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Feitttion emission from a Julia-Zee dyon
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A relationship is obtained between the S matrix for the charge-exchange scattering of a
fermion by a Julia-Zee dyon and the flux of fermions emitted by the dyon when the mass
of the fermions is sufficiently small. In the limit of a pointlike dyon, the required S-
matrix elements are obtained in closed form and the corresponding fermion Aux is com-
puted explicitly.

I. INTRODUCTION

Asymptotically, the field configuration of an
SU(2) Julia-Zee' dyon is completely equivalent to
the magnetic and electric field of a Dirac magnetic
monopole carrying an electric charge Q/g. If an
SU(2) doublet of Fermi fields f is coupled to the
dyon, the corresponding particles behave asymptot-
ically as two species of fermions with particles car-
rying electric charge+g/2 and their corresponding
antiparticles carrying charge+g/2. If the mass of
these fermions is sufficiently small, the dyon be-
comes unstable. For Q &0, fermion-antifermion
pairs (each particle carrying charge+g/2) are
emitted, lowering the total dyon charge.

In a recent paper, we discussed this decay pro-
cess for the case of massless fermions, finding an
anomalous production of chirality consistent with
the axial anomaly. 5 In this paper we consider the
more general case of fermions with mass. After
reviewing the properties of the Julia-Zee dyon in
Sec. II, we turn, in Sec. III, to the derivation of a
formula expressing the spectrum of emitted fer-
mions in terms of S-matrix elements for the
charge-exchange scattering of a single Dirac parti-
cle by the Julia-Zee dyon. The resulting formula is
accurate in the small-g or "one-loop" approxima-

tion in which the back-reaction of the emitted fer-
mions on the dyon field is neglected. In Sec. IV
we give an alternate derivation of the flux comput-
ed in Sec. III. This second derivation is based on a
purely formal evaluation of the matrix element of
the Heisenberg current operator.

The S-matrix elements required by the above
formula are in general difficult to obtain. Howev-

er, in the limit of a pointlike dyon the non-Abelian
Dirac Hamiltonian reduces to the Dirac Hamil-

II. JULIA-ZEE DYON

In this section we summarize the properties of
the Julia-Zee dyon. In the simplest static gauge,
the Yang-Mills vector potential corresponding to
the dyon has the form

A (r) =e„j(r) [E(r) 1]——
Ao(r)= —(r)'J(r)—

g

(2.1)

tonian for an Abelian dyon. Although the eigen-
value equation for this Abelian problem reduces to
a pair of uncoupled second-order equations, the
problem is complicated by a severe singularity at
the origin. Only if one requires unconventional,
relaxed boundary conditions does a complete set of
energy eigenstates exist for the Abelian Hamiltoni-
an. The singularity is very similar to that present
in the Dirac Hamiltonian of an electron moving
in the field of a nucleus with Z) 137. For our
two-component Abelian equation (fermionic
charges+g/2) a four-parameter set of boundary
conditions is possible. ' " However, the pointlike
limit of the non-Abelian dyon determines a
corresponding Abelian problem with a unique
choice for these boundary conditions. ' That
choice is one which mixes the two differently
charged solutions and gives nonzero S-matrix ele-
ments for charge-exchange scattering. These are
computed explicitly in Sec. V and the resulting
flux of fermions emitted by the pointlike dyon is
obtained. The energy spectrum of these fermions
shows a resonant enhancement at zero total energy
(kinetic plus dectrostatic). This resonance is the
Jackiw-Rebbi zero-energy mode, which acquires a
width when the dyon becomes unstable.
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Here i and 0 indicate space and time directions, ' a
is an SU(2) vector index, g is the Yang-Mills cou-

pling constant, r =
~
r ~, and r =r/r T. he Higgs

field P'( r ) has a similar structure:

(2.2)

this asymptotic constant as the difference between
the electrostatic potential at infinity and at the
center of the dyon: u/g-(Q/g}/(r) where (r) is
the radius of the dyon's charge distribution.

If an SU(2)-doublet fermion field g is coupled to
the dyon, it will obey the Dirac equation

These fields solve the coupled Higgs-Yang-Mills
equations, are analytic at the origin, and behave for
large r as

J(r)- —u+Q/r, H(r)-h, (2.3)

Mq(r)r = U(Aqv )U ' — U(j„U— (2.4)

where the 2X2 matrix U(r) is an SU(2) gauge
transformation and H (a = 1,2,3) are the usual
Pauli matrices. If we choose the singular Dirac
string present in W&(r } to lie along the positive z
axis, we could use

U(r ) = (1—z.r )'~
2

r.(r Xz)
ww ]/Q(1 z r)—. (2.5)

giving

while IC (r) vanishes exponentially W. e will consid-
er the case where the constants v, Q, and h are all
positive.

