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Aspects of the locality of bilocal fields
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We show that a Lorentz-invariant "bilocal" field whose mass-squared operator has a
complete set of bound-state eigenfunctions can be local in its center-of-mass coordinate
only if it is a sum of products of local fields and c-number functions.

When Yukawa' introduced the concept of bilocal
fields he defined them simply as fields depending
on two space-time variables. It seems, however,
that a more restrictive definition with more em-

phasis on the word "local" in "bilocal" is neces-
sary. Just what the actual definition of "bilocal"
should be has not yet been settled.

A possible definition of bilocality modeled on
the conventional notion of locality was given by
Capri and Chiang. Somewhat later explicit fields
displaying this kind of locality were constructed.
The definition in this case was based on the notion
that the space-time coordinates of a bilocal field
somehow mimic the presence of constituents such
as quarks. Therefore fields P(xi,xi), P(yi, y2) were
defined as relatively bilocal if they commuted
whenever both coordinates of one were spacelike
with respect to both coordinates of the other:

[$(xi,x2),$(yi,y2)]=0 if (x; —xj) &0 (l)

for all possible i,j.
Another notion of bilocality that is implied in

several papers on multilocal fields is to have two
fields relatively bilocal if they commute whenever
their centers of mass are spacelike or

[P(X,x),P(Y,y)]=0 if (X—Y) &0.

The purpose of this note is to show that this
second kind of bilocality can occur for a "free bilo-
cal" field only if the field P(X,x) is simply a sum
of products of local fields (b„ t(x) and c-number
functions f„t(x):

model described by Capri and Chiang. Thus it
follows that the bilocality of such fields is essen-

tially trivial.
The reason for wanting such locality is that it

facilitates the construction of advanced and retard-
ed Green's functions b,z, bz satisfying the condi-
tion

b,(X—Y;x,y) =b q (X—Y;x,y) —hit (X—Y;x,y),
(4)

where

ih(X —Y;x,y)=[/(X, x),$(Yy)] .

In fact one can simply define

g„(X—Y;x,y)=g( —X +Y )h(X —Y;x,y),

a, (X—Y;x,y) = —|)(X'—Y')~(X —Y;x,y) .

To prove the assertion made above, we assume
that P(X,x) satisfies the Heisenberg equation

(P M)P(X,x) =0—,

where
aP = —i

ex~

and M is the mass-squared operator and hence a
l.orentz scalar. We further assume that M is
self-adjoint and has a complete set of bound-state
eigenfunctions which may, for convenience, be
chosen real:

$(X,x)=g f„t(x)g„ t(X) . M'f„,(p,x)=m„'f„,(p,x) . (9)

A further assumption required is that the mass-
squared operator has a complete set of bound-state
eigenfunctions as is, for example, the case in the

Here p is the eigenvalue of P, and I is a label dis-
tinguishing mass-degenerate states. The labels n
and l are Lorentz scalars and the eigenfunctions
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are also assumed Lorentz invariant.
The field III(X,x) is further assumed to have a

Pock-space representation built up from the "one-
particle" states:

—ip X
fn, I(pn x)e

where

[un, l(p) &n', I'(p )] [&,l(p) un'. I'(p )]=0,

[&,I ( P } li. ', I' ( P ') l =oi. ( P )@P —P @, '5l I

(12)

2= 2
Pn =~n (10)

Thus we introduce the following annihilation and
creation operators:

where

a)„(p)=(p +m„)'~ .

The field operator now has the expansion

(13)

, „,Q f „[e '"
fn, I(pn, x)~n, i(p) +e " f,, l(pgg x)&.,I(p)].

[2(2 ir)']' ' „I ron(p)
(14)

It is now straightforward to evaluate the commutator:

[$(Xx),P( Yy}]=ih(X —Y;x,y)

d3
,g f [e "

fn, I(pn, X)fn, l(pn y) e" —f.,l(p. ,X)f.,l(p. ,y)] .
2(2m)' „~„p

(15)

Now, using Lorentz invariance, it follows that a necessary and sufficient condition for b,(X—Y;x —y) to
vanish for spacelike separation of X and Y is that

b,(X—Y;x —y} o o=0 for XQY.

Written out, this produces the condition

3 X f e [fn„l(~. P'x)f, l(oi P'3') f,I(oi P—»}f,l(— '—P'3'}]=o
2(2 )3 ( )

n gl n ll, II» n, gg

Hence we require

gf.,l( P x}f,I( P y)=gf, I(~ P»)f, I( ——P'3') (18)

Furthermore these sums are Lorentz invariant
since the f„I are. Thus we can define

pn(x &3 &x 3 &pn x&pn 3 ) gfn, l(own& p&x)fn, l(~n& p&y) &

l

(19)

where

0 -+p„x =co„x —p x

and the Lorentz invariance has been made explicit.
The center-of-mass locality condition [Eq. (18)]

now reduces to

This immediately implies that

2 2Pn(x &3 &x 3&Pn x&Pn 3 )'

is independent of p„x and p„y and is a function
of only x, y, x y, and p„=m„.

It now follows that the functions f„l(p„,x) are
also independent of p„.x and depend on p„only
trivially, i.e., via p„. To see this call p„.x =g and
p„.y =g and suppress temporarily all further x and

y dependence so that

(21)

p„(x,y,x y, co„x —p
.x,ro„y —p y)

=p„(y,x,x y, cony + p y, bronx + p x). (20)
The fact that p„ is independent of p„x and p„y
now reads
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g g„ i(g)g„ i(il ) =constant
I

as far as the variables g and il are concerned. Dif-
ferentiating first with respect to i) and then with
respect to g and setting il =g, we get

2
dg„ 1(g) =0.

i

Therefore

or

g„ i(g) =constant .

Thus the functions f„i(p„,x) are in fact functions
of x and p„only, so the field P(X,x) has the
form

3

, „,gf.,i(~n'x') f [e " ~.,I(p)+e'" ~.,I(P)][2(2m)']'" ., i
' ~.(p)

as stated.

n, l
(23)
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