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Disappearing dyons
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I show that in a world with massless fermions the interaction between the charge rota-
tor degree of freedom of the magnetic monopole and the massless-fermion vacuum re-
places the dyon states with a set of excitations having zero expectation value of the elec-
tric field.

I. THE PROBLEM

One of the surprising properties of the magnetic
monopole of weak-interaction gauge theory' is that
it has an internal degree of freedom which allows
it to exist in states of nonzero electric charge and
to readily exchange charge with ordinary particles.
More surprising yet, the charges of these "dyon"
states are not integer multiples of e if the vacuum
angle of the world is nonzero. The analysis which
leads to these conclusions applies, strictly speaking,
only to the pure gauge theory. In this paper, I will
show that if the gauge fields couple to fermions of
mass much less than the mass m~, of the vector
boson, the above picture is substantially modified.
In particular, if zero-mass fermions are present,
there are no electrically charged monopole states.
Instead the monopole is an island of chiral-
symmetry breaking in the Fermi sea, characterized
by large fluctuations, but zero expectation value, of
the electric field. The properties of the zero-
fermion-mass monopole turn out to be rather easy
to derive and will be presented in detail in the rest
of the paper. Since light quarks do exist, the
zero-mass picture is presumably more phenomeno-
logically relevant than the conventional picture of
the monopole.

The following simple argument shows that
something must happen to the dyon in the pres-
ence of massless fermions: The anomaly equation
for the chiral charge is

dQs

dt
=c fd'xE B.

Consider the expectation of this equation in any
dyonic energy eigenstate. The left-hand side is
zero in any energy eigenstate, while the right-hand
side is nonzero in a dyon state, since E and 8 are
both radial fields of definite sign. To see the way
out of this paradox, consider how the dyon states
arise in the first place. The minimum-energy

gauge field configuration in the monopole sector is

not unique but is parametrized by all possible
gauge rotations of a basic configuration A;, (x).
To get the low-lying states it suffices (in the Ao ——0
gauge) to quantize motions of the system in the
configuration space of minimum-energy solutions
(the rationale is that there is a gap of order m~
between these and all other configurations). These
motions are parametrized by a time-dependent,
gauge-rotation angle a(t). The action is propor-
tional to a, and the energy eigenstates are rotator-
like states with nonzero expectation of a (and
therefore of E) and energies of order e ms. If
light fermions are present, the space of almost-
zero-energy configurations is clearly enlarged.
Now the fermions can couple strongly to the
gauge-rotation angle a, and there is no longer any
reason to expect a to have a simple rotator action.
To escape the above-described paradox, we have
only to show that the new effective action for a
does not have solutions with nonzero expectation
of a (and therefore of E ). All the relevant physics
is contained in the problem of massless fermions
interacting with gauge fields which are time-
dependent gauge rotations of the basic monopole
field.

The problem can be further simplified by ignor-
ing all fermion variables except those belonging to
a special partial wave. The rationale for this sim-
plification is given in the next section. This strat-
egy is borrowed from the work of Blaer et al. ,
who have studied the way in which a dyon config-
uration with definite electric field begins to decay
towards the dyon ground state. The following sec-
tions show how a similar strategy can be used to
deal directly with the ground state of the dyon.

II. THE APPROXIMATION

For simplicity we work with the monopole of
the Georgi-Glashow model interacting with one
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Aavor of I = —, massless fermion. The monopole

configuration is

A;, (x) =e,(jxJA (r),

A(o)=0, A(r)= —for r&1 1r:. mw
'

P, (x)=x,H(r),

yo
—+y; iA; $—=0,
Bt Bx;

where

A; =U A; U~ '+iU~V;U~

(in the Ao ——0 gauge we have fermions propagating
in a time-varying vector potential). The J=0 Fer-
mi field may be decomposed as

PJ =0
(+) X+

+X+
L

1 A.I+ = (g++p+x 1 )rp qSnr.
where + refer to helicity and X is a 2)&2 matrix,
one index describing spin, the other describing iso-
spin. The normalization of g and p is chosen so
that they have anticommutation relations with
standard normalization. When restricted to J=0,
the Dirac equation is a set of equations for the
functions g and p which may be written in the
form

where P is the Higgs field. The relevant gauge ro-
tations, Ut„=exp(i Ax r, l2. ), are those which leave

the Higgs field invariant. Consequently the gauge
degrees of freedom in an Ao ——0 gauge treatment
reduce to the single function A, (x, t). The fermions

satisfy a Dirac equation which has been thoroughly
analyzed by Jackiw and Rebbi. A key point is
that the angular momentum J =L+S+T is con-
served and can be used to do a partial-wave anal-

ysis. The J=0 partial wave is the only one for
which the fermions are not kept away from the
monopole core (of radius ro=m~ ') by a centrifu-

gal barrier. Since we are interested in states of en-

ergy much less than mw, the centrifugal barrier
will decouple all but the J=0 partial waves. Once
we restrict our attention to s-wave fermions we

may also limit ourselves to spherically symmetric

gauge functions A, (r, t).
The Dirac equation for P is

73 Bg+E +l718
L

g+
+gp+

The equations for the two helicities of course
decouple since we are dealing with massless fer-
mions. If we make the identification