Asymptotically, the field configuration specified
by (2.1) and (2.3) can be gauge transformed to the
single-component vector potential W&(r ) of an
Abelian magnetic monopole with pole strength 1/g
which also has electric charge Q/g:

(2.7)

where we have, for simplicity, omitted a constant
mass term. For large r this equation also simpli-
fies and its solutions g can be written

T

f~(r, t)
P(r, t)-U '(r)

r, t
(2.8)

where t/i+(r, t} is a solution of the Abelian Dirac
equation for a fermion of mass m =Gh/g and
charge +g/2 moving in the vector potential M&
given in Eq. (2.4). Equivalently, if we begin with
the non-Abelian Dirac Hamiltonian

i 8; +——2 v +GP'r'13

2
(2.9)

(2.10)

perform the gauge transformation H ~UHU
and replace the fields A& and P' by their asymptot-
ic forms, the resulting Hamiltonian is the sum of
two independent Abelian Hamiltonians

T

1 rgz
gr(1 z r)—.

u 1
d3f — +0

g gr'
(2.6)

for fermions with mass m =Gh/g and charge
+g/2.

III. SPECTRUM OF EMITTED FERMIONS
with z a unit vector in the z direction.

The constant value —u/g of the vector potential
Mp at spatial infinity is a somewhat unusual fea-
ture of the Julia-Zee solution when expressed in a
time-independent gauge. However, as we will see,
this constant plays a central role when the produc-
tion of fermions by the dyon is analyzed in such a
static gauge. Physically, this asymptotic constant
is a consequence of the dyon's electric charge and
the topological nature of the solution (Mace r )

which requires that the potential vanish at the ori-
gin instead of the more conventional condition that
it vanish at infinity. Heuristically, one may view

For 2m ~ u one expects the combined fermion-
dyon system to be unstable. If a g+ fermion with
charge +g/2 and a f antifermion also with
charge +g/2 are created near the dyon and moved
to infinity, a rest mass of 2m must be created but
an electrostatic energy of 2( ~ g)v/g can be liberat-

ed because of the constant potential u/g at infinity.
Thus pair production is energetically favorable in
the field of a Julia-Zee dyon when 2m & u.

The mechanism for this fermion production by a
Julia-Zee dyon can be quite easily understood by
considering the non-Abelian Dirac Hamiltonian H
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of Eq. (2.9) in a second-quantized form and at-
tempting to define the ground state as one in
which all the "negative-energy" levels are filled.
The situation is represented pictorially in Fig. 1.
If 2m & U then a single-particle eigenstate with en-

ergy E lying between u/2 —m and —u/2+m has
asymptotic components f+ and g with both posi-
tive and negative energy. The I,=+—,, charge

+g/2 component 1(+ has a momentum

p —+[(E+u/2) m ]' (3.1)

and appears to be a positive-energy state whose
conventional free-particle energy +(p+ +m )'
has been shifted downward by the constant, nega-
tive electrostatic energy —U/2. Likewise, the

1I,= ——,, charge —g/2 component P has a
momentum

p =+[(E—v/2) —m ]' (3 2)

and should be interpreted as a negative-energy state
whose free-particle energy —(p +m )'~ is shift-

ed upward by the constant electrostatic energy

+v/2. Clearly an observer far from the dyon

would interpret g+ and f as positive- and

negative-energy solutions, respectively. Any energy

eigenstate in the second-quantized system defined

by filling some fraction of those states in regions 8
with u/2 —m & E & —u/2+m will be stable but

only because of the presence of an infinite number

of f+ particles or g antiparticles which, by the

Pauli exclusion principle, prevents the pair produc-

tion described above.
A physically correct initial state must obey the

following requirements: (i) For r greater than (yS', X
~

yS" X) g g g iy (3A)

some fixed large radius 8, the state should contain
no incoming or outgoing particles with positive en-

ergy. Thus, if we let ~=I„single-particle states of
the form exp(+ipr) with total energy E=+(p
+m )'~ —a.u should be empty. (ii) Similarly, all

such states with negative energy, i.e., E= —(p
+m )'~ —au should be filled. Because asymptotic
states of types (i) and (ii) are mixed by the Dirac
Hamiltonian (2.9), any initial state specified in this
way is necessarily time dependent.

