Aspects of the locality of bilocal fields

Anton Z. Capri

Theoretical Physics Institute, Physics Department, University of Alberta, Edmonton, Alberta, Canada, T6G 2J1 (Received 18 May 1981)

We show that a Lorentz-invariant "bilocal" field whose mass-squared operator has a complete set of bound-state eigenfunctions can be local in its center-of-mass coordinate only if it is a sum of products of local fields and c-number functions.

When Yukawa' introduced the concept of bilocal fields he defined them simply as fields depending on two space-time variables. It seems, however, that a more restrictive definition with more emphasis on the word "local" in "bilocal" is necessary. Just what the actual definition of "bilocal" should be has not yet been settled.

A possible definition of bilocality modeled on the conventional notion of locality was given by Capri and Chiang. 2 Somewhat later³ explicit fields displaying this kind of locality were constructed. The definition in this case was based on the notion that the space-time coordinates of a bilocal field somehow mimic the presence of constituents such as quarks. Therefore fields $\phi(x_1, x_2)$, $\phi(y_1, y_2)$ were defined as relatively bilocal if they commuted whenever both coordinates of one were spacelike with respect to both coordinates of the other:

$$
[\phi(x_1, x_2), \phi(y_1, y_2)] = 0 \quad \text{if} \quad (x_i - x_j)^2 < 0 \tag{1}
$$

for all possible i, j .

Another notion of bilocality that is implied in several papers⁴ on multilocal fields is to have two fields relatively bilocal if they commute whenever their centers of mass are spacelike or

$$
[\phi(X,x), \phi(Y,y)] = 0 \quad \text{if} \quad (X - Y)^2 < 0 \tag{2}
$$

The purpose of this note is to show that this second kind of bilocality can occur for a "free bilocal" field only if the field $\phi(X, x)$ is simply a sum of products of local fields $\phi_{n,l}(x)$ and c-number functions $f_{n,l}(x)$:

$$
\phi(X, x) = \sum f_{n,l}(x)\phi_{n,l}(X) \tag{9}
$$

A further assumption required is that the masssquared operator has a complete set of bound-state eigenfunctions as is, for example, the case in the

model described by Capri and Chiang.² Thus it follows that the bilocality of such fields is essentially trivial.

The reason for wanting such locality is that it facilitates the construction of advanced and retarded Green's functions Δ_A , Δ_R satisfying the condition

$$
\Delta(X - Y; x, y) = \Delta_A(X - Y; x, y) - \Delta_R(X - Y; x, y) ,
$$
\n(4)

where

$$
i \Delta(X - Y; x, y) = [\phi(X, x), \phi(Y, y)] .
$$
 (5)

In fact one can simply define

$$
\Delta_A(X - Y; x, y) = \theta(-X^0 + Y^0)\Delta(X - Y; x, y) ,
$$
\n(6)

$$
\Delta_R(X-Y;x,y) = -\theta(X^0-Y^0)\Delta(X-Y;x,y) .
$$

To prove the assertion made above, we assume that $\phi(X, x)$ satisfies the Heisenberg equation

$$
(P^2 - M^2)\phi(X, x) = 0 , \t\t(7)
$$

where

 25

$$
P_{\mu} = -i \frac{\partial}{\partial X^{\mu}}
$$
 (8)

and $M²$ is the mass-squared operator and hence a Lorentz scalar. We further assume that M^2 is self-adjoint and has a complete set of bound-state eigenfunctions which may, for convenience, be chosen real:

$$
M^2 f_{n,l}(p,x) = m_n^2 f_{n,l}(p,x) \tag{9}
$$

Here p is the eigenvalue of P , and l is a label distinguishing mass-degenerate states. The labels n and l are Lorentz scalars and the eigenfunctions

2118 \odot 1982 The American Physical Society

are also assumed Lorentz invariant.

The field $\phi(X, x)$ is further assumed to have a Pock-space representation built up from the "oneparticle" states:

$$
f_{n,l}(p_n,x)e^{-ip_n\cdot X}
$$

where

$$
p_n^2 = m_n^2 \tag{10}
$$

Thus we introduce the following annihilation and creation operators:

$$
[a_{n,l}(\vec{p}), a_{n',l'}(\vec{p}')] = [a_{n,l}^{\dagger}(\vec{p}), a_{n',l'}^{\dagger}(\vec{p}')] = 0,
$$
\n(11)

$$
[a_{n,l}(\vec{p}), a_{n',l'}^{\dagger}(\vec{p}')] = \omega_n(\vec{p})\delta(\vec{p} - \vec{p}')\delta_{n,n'}\delta_{l,l'},
$$
\n(12)

where

$$
\omega_n(\vec{p}) = (\vec{p}^2 + m_n^2)^{1/2}.
$$
 (13)

The field operator now has the expansion

$$
\phi(X,x) = \frac{1}{[2(2\pi)^3]^{1/2}} \sum_{n,l} \int \frac{d^3p}{\omega_n(\vec{p})} \left[e^{-ip_n \cdot x} f_{n,l}(p_n, x) a_{n,l}(\vec{p}) + e^{ip_n \cdot x} f_{n,l}(p_n, x) a_{n,l}^\dagger(\vec{p}) \right]. \tag{14}
$$