0=s3, 'Y1 = l $1~ 'YS =TO'Y1 =v2

(note that I y„,y, I =2g„, where g„ is the one-

dimensional Minkowski metric), this equation
clearly has the structure of the Dirac equation for
a one-dimensional fermion interacting with an
Abelian vector potential A& ——+(A, '/2)5&o and hav-

ing a position-dependent "mass term"

M(r)= A ——yse
1 +say,

r

[M(r) has nothing to do with the physical mass of
the three-dimensional fermion. ] The function A (r)
is such that M (r) vanishes exponentially rapidly
outside the monopole core (r y ro). Since we are
interested in states of energy small compared to
m~, the details of fermion wave functions for
r & rp are irrelevant and it should be sufficient to
set the mass term equal to zero and exclude the
fermion from the interior of the monopole by im-

posing an appropriate boundary condition at r =rp
(we could just as well have set the boundary at
r =0 except that the finite core size provides a
necessary cutoff on certain electromagnetic self-

energies). The proper boundary condition follows
from the fact that M(r) diverges as —l lr at r =0:
unless the lower component of 7 vanishes just out-
side the monopole core, 7 will have a nonintegrable
singularity at r =0. In other words we want to set

T+ X(ro ) =0. This is a standard bag boundary con-
dition for one-dimensional massless fermions. In
order to tame infrared singularities it will be con-
venient to impose the same boundary condition at
a large radius R, as well. Eventually we will let
R —+ oo.

To summarize, we have reduced the fermion sys-
tem to two massless one-dimensional fermions (one
for each physical helicity) confined to a box of size
R —rp and interacting with an Abelian gauge field:

yq(B„iA „+)X+=0,—-
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Tp (x& (R
~+7=0 at xi ——rp, R .

For future reference, we will want to know what
certain physical current densities are in terms of
the pseudo one-dimensional Fermi fields X+. Out-
side the monopole core, the electric charge direc-
tion in isospin space is parallel to the Higgs field

[P,(x)=x,H(r)]. Consequently, the electric
charge and the radial electric current densities are

Jo =0x —yof2 '

J„=1(x —x yg,2

where the y matrices are the four dime-nsional

ones. They may be written in terms of the J=0
fields as follows:

1
Jo =—

~ (X+yiX+ —X—yiX —)
8~r

1J„=— 2(X+yoX+ —X yoX ) .
8m.r

III. AN EFFECTIVE ACTION

Having reduced the fermion sector to a
Schwinger model, we should be able to solve it us-

ing Schwinger's trick. Write

i (a+ y5+b+ ) (p)
+ ++

where X' ' satisfies the free Dirac equation with
the boundary condition ~+7' '=0 at r =rp, R.
Then it is easy to show that 7+ satisfies an in-
teracting one-dimensional Dirac equation if

a+b'=0, a'+b =+—
2

or

gllb=+, Oa=+2' 2

b'(ro) =b'(R) =0 .

The functions a and b are completely determined

by the gauge function A, and we may take any one
of a, b, or A. as our independent variable describing
the gauge field configuration.

Our strategy will be to integrate out the fer-
mions and derive an effective action for the gauge
field. In order to do this we need the currents in-

duced in the vacuum by a given gauge field A,(r, t).
We make use of the usual point-separation defini-

tion

(Xp&X(x) )= lim [F(y,x; A) F(y,x—; 0)],
2

+(x1»2 ) = exp( iri dx A )I

X tr [y„(T(X(x i )X(x2)) )),
where X satisfies the one-dimensional Dirac equa-
tion y&(P' iA —)X=0; in taking the limit y~x one
averages over the direction of b =y —x; the coeffi-
cient g is chosen to ensure conservation of the
physical charge current. In view of the relation be-

tween Jp, J„and the one-dimensional current

K& Xy&X,——we want to impose eI'"B&K„=O (i.e.,
that the one-dimensional axial-vector current is
conserved). This is achieved by setting ri= l. The
result of carrying out the point-separation pro-
cedure is

(XyiX) = b' . —1

As in the usual Schwinger model, the fact that
these currents are linear in the gauge field is the
key to being able to compute the fermion deter-
minant.