However, the resulting particle creation is not
difficult to compute. In order to specify an initial
state

~

i ) precisely let us introduce two complete
orthonormal sets of isodoublet Dirac wave func-
tions P, ' (r). The two sets are distinguished by
the superscript X="in" or "out" which indicates
that the incoming or outgoing part of the wave
carries quantum numbers specified by the subscript
u. We require that asymptotically these wave
functions have energy E = 5' —~u and a single non-
vanishing isotopic component 1(+ for ~=+—,.
Thus for large r both the incoming and the outgo-
ing parts of P„~ have charge leg and P„'~ obeys

HP„'~ ( r ) =EP„'~ ( r ), r & R, (3.3)

where H is the complete non-Abelian Hamiltonian.
Of course, the requirement that P„~ have only a
single isotopic component for large r implies that
Eq. (3.3) cannot hold for all r: P„~(r) is not an
eigenstate of H. We adopt the normalization can-
vention

I =+1/2, Charge=+g/2 I =-1/2, Charge=-g/2z

"Positive" Energy "Posi ti ve" Energ y

(+v/2+m)

(+v/ 2-m)
II

(-v/2+m)

E=+v/2

(-v/2-m)

"Negative" Energy "Negative" Energy

F/Q. l. Energy spectrum of particles with I,=+—, far from the Julia-Zee dyon. Fermion emission results
if the region 8 is not empty (U &2m) so that "positive"- and "negative"-energy states can mix.
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for X="in" or "out". Next use the "in" states to
define annihilation and creation operators through
the usual expansion of the Fermi field operator:

f(r)=g J d8'(a„P„'m+b „P„'").
K,a

(3.5)

Here a specifies the quantum numbers of the an-

tiparticle associated with the negative-energy state
Our initial state

I
i ) is then determined by

the requirement

a„ I

t') =b„
I
i ) =0 . (3.6)

In the language of second quantization, the state

I
i ) is obtained by filling all the states P„'~" whose

(asymptotic total energy E) minus ( —iiv) is nega-

tive (5' &0) while leaving those states with g') 0

empty. In terms of Fig. 1 those states in region C
1 1

with I,=+ z or regions B and C with I,= ——
are filled; those states in region A with I,= ——, or

regions A and 8 with I,=+—, are empty.

Although our initial state
I

i ) has been precisely

specified by Eq. (3.6), its definition depends on the
expansion functions P„'"which themselves were

not uniquely determined. The constraints that we

placed on the asymptotic behavior of the P„'~" left
their behavior near the origin unspecified. Howev-

er, the resulting ambiguity in the state
I
i ) is com-

mon to all decay problems and affects only the
short-time behavior of the decaying state. As we

will see, the unspecified details of the functions
P„'~" propagate off to infinity and do not affect the
large-time linut of the flux of emitted particles at

any fixed position.
We will now determine the flux of particles

present at large fixed r in the large-time limit of
the state

I
i ). We make the one-loop or small-g

approximation and treat the Yang-Mills dyon field
as fixed, ignoring the back-reaction of the emitted

, fermions. Let us first examine the large-time limit
of the filled states P i/z~ with E=—8'+u/2 in

region B (m & 5' & U —m ). The outgoing parts of
these states travel off to infinity and are gone
while the incoming parts continue to flow inward
and are scattered from the dyon yielding new out-

(3.7)

where g„'m '""is an eigenstate of the non-Abelian

Dirac Hamiltonian (2.9) with eigenvalue E whose

incoming (outgoing) part agrees with that of
P„~+ '" '"". The matrix S„~.„~(E) is unitary:

SS =I. (3.8)

In terms of S, the flux per unit energy of ir=+ —',
2P

positively charged particles with "positive" energy
g'=E+ U!2 and quantum numbers a flowing out-
ward from the dyon is

(3.9)

Here the factor 1/2ir is the outgoing flux of a state
satisfying the energy-5-function normalization con-
vention (3.4). The sum over a' in Eq. (3.9) adds
the contribution of all incoming, filled negative-

energy states which can scatter into the (+—,,a)
state being examined.

Similarly, the outgoing flux in a ( ——,,a) state
with "negative" energy E= —8'+u/2 comes en-

tirely from scattering from the filled incoming
states with energy E,~= ——, and quantum num-

bers o.' and is given by

If we interpret the difference between the Aux
1/2ir present in the "vacuum" configuration when
this state is filled and the flux (3.10) present when
t~ 00 as the fiux X-(8') of antiparticles, we ob-

tain

going particles with ~=+—,. We interpret the

difference between the flux of particles for t~ 00

and the flux present at t =0 as the steady-state flux

of particles produced by the dyon.
Define the Dirac scattering matrix S„,.„(E)

as

(3.11)

This equation can be put in a form similar to Eq. (3.9) by using the unitarity relation (3.8):
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Finally, we observe that there are no particles emitted in the limit of large times whose energies E lie in
the ranges A or C of Fig. 1. In the case of region A all the states are initially empty and remain so in the
limit of large times. Of course when the filled states are time developed for a finite time and then analyzed
in terms of our basis P„'" there will be components with energy lying in the region A. These disappear in
the limit of large time. Similarly, the large-time limit of the filled states in region C leaves those states
filled. The finite number of states with a definite energy E & —v/2 are initially filled and simply rearranged
among themselves in the large-time limit —unitarity requiring that they all remain filled.