It is now straightforward to evaluate the commutator:

$$
\begin{split} [\phi(X,x),\phi(Y,y)] &= i\Delta(X-Y;x,y) \\ &= \frac{1}{2(2\pi)^3} \sum_{n} \int \frac{d^3p}{\omega_n(p)} \left[e^{-ip_n \cdot (X-Y)} f_{n,l}(p_n,x) f_{n,l}(p_n,y) - e^{ip_n \cdot (X-Y)} f_{n,l}(p_n,x) f_{n,l}(p_n,y) \right] \,. \end{split} \tag{15}
$$

Now, using Lorentz invariance, it follows that a necessary and sufficient condition for $\Delta(X-Y;x-y)$ to vanish for spacelike separation of X and Y is that

$$
\Delta(X-Y;x-y)\bigg|_{X^0=Y^0}=0 \text{ for } \vec{X}\neq \vec{Y} \ .
$$
 (16)

Written out, this produces the condition

ten out, this produces the condition
\n
$$
\frac{1}{2(2\pi)^3} \sum_{n,l} \int \frac{d^3p}{\omega_n(\vec{p})} e^{i \vec{p} \cdot (\vec{X} - \vec{Y})} [f_{n,l}(\omega_n, \vec{p}; x) f_{n,l}(\omega_n, \vec{p}; y) - f_{n,l}(\omega_n, -\vec{p}; x) f_{n,l}(\omega_n, -\vec{p}; y)] = 0.
$$
\n(17)

Hence we require

$$
\sum_{l} f_{n,l}(\omega_n, \vec{p}; x) f_{n,l}(\omega_n, \vec{p}; y) = \sum_{l} f_{n,l}(\omega_n, -\vec{p}; x) f_{n,l}(\omega_n, -\vec{p}; y) . \tag{18}
$$

Furthermore these sums are Lorentz invariant since the $f_{n,l}$ are. Thus we can define

$$
\rho_n(x^2, y^2, x \cdot y, p_n \cdot x, p_n \cdot y) = \sum_l f_{n,l}(\omega_n, \vec{p}; x) f_{n,l}(\omega_n, \vec{p}; y) ,
$$
\n(19)

where

 $p_n \cdot x = \omega_n x^0 - \vec{p} \cdot \vec{x}$

and the Lorentz invariance has been made explicit.

The center-of-mass locality condition [Eq. (18)] now reduces to

$$
\rho_n(x^2, y^2, x \cdot y, \omega_n x^0 - \vec{p} \cdot \vec{x}, \omega_n y^0 - \vec{p} \cdot \vec{y})
$$

=
$$
\rho_n(y^2, x^2, x \cdot y, \omega_n y^0 + \vec{p} \cdot \vec{y}, \omega_n x^0 + \vec{p} \cdot \vec{x}).
$$
 (20)

This immediately implies that

$$
\rho_n(x^2, y^2, x \cdot y, p_n \cdot x, p_n \cdot y)
$$

is independent of $p_n \cdot x$ and $p_n \cdot y$ and is a function of only x^2 , y^2 , $x \cdot y$, and $p_n^2 = m_n^2$.

It now follows that the functions $f_{n,l}(p_n,x)$ are also independent of $p_n \cdot x$ and depend on p_n only trivially, i.e., via p_n^2 . To see this call $p_n \cdot x = \xi$ and $p_n \cdot y = \eta$ and suppress temporarily all further x and y dependence so that

$$
f_{n,l}(p_n, x) = g_{n,l}(\xi) ,
$$

\n
$$
f_{n,l}(p_n, y) = g_{n,l}(\eta) .
$$
\n(21)

The fact that ρ_n is independent of $p_n \cdot x$ and $p_n \cdot y$ now reads

$$
\sum_{l} g_{n,l}(\xi)g_{n,l}(\eta) = \text{constant} \tag{22}
$$

as far as the variables ξ and η are concerned. Differentiating first with respect to η and then with respect to ξ and setting $\eta = \xi$, we get

$$
\sum_{l}\left|\frac{dg_{n,l}(\xi)}{d\xi}\right|^2=0.
$$

 $\overline{2}$

Therefore

 ~ 10

$$
\frac{dg_{n,l}(\xi)}{d\xi} = 0
$$

or

 $g_{n,l}(\xi) = \text{constant}$.

Thus the functions $f_{n,l}(p_n,x)$ are in fact function of x^2 and p_n^2 only, so the field $\phi(X,x)$ has the form

$$
\phi(X,x) = \frac{1}{[2(2\pi)^3]^{1/2}} \sum_{n,l} f_{n,l}(m_n^2, x^2) \int \frac{d^3 p}{\omega_n(\vec{p})} [e^{-ip_n \cdot X} a_{n,l}(\vec{p}) + e^{ip_n \cdot X} a_{n,l}^\dagger(\vec{p})]
$$

=
$$
\sum_{n,l} f_{n,l}(m_n^2, x^2) \phi_{n,l}(X)
$$

as stated.

I would like to thank Professor Y. Takahashi for useful criticisms. This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

²A. Z. Capri and C. C. Chiang, Nuovo Cimento 36A, 331 (1976).

³A. Z. Capri, Found. Phys. <u>8</u>, 225 (1978).

⁴J. Rayski, Proc. R. Soc. London **A206**, 575 (1951); I. Sogami, Prog. Theor. Phys. 50, 1729 (1973).

(23)

2120

¹H. Yukawa, Phys. Rev. 77, 219 (1950); Phys. Rev. 80, 1047 (1950).