Now we must calculate the action functional, or
fermion determinant, for a given gauge field time
history. Recall that in ordinary electrodynamics,
the variation of the fermion determinant under
small variations of the gauge field is given by

51ndet[y„(B&—iA„)] =i J'd4»»(J„)g,

In order that P+ satisfy the chosen boundary con-
dition, we need only impose the condition

a(ro) =a (R)=0 .

The boundary condition on b implied by the equa-
tion a+b'=0 is then

where (J„)q is the vacuum expectation of the
charge current for the given vector potential. If
(J& )z is linear in A, this is instantly soluble for
the determinant,

lndet[y&(B& —iA&)]= —Jd xA"(J„)q .P P Iii
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In our problem the time-varying gauge function
A, (r, t) can be interpreted as producing a radial
Abelian vector potential A„=—A,

' (and a radial .

Abelian electric field E„=—A, ') outside the mono-

pole core. We have already calculated the electric
current induced by k and found it to be linear in k.
We can therefore use the determinant formula de-
rived above to evaluate the fermionic effective ac-
tion

S&————,f dt f 4vrr dry'( J„),~

= —,
' fdt f4mrdr A.

'
, ( (T'+yP'+ )~

8m.r

Rf dtdrXb.

Note that because of various sign changes previ-
ously noted, the two helicity states make equal

contributions. Making use of Ob =k'/2 and the
fact that b'=0 on the spatial boundaries, we may
integrate by parts to cast this into the very sugges-
tive form

R

S,= f—dt—f dr(a„'b)'

To get the full action we must add the Coulomb
energy of the radial electric field produced by k,

S,.„,=
' fdt f4nrdr(A, ')'.

2e

dt drr b

Sm
Cl(r b)+ b =0,

e2

b'=0, (r b)'=0 at r=rp, R,
where

Before solving these equations, let us see how
the conventional dyon solution arises. It should

emerge if we neglect S~, the response of the fer-
mion vacuum to the gauge field. This looks super-

ficially reasonable if e is small. The equation to
solve (with the same boundary conditions as be-

fore) is then

Cl(r b) =0 .

The solution for b and the corresponding solution
for k are

cz( p —2pf p ) ~p orp2

4 4r 2 2
lnr,

1 1
A. =at

ro r

where a is arbitrary. The corresponding electric
field is E„=A,' =a/r —a Coulomb field propor-
tional to the growth rate of A, . This is the conven-

tional dyon solution. For what comes next we

want to note that the dyon solution is a zero-

frequency normal mode —had it been of nonzero

frequency, E, would have been oscillatory in time
and have had zero expectation value.

IV. SOLVING THE EFFECTIVE ACTION

The full effective action is the sum of S~ and

Seoul '

S,ff(b)= 2 fdt fdrr (I7b)

Now to solve the full equation. We note that a
solution of

e+, b=o,
8 r

Since it is quadratic, we should be able to solve it
to find the low-lying excitations of the mono-
pole/massless fermion system.

We have chosen to express Sd~ as a functional of
the derived variable b. When varying S,~~ with
respect to b it is important to impose the surface
boundary condition b'(rp) =b'(R) =0. This means
that 5b is a free variation on the surface, while 5b'
must be zero on the surface. The differential equa-
tion and boundary conditions which follow from
the variational principle are readily found to be

e~+1—
2 f(x)=0, x = re

dx 8 x
1/2

J,(x), v =—+1 e

Sm
f(x)=

2

b'(rp) =b'(R) =0,
automatically solves the full equation with its
larger set of boundary conditions and must be the
solution we want. We look for solutions of the
form b =e' 'f (cpr) and find that f(x) is a Bessel
function,
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The boundary conditions determine the spectrum
of allowed values of co through a transcendental
equation of a type familiar from quantum-
mechanical scattering theory. If we write co =q/R
and a=e /4~, the eigenvalue equation takes the
foal

a R 1 sin(ri+a)
2ir ro ri cos(ri —a)

The essential results can be easily inferred from a
graph of this equation. In the limit R ~ ao (a
fixed) the spectrum is

co„=[(n + —,)ir+5(co)]—,n =0,1,. . .1 1

R'

5(co)~a for co &&aro

5(co)~——a for copyaro —1

2

In the limit a~0 (R fixed) the spectrum is

1
co„=nm —,n =0,1,. . .R'

(the continuum loses one state which becomes a
zero-frequency mode). Only in this unphysical
limit is there a zero-frequency mode which can be
interpreted as a dyon state. In the physically
relevant limit, this mode is driven into the continu-
um and is not to be distinguished from the other
continuum states. The essential point is that if
a & 0, there is no zero-frequency mode.