The differential fluxes ~ (8') and a ( g') can be added and integrated to determine the total flux of par-
ticles and antiparticles carrying the quantum numbers cx:

g f d N'[
~
Si/2 &. i/2 &'( W' —U/2)

~
+

~

S i/i —.i/2 ( N'+U/2)
I ]

a'

Likewise, repeating the steps leading to Eqs. (3.10) and (3.12), we can compute the flux of a generalized

charge T carried by the emitted particles:

(3.13)

—S ( —g +p/2)i/2. i/iT i/g i/p'( —N'+U/2) —i/2;i/2] (3.14}

Here T„~.„ is the matrix element of the operator
T between single-particle states with the quantum
numbers ~', u' and a, o.. The matrix operations in

Eq. (3.14) refer to sums over the suppressed indices
n and n' while the minus sign preceding the
second term is the usual consequence of the iden-
tification of antiparticles with empty negative-

energy states. The above formulas reduce the
problem of calculating the flux of emitted fermions
to that of finding S-matrix elements for the
charge-exchange scattering of a single fermion by
the dyon.

The above analysis has been carried out for a
gauge in which the vector potential is time in-
dependent, with time component Wo approaching
the constant —U/g at spatial infinity. It is possi-
ble to carry out the analysis for a time-dependent
gauge in which Mo has the more conventional
behavior Q/gr for large r. In this case the particle
production arises from the time dependence now
present in the Dirac Hamiltonian instead of from
the mixing of positive- and negative-energy states
as discussed above. However, the fermion produc-
tion computed in the time-dependent gauge agrees
precisely with that given by Eqs. (3.9) and (3.12}.

emitted by the dyon can be obtained by examining
an alternate derivation using more conventional
operator techniques. We begin by writing the flux
in terms of the matrix element of the Heisenberg
current operator

Jf(x)= —;[(('(x)Y"T,g(x)], (4.1)

(4.2)

where it is understood that the background dyon
field is not affected by the emitted fermions even

as t —+Op.

The Heisenberg field f(r, t) can be written in
terms of the a's and b's used to define

~

i ) if we
introduce the time-developed basis functions

(r, t) These functi. ons obey the non-Abelian,
time-dependent Dirac equation (2.7) and satisfy the
initial condition

where the commutator indicates the charge-con-
jugation-symmetric combination of both orderings
of i7 and l( and the matrix T is assumed to act on
the Dirac and internal symmetry indices of P. Let
us define the flux

(r, t)
I i p

——P„'"(r) . (4.3}
IV. OPERATOR DERIVATION

OF FERMION FLUX

A somewhat different perspective on the formu-
la (3.14) for the steady-state flux of a quantity T

l

In terms of these functions, P(r, t) becomes

g(r, t) =g f dr[a„P„(r,t)+b „P„(r,t)] . -
CX, K

(4 4)

This expression for P( r, t} can then be used in Eq. (4.2) and the Fock-space matrix element evaluated, giving
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Fr li—m —,'g f dg' —f dS' fd Sr p„(rR,t)yTp„(rR, t)
u, K

'
(4.5)

The positive term in the commutator in Eq. (4.1}gets a nonzero contribution from the operator product

b„~b„~ and yields the integral from —ao to —I in Eq. (4.5). The integral from +m to + 00 comes from

the product a„a„~in the negative term in the commutator in Eq. (4.1).
Next, the large-time limit in Eq. (4.5) can be evaluated if we introduce the factor e ' ' e+'~' with E = 8'

—zu and use the standard formula'

(4.6)

(4.7)

With this analysis Eq. (4.5) becomes

F = ~ g f dE f dE f d~S r p„'"(rR)yTQ„""(rR)
K~CE

The flux contributing to the integral in (4.7) comes from both the incoming and the outgoing parts of f„'~"
and includes not only the fiux of the quantity T carried off by the emitted particles but also a possible vacu-

um contribution to (i
~ j (r, t)

~

i & that may be present for large r even at t =0.
We can find the actual flux a 'T" carried off by the emitted particles if we subtract from Fr the corre-

sponding flux FT computed at I; =0:

P T ——FT —FT,tot 0

where

(4.8)

FT= —,g f dg' f dl' —fd S r P„,'I"(rR. )yTP„'~"(rR)
K,a

(4 9)

