defined by (2.26) with n, =+1
therein; there are N(N —1) such vectors in total.

We proceed to analyze the problem of charge
confinement based on an effective Lagrangian
(6.14). Before so doing, we recall that the CP+
model possesses a local U(1) gauge symmetry as
well as a global SU(N) gauge symmetry. Thus, it
is necessary to consider the confinement of U(1)
charges and SU(N) charges separately. As to the

where q; =+1. This result describes effectively an
Abelian Coulomb gas at temperature T =1, and
agrees exactly with the result of instanton calcula-
tions.

It is well known that effective action (6.12)
amounts to the sine-Gordon model. By the same
reasoning, it is quite easy to prove that (6.11) gives
rise to the SU(N) sine-Gordon model. Namely, we
obtain

z2=]f exp( —S~ )
R

=f [dUjexp —f d x W,&gU)

U(1) charge, we have nothing to add to the well-

known result obtained in the naive 1/N expan-
sion, ' because topological singularities do not bear
the U(1) charge. Namely, also in our formalism,
U(1) charges are confined in the order of I/v N
due to interactions with the U(1) gauge potential

Aq.
We next study the possibility of confinement of

fundamental representation charges of SU(N). We
expect a priori that this is impossible because topo-
logical effects cannot create a new symmetry, that
is, the local SU(N) gauge symmetry in the CP
model. In fact, an effective Lagrangian (6.14) has
a global SU(N) symmetry but not a local one.
(See note added in proof;) We are able to check
our observation by introducing a test charge into
the system.

Let us add a source term

SJ=/p f d xBpX Jp (6.15)

to the action in (2.13), where J„denotes the
current of a test particle,

J„=f dry„(r)5' '(x —y(r)),
and p represents a fundamental-representation
charge of SU(N). Namely,

p =(p ', . . . ,p, . . . ,p ) is an N-component
charge vector on the weight lattice of SU(N). "
Let us define J(x) by

(6.16)

(6.17)

When J& stands for a static current, i.e.,
J&

——5&O5"'(x), we obtain J=8(x). Because (6.15)
is now rewritten as

Sq 2iri g q——j pJJ(aj ), .
J

(6.18)

where use was made of (2.15), the net effect is only
to add this term to (6.11). Then, it is quite easy to
show that (6.14} is modified as

(6.19)
N(N —1)

W,~r= —,(B&U} +—m g:cos(2v nU. fz 2mfz. eJ):, —
2 p=1

where e is an (N —1)-dimensional charge vector" on the weight lattice of SU(N). By making a change of
variable, V=U —v m PJ, we find that the external source eJ is affected only by a short-range effect. There-
fore, we conclude that fundamental-representation charges are not confined in the CP ' model.

For the sake of completeness, we wish to review why fractional charges are confined in the Abelian Higgs
model. ' ' In this case, we add a source term

S,=ie f d'xaPJ„

to the action (2.1). Then, we may derive an effective Lagrangian

ff—2 ('B&U) , m v U +cm—:c—os(2irUU —2ireJ):

(6.20)

(6.21}
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where (tt'i) =U, P being the Higgs field. It follows
from this formula that the external source eJ is af-
fected by a long-range effect when e is a fractional
number. The essential difference of (6.21) from
(6.19) is given by the existence of the mass term

mz U . The mass term signals the presence of an
underlying local gauge symmetry in 1 + 1 dimen-
sions. As is well known, the sine-Gordon model is
equivalent to the Thirring model, but the massive
sine-Gordon model is equivalent to a gauged Thir-
ring model such as the massive Schwinger model.

%e conclude that charge confinement does not
occur as a topological effect in the CP ' model
for the following reasons. First, topological excita-
tions do not carry the U(1) charge. Second, the
CP ' model does not contain a local SU(N)
gauge symmetry. Therefore, the CP ' model is
not a good model to simulate the confinement
mechanism of quarks in Yang-Mills theory.

VII. CONCLUSIONS

In this paper we have proposed to analyze topo-
logical effects in a field theory by evaluating quan-

tum fluctuations around topological singularities
rather than classical solutions. We have em-

phasized that topological singularities are charac-
terized by the root lattice of SU(N) in the CP
model. Therefore, their charges are entirely dif-
ferent from the naive topological charge which is
an Abelian object. Because of this fact, quantum
effects due to topological singularities remain fin-
ite, though instanton effects vanish, ' in the large-
E limit.

%e have explicitly calculated quantum Auctua-
tions around topological singularities to the non-
trivial leading order of I/¹ An approximate ef-
fective Lagrangian is given by the SU(N) sine-

Gordon model. Based on this result, we have ar-

gued that the topological effects do not confine
fundamental-representation charges in the CP
model. This is not surprising because the local
SU(N) gauge symmetry cannot be generated from
the global SU(N) gauge symmetry by topological
excitations.

%e have shown that each topological singularity
gets dressed with a cloud of constituent particles
via quantum corrections. This cloud of constituent
particles softens the short-distance behavior of to-
pological excitations. %hen plus and minus
charges approach each other, a repulsive Yukawa
force dominates over the system. Therefore, the
grand partition function of topological excitations

describes an ideal system of Coulomb gas whose
ultraviolet structure is regularized.

In the CP ' model, it may not be interesting
to analyze topological singularities, since they have
no connection with charge confinement. However,
this model is an ideal laboratory in which cancella-
tion mechanisms of various divergences are care-
fully examined. There are two types of ultraviolet
divergences; one is of a dynamical origin and the
other is of a kinematical origin. The dynamical
divergence is due to loop integrals in Feynman
graphs. We have shown that this type of ultra-
violet divergence disappears automatically thanks
to the fact that topological singularities are labeled

by the root lattice of SU(N). On the other hand,
the kinematical divergence arises from the point-
like character of topological singularities. Keeping
track of all singular quantities, we have shown that
this type of ultraviolet divergence also disappears
automatically.

It is very interesting to apply our calculational
method to various models in higher dimensions,
such as Georgi-Glashow models, Higgs models,
and eventually Yang-Mills theories. In these
models, topological singularities trace world lines
or world sheets, which generate magnetic mono-
poles or magnetic vortices. We recall that rnag-
netic rnonopoles are labeled by the root lattice of
SU(N) in SU(N) gauge theories. ' As in the
CP ' model, their effect would remain finite in
the large-N limit. However, in contrast with the
CP ' model, topological excitations would be
essential agents that lead to quark confinement in
these models. This is so because these models in-
volve local SU(N) gauge symmetries and because
the associated non-Abelian flux is expected to be
squeezed into electric vortices by topological exci-
tations. We hope to report on a generalization of
our scheme to include these models in forthcoming
papers.¹teadded in proof. We remark that the SU(N)
sine-Gordon Lagrangian (6.14) is equivalent to the

following SU(N) Thirring Lagrangian:

N —1 ga2 2

I. fr='4&4 'rr g A'p-
er =1

Iil

P being the SU(N) fermion field, where the global
SU(N) symmetry is manifest.
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