The standard dyon is recognizable by its long-
range Coulomb field and we should ask what the
electric field carried by our normal modes looks
like at large distances. %'e have in general that
E„=A,' =2Gb. Because the normal modes satisfy
(D+e /ger r )b =0, we have that E„= (e I—
4n r )b. It is easy to establish from the equation
for b that the asymptotic behavior of b is
b - e'"'cos[ ocr +b, ( co)]. Although the electric field
energy density E„ is very similar to that of the
dyon, the electric field itself has zero average value
so long as cu & 0. Since co is always positive, we

say that the dyon disappears when the monopole

couples to massless fermions.
To understand what is going on, it is helpful to

have a physical picture of the normal modes we
have been discussing. S-wave fermions are spheri-
cal shells of charge converging on, or receding
from, the monopole at the speed of light. The b
field evidently describes pairs of such particles. In
the region between the two shells of such a pair
there is a Coulomb field whose sign depends on the
sign of the charge of the outermost particle. When
a converging pair of shells scatters from the mono-
pole and emerges as an outgoing pair the role of
leading and following particle would normally be
interchanged and the sign of the Coulomb field re-
versed. However, in the J=0 partial wave of a
monopole the fermions necessanly change the sign
of their charge when scattering from the mono-
pole. Thus a given pair has the same-sign Cou-
lomb field between the two particles, whether it is
converging on the monopole or receding from it.
Furthermore, the sign of the field turns out to
depend on the chirality of the particles making up
the pair. Therefore the Coulomb field perceived
far from the monopole depends crucially on the
state of the fermion vacuum (i.e., the extent to
which such pairs are present and their chirality
properties). The method we have developed gives
us a convenient way of describing this vacuum and
its excitations.

V. CHIRAL SYMMETRY BREAKING
AND FERMION MASS

Eventually we want to study the effect of a fer-
mion mass term on all of this. As a first step, let
us look at the two-point function of the density
D =P+g . Treating D as we have treated the
charge currents gives

2ibD
(0)1

Sm.r
D[0) +(0)+(o)

+ e

The two-point function is then

(D (x&)D(xz)) = (expI2i[b(xi) —b(xi)]] )(D' ' (xi)D' '(xz)) .
64 ri rz

The expectation of the scalar fields has to be taken using Scff(b) as the measure, while the D' ' expectation

value is constructed using free Fermi propagators. The result is

exp[ —2( b(x i )b(x i ) ) ]exp[ —2(b(xi )b(xq) ) ]exp[4(b(xi )b (xi) ) ]
2n(x i

—xi).2 2
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where (b(xi )b (xi) ) is the propagator following
from S,tt. That propagator can easily be seen to
satisfy

(b(xi)b(x2)) =Gp(x],x2) —G 2(xi,x2),
where

OGp = 5(x ] —x2 ),
2

8 770+ 'G i ———5(x) —x2),
8 r

and

Go= G 2=0 at r=R, ro .
dr Br

Note that because S,g is a higher-than-second-
derivative action, ( b( x&) b(x 2)) is not singular at
x

&

—x2. With a little bit of work we can show
that

(b(r, t)b(r, t) )t= —,ln —+Ci .
R

We will also need the result

(b (r, t)b (r', 0) ) ——,ln —+C2
R

(the quantities Ci and Cq are definite numerical
constants). Putting all this together, we can show
that

(D+(r, t)D(r', 0)) ~
t r3r' 3

(i.e., the dependences on t and R both cancel).
This argument is not quite complete as we have
not computed the determinant of the b field and it
could depend on R. There are related examples
where this happens. By the cluster theorem, the
above behavior of the two-point function means
that

In other words, the monopole is the center of a re-
gion of chiral-symmetry breaking (driven by the
anomaly) which is suppressed only by a power of
the distance from the center of the monopole.
External fermions can presumably scatter from
this condensate with symmetry-breaking effects
which would be very interesting to examine, espe-
cially for SU(5) monopoles where one might hope
to see mixing of leptons and quarks.

Another important question is the effect of finite
fermion masses on all of this. The above argu-
ments and the bosonization treatment of the
Schwinger model suggest that the fermion mass
should be accounted for by adding a term propor-
tional to m cos 2b to the effective action density.
The normal modes now interact with each other
and the system is no longer soluble. Furthermore,
the action is no longer invariant to the addition of
a constant to b—i.e., to global chiral rotations.
Since the effect of a 8 (vacuum angle) term can be
implemented by a global chiral rotation, this means
that the energies will now depend on 8. Once en-
ergies depend on 0, there can be an expectation
value of E.B and the Coulomb field of the dyon
can reappear. Understanding how it turns on as
we increase the fermion mass from zero and how
the standard dyon picture is recovered as the mass
becomes large is a question to which we will re-
turn.
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