Because P„'~" and Pf ~+""'"have identical incoming parts, the incoming contribution to P T' cancels between

FT and FT. The remaining outgoing part can be written in terms of the S matrix of Eq. (3.7) and a similar

quantity

(Ey(Ei E) (yE'+a u, out
i

yE'+gv, ln
&

which specifies the outgoing parts of P„'~". The result for P 'T" is

(4.10)

(4.1 1)M'T' = g f dE f —dE (a'~a (S TS P' TP') ~re~a—& ~

K,a

A given energy E will contribute to both the terms ~=+—, with the same sign if
~

E
~

& m+U/2. For such

energies the sum over sc and a reduces to a trace which reduces to zero:

tr(StTS —P' TW) =tr(T —T)=0 (4.12)

using the cyclic property of the trace and the unitarity of S and P'. Thus the region
~

E
~

& m +v/2 can be
omitted from Eq. (4.11) so that

M'T" —— g f dE f dE (a,a
i
(StTS— P'tTP')

i
a,a&, —

K,CX

(4.13)

an expression with no remaining ultraviolet ambi-

guities.
Finally, we must show that this result is con-

sistent with the formula derived in Sec. III. To-
ward this end we introduce PK, the projection

operator onto the I,=~ subspace, and write the in-

tegrand in Eq. (4.13) as

g tr[P„(StP„TS P'tP„TW }]. — (4.14)

%e assume that T commutes with P„;and, by de-
finition, P' also does. Then (4.14) can then be
written

tr[P, (StP „TS)]+tr[P„(StP„TS TP„)] . (4.15)—
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The first term in (4.15) is half of the integrand in

Eq. (3.14) of Sec. III. The second term can be
simplified further. If we replace the first PK by
I—P „we obtain

tr[(I P—„)(SP„TS—TP„)]

= —tr(P „SP„TS), (4.16)

a quantity identical to the first term in the expres-
sion (4.15) except for the minus sign and the re-
placement K~ —K. However, P„S(E)P „vanishes
unless both E+v /2 and E—v /2 are possible free-
particle energies. Consequently, the combination
of integrals in Eq. (4.13) in parentheses reduces to
a single integral from —U/2+ m to +u/2 —m
with a sign opposite to that of I(.. Thus

g f ( 2a)d—E[tr(P„S P „TS) tr(P—„SP„TS)]
K

= —g I atr(P „SP+„TS)dE,
K

(4.17)

a result identical to Eq. (3.14).
It is intermting to note how the violation of chirality required by the axial anomaly enters this formalism

when m =0. Clearly, if the charge T being studied commutes with S and P' then both S and P' can be
eliminated from Eq. (4.13) and the resulting T Tinside -the parentheses vanishes giving zero total emitted
fiux for such a conserved quantity. For the case of chirality, T=y which does commute with the single-
particle Dirac Hamiltonian and hence with S. However, the separation of the ~=+—, Dirac fields necessary
for the definition of

~

i ), and built into W, violates chirality. For that case Eq. (4.13) becomes

g( a)J,d—E&a,a
~

y' —Wty'W ~a,a) .
K, CX

(4.18)

1 +I)/2 UdE—v/2
(4.19)

[P' is helicity conserving for the higher partial
waves which therefore do not contribute to the
sum over a in Eq. (4.18).] The value of v/m for
the emitted flux of chirality can also be obtained
directly from the anomalous divergence equation
obeyed by the gauge-invariant chiral current':

w',"=Jd'ra, J', .

2 drFQ'"=— (4.20)

V. FLUX CALCULATION
FOR A POINTLIKE DYON

The single-particle S-matrix elements can be
computed explicitly for the limiting case of a

As we argued in out previous paper, " the work of
Kazama, Yang, and Goldhaber ' implies that for

1K= + 2 the total angular momentum j=0 wave
has an incoming part with pure negative helicity
while the outgoing part has positive helicity.
Hence, for the j=0 wave the y term in Eq. (4.18)
is —1 while P' y P' is +1. For z= ——, the signs
reverse, just compensating the changing sign of the
factor z with the result

I

pointlike Julia-Zee dyon. The Dirac Hamiltonian
then becomes the direct sum of two Abelian Ham-
iltonians:

0
H= (5.1)

with

1 r &(z~+=A —l V+
2 r(1 z r)—.

+Pill +———v
1 Q
2

We use the representation in which

(5.2)

0 o. I 0
g ()

'~ 0 I—
The singular 1/r potentials in H require the impo-
sition of unconventional boundary conditions on
the fermion wave function g=(~+) at the location
of the point dyon (r =0). These conditions will be
determined by the requirement that H be a well-
defined Hermitian operator having the same sym-
metries as the nonsingular Hamiltonian for a non-
Abelian dyon with spatial extent.

To find the scattering states of H, w4: choose the
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fermion wave function to be a simultaneous eigen-
function of H, J, and J, with corresponding
eigenvalues E, j(j+1),and p.s Here the total an-

gular momentum J =L+ —,c7 with

ferential equations

df+ Q v

dT 2T 2
Pl — + +E g+=0 ~

rgzL=rX —iV ——
2 r(1 z—r)

——T.
2

dg+ Q v

dT 2T 2
m+ —— +E—f+ =()

(5.3c)

For a dyon with monopole strength 1/g and a fer-
mion with electric charge +g/2, j can take on the
values 0, 1,2, . . .. For j=0, the eigenfunctions
have the form

For j~ 0, there are two classes of eigenfunctions
which can be chosen to be mutually orthogonal.
Using the index a =1,2 to distinguish between
these two classes and letting b, =2 for a =1 and
b, = 1 for a =2, these eigenfunctions can be writ-
ten in the form

1
SEj=o,p=o(r ) =

T

f+(r)re (8,P)

ig+(r—)re (8,$)

f (r)re (8,P)

+ig (r)re (8,$)

(5.3a) 1
g.,E,,;„(r)=

f+ (r)gj'„'+(8,$)
(b )+—Eg+ (r)gjq' (8,p)

f (r)gj'„' (8,p)
(b )—

+ ig (r)gj.„' (8,f)

(5.4a)

(o"r)ri+ (8,$)=+r-io (8 p) (5.3b)

where the normalized two-component spinors go
satisfy

where the normalized two-component spinors
gj~„'

+
satisfy

(cr r)gj~„"+(8,$)=-(I~„'+(8,$—)- (5.4b)

and where the radial wave functions obey the dif-
l

and where the radial wave functions obey the dif-
ferential equations

, d
dT

(b, —a)[j(j+1)]'
f++ m ——+ +E g+ ——0—,Q u

2T
(5.4c)

(b, —~)[j(j+1)]' ' Q u+ g++ m+ — +E f+ ——0—
dT T 2T 2

The solutions of Eqs. (5.3c) and (5.4c) for small r
are

„+UV+ & ~ —0'/4]'~' (5.5)

for any j)0.
For simplicity, let us consider a dyon whose

electric charge Q/g & v 8/g. Then for j+0, the
only acceptable solutions are those which have the
positive exponent. This means that energy eigen-
functions with nonzero angular momentum satisfy
the conventional boundary conditions

r JdO, QEa rQE=0. (5.7)

This gives

I

other hand, both j=0 solutions (r +'~~ ) are squa-re

integrable in the neighborhood of the origin and no
nontrivial linear combination of them vanishes as
T~0. The appropriate boundary conditions for
these waves can be determined from considerations
of Hermiticity and symmetry. ' For the Hamil-
tonian H to be Hermitian, the surface integral gen-
erated at small T by integrating a term like

pE a pgE by parts must vanish:

f+ =g+ =0 at r =0 (5.6) f'+g+ g'+f++f' 'g g"f—=o-—(5.8)

and do not give rise to any charge mixing. On the which may be written as
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f' ig' — f —Lg

The general solution is

f'i+ig'i fi+igi
f' iig' f i'

fy ig+ f+ 'g+
(5.9)

tion, anticommutes with the non-Abelian Dirac
Hamiltonian and therefore transforms an eigen-
function with energy E into one with energy —E.
For this to remain valid in the pointlike limit, both
fE and po r g must satisfy the same boundary
conditions. To compute po HpE, we need the fact
that

f+ +ig+ fi ig+ (5.16)

f +ig (5.10)

r Jd0QF. o"rQE 0—— (5.11)

for small r when the pointlike dyon limit is taken.
This gives

fifi+gigi f'*f —g"g =—o. (5.12)

Letting f'+ f+ and g'+ ——g+—in Eqs. (5.8) and
(5.12), we obtain

where k is any two-by-two unitary matrix. ' lt
may depend on r but must be independent of the
energy E. For each choice of the four real param-
eters needed to specify , one has a set of boun-
dary conditions which makes H Hermitian. By
taking the pointlike limit of a spatially extended
non-Abelian dyon, these parameters can be deter-
mined.

As a first step in determining the appropriate
matrix +, observe that the Hermiticity of o'p for
the extended dyon requires that

which follows from o EJ = —(r' Jr')o~g and an
appropriate choice of phases for ri~+.

r

f+ no' f*-no'

—++~o +~g —8op~'+E =i
—)0

+ g 'go —Ig+'go

(5.17)

Imposing the boundary condition (5.10) on the
wave function per HpE gives

f* —ig* f* +ig'

fi —&gi fi+w~ (5.18)

f+ e' f and g——+ ——e' g at r=0i5 (5.19)

from which we conclude that ~'E+ = +~'E. This
implies that 5z ———5i. The appropriate boundary
conditions for energy eigenfunctions with zero an-
gular momentum therefore take the final form'

If++ig+ I'+ If +ig
=

I f+ ig+
I

'+
I
f-——ig-

I

'
and

I f++ig+ I' —
I f +ig-

= —
I f+ &g+

I

'+
I f —ig—

(5.13)

(5.14)

and give rise to charge mixing in the j=0 channel.
(The value of the phase factor e' will not be need-
ed for the calculation which follows. )

To compute the charge-exchange S-matrix ele-
ments, we must solve the differential equations
(5.3c) subject to the boundary conditions (5.19).
Let

The sum and difference of these equations require

Ifi+ig+ I

= If ig Iand If-—+ig--
=

I f+ ig+ I
w—hich imply that k must have the

01111

U@' =E+——2'
p+ =+(&i'—m')'i', (5.20)

0
N2 0

J

(5.15)

with 51 and Bq real. Next, we note that po r E,
with E denoting the operation of complex conjuga-

I

so that 8'+&m and 8' & —m for the range of in-
tegration in (3.13). We now make the substitu-
tions

f+(r)=(g'++m)'i~e + "r +'&i~[@&+(r)ipse+(r)—]
gi(r)=~i($'i~m)' e + r+ '~ [p, i(r) @~i(r)], — — —

(5.21)
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with arg[($' +m)'/ ] = ~m. /2, and find that p)+ obeys a confluent hypergeometric equation

(i P(y d(((, (y Q I y
2

p 2 +(1+iQ —p) pi —1~ p, ,~=0
gp Gp 2 py

and that

(p++ N'+)»p+ ~)M)+

(5.22)

(5.23)

with p= —2ip+r. The solution for pj+ is

p(~ C~F——+i 1—~,1+iQ,p ~D~p+'~F +. Q N+ . —; iQ

p+
—1y, 1 piQ, p

p+
(5.24)

C+ and D+ are arbitrary constants and F(a,y,p) denotes the confluent hypergeometric function

- p r(aye) Dy)
! I (a) Py+n)

(5.25)

The small-p and large-p behaviors of this function are given by

(5.26)F(a,y,p} +1+——p as
~ p i

—+0,

F(a,y,p)~ (p) re + ( —p) as
~ p ~

~ c~r(y) . ny}
r(a) r(y —a)

with arg(+p}= ~n./2. These limits imply that the upper-component radial wave functions f+ have the

orms

f +IQ/2 y b r+(Q/2 as r ~0
—iQ/2P~ +ip g r +iQ/2P~ —ip

f+ ~A+ r —e —+B+r —e — as r~ 00

with the constants a+, b+, A+, and B+ related by

(5.27)

a~Np~
A~ ——2p~ +m+p+—

b~co2~
B+——2p+

(
+m+p~—

where

+m —p p —5'p
(5.28)

P+iQ) ~i(Q/2)() y)/P~) +(ng/4)( —1+)/P~)

1(+(iQ/2)(1+1/P ))

I (+iQ) +(((?n)((+)/p+) +(~{?/4)((+(/p+)

r(+(iQ/2)(1+1/P, ))
2p y

(5.29)

a~ =e'~b and b~ =e'~a (5.30)

so that A+ and B+ are related to A and B
This mixing of the two isospin components yields

The lower-component radial wave functions g+ can
be obtained directly from f+ by using the first
equation in (5.3c).

The non-Abelian boundary condition, f+
=e'sf near the origin, requires that

A =0, B~ ——

' 1/2m+ 8'+

4np+
(5.31a)

the charge-exchange S-matrix elements. An in-

coming wave with only an I,=+—, component
("positive" energy I'+) will scatter from the dyon
and produce an outgoing wave with both I,=+—,

components ("positive" and "negative" energies

g~):
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for the incoming wave with flux 1/2m, and.

Pl+8+
A+ =S+i/2 +i/2 4'+

m —8'
S—1/2;+ i/2

4mp

' 1/2

(5.31b}

for the outgoing wave. Using Eqs. (5.28), (5.30),
and (5.31a), we can determine A+ and 8 . In
particular, we find

~dr
1

4mP+P
I

O'
I

(5.36)

where P+ is the velocity of the emitted particles
(with charge +g/2) and P is the velocity of the
emitted antiparticles (also with charge +g/2).
The expression (5.33) simplifies considerably when
the two velocities P+ and P are equal:

The differential flux of fermions emitted by the
decaying dyon is now given by Eqs. (3.9) and
(3.12):

e
—i5

S—i/2;+ i/2—i/2;+ i/2 (5.32)

4~+II-
(5.37)

Q)2 CO i+
[(1+@+)(1+P )]'/' (~+~)Ip, =p =—.I

(5.38)

6)2+N i

[(1—P+)(I —P )]'/'
(5.33)

Similarly, an incoming wave with only an I,= ——,

component ("negative" energy g' ) will scatter
from the dyon and produce an outgoing wave with
both I,= + —, components ("negative" and "posi-
tive" energies 8'-):

In particular, for massless fermions (P+ ——P
this result is in agreement with (4.19), the flux of
particles plus antiparticles being equal to the flux
of chiral charge in this case.

We can also evaluate expression (5.33) for
I
~

I

in the nonrelativistic limit (P+,P « 1) by using
Stirling's asymptotic formula for the I function:

N1 —8
9+ ——0, A+ ' 4'

m+ 8'+
~+ =S+]/2;-i/2

Aran+

' i/2

for the incoming wave with flux 1/2n, and
T ' i/2

m —8'
&—=S—i/2; —i/2 4'

(5.34a}

(5.34b)

(Q+ /Q)'
(p 2 p 2)2

144 P+P sinh2(mQ)

+n.Q(1/p++ i/p )Xe (5.39)

If this result is compared with Eq. (5.37), we see
that we must add the nonleading term 1/(4P+P )

for Eq. (5.39) to be correct when P+ ——P . The re-
sulting formula for

I
&

I
then gives the fermion

flux

for the outgoing wave. Using Eqs. (5.28), (5.30),
and (5.34a), we can determine 8 and A+. In
particular, we find

I /4

I
—I@'- I)'+I'/4 '

+i5
S+ i /2; —i/2 =+i/2t i/2

2(P P )i/2~6
(5.35)

where the function I (P+,P ) is given by

(5.40)

6m sinh(n. Q)exp[ —(mQ/2)(1/P++ I/P )]
I (P+,P )=

(Q+1/Q)
(5.41)

Thus, in the limit where U —2m is much smaller
than both the inverse dyon radius (the pointlike
limit) and the fermion mass m (the nonrelativistic
limit), we find a resonant enhancement in the emit-
ted fermion spectrum when

I
@'+

I
=

I

@'
I
. Since

the total energy (kinetic plus electrostatic) is

I
——=—

I
g- I+-U U

+ 2 2'
this resonance has

I
N'+

I
=U/2, i.e., F. =O. We
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conclude that the zero-energy bound state of
Jackiw and Rebbi' acquires a width
I'(P,P) „„...,~, when u —2m becomes posi-

tive and appears as a resonance in the particle pro-
duction spectrum.

VI. CONCLUSION

%'e have shown that to leading order in the
Yang-Mills coupling constant g the spectrum of
fermions with 2m & u emitted by a Julia-Zee dyon
can be computed in terms of the S matrix for the
single-particle Dirac equation in the dyon back-
ground. Let us discuss further the physics of our
semiclassical, small-g approximation.

In the limit of small g, the dyon's mass and
charge become much larger than the mass and
charge of the individual fermion quanta. Further-
more, our result for the fermion flux, Eq. (3.13), is
independent of the Yang-Mills coupling g. Thus,
as g becomes small, the rate of fermion emission is
fixed so that the resulting flux of energy is also
constant while the flux of charge is proportional to
g. Consequently, as g~o the radiation of energy
and charge must have a smaller and smaller efftx:t
on the dyon mass (M/g ) and charge (Q/g) so
that our treatment of the dyon background as con-
stant becomes more and more accurate. If g is suf-
ficiently small, there will exist a range of times
t i « t « t2 within which the fermion emission is
correctly described as a steady-state flux of parti-

cles emanating from the dyon. Here ti is the time
scale required for the transient effects associated
with the arbitrariness in our definition of the ini-
tial state

~
i ) to dissipate: t, should be a typical

fermion energy -u. The time t2 might be thought
of as the dyon lifetime, a time over which the fer-
mion emission has a significant effect on the
dyon's properties: t2ug-Q/g or tin -M/g
The first estimate compares the charge emitted in
the time t2 with the dyon charge, the second com-
pares the emitted energy with the dyon mass. If
g is sufficiently small, then tqlti —1/g » 1 and
the regime required by our computational scheme
exists.

Finally, we should observe that our analysis can-
not be extended to describe the entire dyon decay
by allowing a slow decrease of the parameters Q
and u in the classical solution. The lang-term ef-
fects of the fermion emission on the dyon back-
ground will be more complex than a simple lower-

ing of Q and u so that for times of the order of tz
boson radiation should also become important.
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